SAKURA Science High School Program Activity Report 2016 SAKURA Science High School Program Activity Report 2016
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Growth of Scientific Communities in Japan^
The Growth of Scientific Communities in Japan^ Mitsutomo Yuasa** 1. Introdution The first university in Japan on the European system was Tokyo Imperial University, established in 1877. Twenty years later, Kyoto Imperial University was founded in 1897. Among the graduates from the latter university can be found two post World War II Nobel Prize winners in physics, namely, Hideki Yukawa (in 1949), and Shinichiro Tomonaga (in 1965). We may say that Japan attained her scientific maturity nearly a century after the arrival of Commodore Perry in 1853 for the purpose of opening her ports. Incidentally, two scientists in the U.S.A. were awarded the Nobel Prize before 1920, namely, A. A. Michelson (physics in 1907), and T. W. Richard (chemistry in 1914). On this point, Japan lagged about fifty years behind the U.S.A. Japanese scientists began to achieve international recognition in the 1890's. This period conincides with the dates of the establishment of the Cabinet System, the promulgation of the Constitution of the Japanese Empire and the opening of the Imperial Diet, 1885, 1889, and 1890 respectively. Shibasaburo Kitazato (1852-1931), discovered the serum treatment for tetanus in 1890, Jiro ICitao (1853- 1907), made public his theories on the movement of atomospheric currents and typhoons in 1887, and Hantaro Nagaoka (1865-1950), published his research on the distortion of magnetism in 1889, and his idea on the structure of the atom in 1903. These three representative scientists were all closely related to Tokyo Imperial University, as graduates and latter, as professors. But we cannot forget to men tion that the main studies of Kitazato and Kitao were made, not in Japan, but in Germany, under the guidance of great scientists of that country, R. -
HOPE Meetings Are Held for Excellent Graduate Students and Young Researchers Specially Selected from Countries Around the 9Th Asia-Pacific and Africa Region
For Overseas Cooperating Institutions Objective HOPE Meetings are held for excellent graduate students and young researchers specially selected from countries around the 9th Asia-Pacific and Africa region. These meetings give an opportunity for the participants to engage in interdisciplinary discussions with Nobel laureates and other distinguished HOPE MEETING scientists pioneering the frontiers of knowledge. They also give the participants, who lodge together over the course of the event, a chance to make friends and form collegial networks with Nobel Laureates with peers from the regions. The title “HOPE Meeting” signifies the promise held for the future roles of young researchers and optimism for creating a bright S&T future within the global community. Date F ebruary 26- ■ Saturday, February 25: Orientation & Registration M arch 2, 2017 ■ Sunday, February 26: Nobel Prize Dialogue Tokyo 2017 Organizer Venue Tokyo , JAPAN Office of the HOPE Meetings, JSPS E-mail [email protected] Tel: +81-3-3263-2414 Fax:+81-3-3234-3700 HOPE MEETINGS with Nobel Laureates Organizing Committee of the HOPE Meetings ■ Chair Makoto Kobayashi <Nobel Laureate in Physics 2008> Honorary Professor Emeritus, High Energy Accelerator Research Organization (KEK) ■ Members Noriko Osumi Mitsuhiko Shionoya Tohoku University The University of Tokyo Takaaki Kajita <Nobel Laureate in Physics 2015> Yousuke Takahama The University of Tokyo Tokushima University Kazuhiro Kosuge Fumio Hanaoka Tohoku University Tsukuba University Program of the HOPE Meeting The program -
Ernest Rutherford and the Accelerator: “A Million Volts in a Soapbox”
Ernest Rutherford and the Accelerator: “A Million Volts in a Soapbox” AAPT 2011 Winter Meeting Jacksonville, FL January 10, 2011 H. Frederick Dylla American Institute of Physics Steven T. Corneliussen Jefferson Lab Outline • Rutherford's call for inventing accelerators ("million volts in a soap box") • Newton, Franklin and Jefferson: Notable prefiguring of Rutherford's call • Rutherfords's discovery: The atomic nucleus and a new experimental method (scattering) • A century of particle accelerators AAPT Winter Meeting January 10, 2011 Rutherford’s call for inventing accelerators 1911 – Rutherford discovered the atom’s nucleus • Revolutionized study of the submicroscopic realm • Established method of making inferences from particle scattering 1927 – Anniversary Address of the President of the Royal Society • Expressed a long-standing “ambition to have available for study a copious supply of atoms and electrons which have an individual energy far transcending that of the alpha and beta particles” available from natural sources so as to “open up an extraordinarily interesting field of investigation.” AAPT Winter Meeting January 10, 2011 Rutherford’s wish: “A million volts in a soapbox” Spurred the invention of the particle accelerator, leading to: • Rich fundamental understanding of matter • Rich understanding of astrophysical phenomena • Extraordinary range of particle-accelerator technologies and applications AAPT Winter Meeting January 10, 2011 From Newton, Jefferson & Franklin to Rutherford’s call for inventing accelerators Isaac Newton, 1717, foreseeing something like quarks and the nuclear strong force: “There are agents in Nature able to make the particles of bodies stick together by very strong attractions. And it is the business of Experimental Philosophy to find them out. -
Development of Microporous PE Films to Improve Lithium Ion Batteries
Polymer Journal (2010) 42, 425–437 & The Society of Polymer Science, Japan (SPSJ) All rights reserved 0032-3896/10 $32.00 www.nature.com/pj INVITED REVIEW Development of microporous PE films to improve lithium ion batteries Haruyuki Yoneda1, Yoshifumi Nishimura2, Yoshinao Doi3, Masahiko Fukuda4 and Mitsuo Kohno5,6 A microporous polyethylene (PE) film has been developed for use as the separator of a lithium (Li) ion secondary battery (LIB). LIBs are necessary in modern society as a power supply for portable equipment such as cellular phones and notebook computers. The greatest problem with using LIBs has been ensuring safety when using a Li compound and a flammable organic electrolytic solution. The most important point for ensuring the safety of LIBs has been using a separator to prevent contact between the cathode and the anode. The Asahi Kasei Corporation has developed the safety function of the separator and improved the performance of the LIB. The manufacture of battery separators made of microporous PE films was studied for PE- solvent systems (two-component phase-separation systems), as well as for new systems in which an inorganic powder was added to the PE and the solvent in this two-component system to produce three-component phase-separation systems. This method is based on thermally induced phase separation. Polymer Journal (2010) 42, 425–437; doi:10.1038/pj.2010.25; published online 21 April 2010 Keywords: LIB; microporous membrane; PE microporous film; phase separation; separator; thermally induced phase separation INTRODUCTION quently, Yoshino et al. found that, unlike polyacetylene, carbon that Details of LIB development and separator development has a special structure was an excellent anode in 1985. -
The Twenty-First Century Paradigm and the Role of Information Technology
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Springer - Publisher Connector Chapter 2 The Twenty-First Century Paradigm and the Role of Information Technology In Chap. 1 , we considered demand by roughly classifying it into two types: “diffusive demand” and “creative demand.” The “paradigm of the twentieth century and before” was characterized by diffu- sive demand. The paradigm was constituted by a material desire to satisfy needs for food, clothing, and shelter, as well as transportation, and social mobility. Many of the industries that came into being in the nineteenth and twentieth centuries were intended to satisfy such desires. I describe those material desires as diffusive demand leading to a “saturation of man-made objects .” It follows that new demand in the twenty-fi rst century will be generated by a new paradigm. Thus, in this chapter fi rst describes what the paradigms of the twenty-fi rst century are and then refl ects on the role played by the knowledge explosion, one of those paradigms, and the role played by information technology, which looks as if it came into being to solve problems created by the knowledge explosion. Exploding Knowledge, Limited Earth, and Aging Society What are the paradigms of the twenty-fi rst century? I believe there are three, which I classify as “exploding knowledge ,” “limited earth,” and “aging society” (Fig. 2.1 ). These three paradigms do not represent anything that is either good or bad for humanity. Each constitutes a basic framework containing both light and shadow. For instance, there has been an explosive increase in knowledge . -
Appendix E Nobel Prizes in Nuclear Science
Nuclear Science—A Guide to the Nuclear Science Wall Chart ©2018 Contemporary Physics Education Project (CPEP) Appendix E Nobel Prizes in Nuclear Science Many Nobel Prizes have been awarded for nuclear research and instrumentation. The field has spun off: particle physics, nuclear astrophysics, nuclear power reactors, nuclear medicine, and nuclear weapons. Understanding how the nucleus works and applying that knowledge to technology has been one of the most significant accomplishments of twentieth century scientific research. Each prize was awarded for physics unless otherwise noted. Name(s) Discovery Year Henri Becquerel, Pierre Discovered spontaneous radioactivity 1903 Curie, and Marie Curie Ernest Rutherford Work on the disintegration of the elements and 1908 chemistry of radioactive elements (chem) Marie Curie Discovery of radium and polonium 1911 (chem) Frederick Soddy Work on chemistry of radioactive substances 1921 including the origin and nature of radioactive (chem) isotopes Francis Aston Discovery of isotopes in many non-radioactive 1922 elements, also enunciated the whole-number rule of (chem) atomic masses Charles Wilson Development of the cloud chamber for detecting 1927 charged particles Harold Urey Discovery of heavy hydrogen (deuterium) 1934 (chem) Frederic Joliot and Synthesis of several new radioactive elements 1935 Irene Joliot-Curie (chem) James Chadwick Discovery of the neutron 1935 Carl David Anderson Discovery of the positron 1936 Enrico Fermi New radioactive elements produced by neutron 1938 irradiation Ernest Lawrence -
C11 Commission on Particles and Fields Fermilab MS 370 +1(630)840-8071
Patricia McBride C11 Commission on Particles and Fields Fermilab MS 370 +1(630)840-8071 His Excellency Mr. Tatsuo Kawabata Minister of Education, Culture, Sports, Science and Technology 3-2-2 Kasumigaseki, Chiyoda-ku Tokyo, 100-8959 Japan Your Excellency, The members of the International Union of Pure and Applied Physics (IUPAP) C11 Commission on Particles and Fields would like to acknowledge the significant and distinguished contributions of Japanese scientists and Japanese scientific research projects to the field of elementary particle physics. C11 promotes the exchange of information and views among the members of the international scientific community in the field of Particles and Fields. This field of science investigates the nature and properties of the fundamental constituents of matter and the forces acting between these constituents. In addition, the field encompasses the accelerators, detectors and techniques used in these investigations and the industrial applications of related technologies. Scientists working in Japan have made many major contributions to our field. The discovery of neutrino mass was heralded as one of the most important discoveries in elementary particle physics during the last quarter century. The first convincing evidence for neutrino masses came from Super-Kamiokande, a Japanese experiment. The Kamiokande experiment on the other hand, the predecessor of Super-Kamiokande, detected neutrinos coming from supernova 1987a. These detected neutrinos showed that we are able to understand the science of supernova explosions. In 2002, the Japanese scientist Masatoshi Koshiba won a Nobel Prize for his leading role in the Kamiokande and Super-Kamiokande experiments. The Japanese research center KEK and the American research center SLAC have studied the difference between the behavior of matter and antimatter at their facilities known as "B-Factories". -
Geometric Approaches to Quantum Field Theory
GEOMETRIC APPROACHES TO QUANTUM FIELD THEORY A thesis submitted to The University of Manchester for the degree of Doctor of Philosophy in the Faculty of Science and Engineering 2020 Kieran T. O. Finn School of Physics and Astronomy Supervised by Professor Apostolos Pilaftsis BLANK PAGE 2 Contents Abstract 7 Declaration 9 Copyright 11 Acknowledgements 13 Publications by the Author 15 1 Introduction 19 1.1 Unit Independence . 20 1.2 Reparametrisation Invariance in Quantum Field Theories . 24 1.3 Example: Complex Scalar Field . 25 1.4 Outline . 31 1.5 Conventions . 34 2 Field Space Covariance 35 2.1 Riemannian Geometry . 35 2.1.1 Manifolds . 35 2.1.2 Tensors . 36 2.1.3 Connections and the Covariant Derivative . 37 2.1.4 Distances on the Manifold . 38 2.1.5 Curvature of a Manifold . 39 2.1.6 Local Normal Coordinates and the Vielbein Formalism 41 2.1.7 Submanifolds and Induced Metrics . 42 2.1.8 The Geodesic Equation . 42 2.1.9 Isometries . 43 2.2 The Field Space . 44 2.2.1 Interpretation of the Field Space . 48 3 2.3 The Configuration Space . 50 2.4 Parametrisation Dependence of Standard Approaches to Quan- tum Field Theory . 52 2.4.1 Feynman Diagrams . 53 2.4.2 The Effective Action . 56 2.5 Covariant Approaches to Quantum Field Theory . 59 2.5.1 Covariant Feynman Diagrams . 59 2.5.2 The Vilkovisky–DeWitt Effective Action . 62 2.6 Example: Complex Scalar Field . 66 3 Frame Covariance in Quantum Gravity 69 3.1 The Cosmological Frame Problem . -
Nobel Lectures™ 2001-2005
World Scientific Connecting Great Minds 逾10 0 种 诺贝尔奖得主著作 及 诺贝尔奖相关图书 我们非常荣幸得以出版超过100种诺贝尔奖得主著作 以及诺贝尔奖相关图书。 我们自1980年代开始与诺贝尔奖得主合作出版高品质 畅销书。一些得主担任我们的编辑顾问、丛书编辑, 并于我们期刊发表综述文章与学术论文。 世界科技与帝国理工学院出版社还邀得其中多位作了公 开演讲。 Philip W Anderson Sir Derek H R Barton Aage Niels Bohr Subrahmanyan Chandrasekhar Murray Gell-Mann Georges Charpak Nicolaas Bloembergen Baruch S Blumberg Hans A Bethe Aaron J Ciechanover Claude Steven Chu Cohen-Tannoudji Leon N Cooper Pierre-Gilles de Gennes Niels K Jerne Richard Feynman Kenichi Fukui Lawrence R Klein Herbert Kroemer Vitaly L Ginzburg David Gross H Gobind Khorana Rita Levi-Montalcini Harry M Markowitz Karl Alex Müller Sir Nevill F Mott Ben Roy Mottelson 诺贝尔奖相关图书 THE PERIODIC TABLE AND A MISSED NOBEL PRIZES THAT CHANGED MEDICINE NOBEL PRIZE edited by Gilbert Thompson (Imperial College London) by Ulf Lagerkvist & edited by Erling Norrby (The Royal Swedish Academy of Sciences) This book brings together in one volume fifteen Nobel Prize- winning discoveries that have had the greatest impact upon medical science and the practice of medicine during the 20th “This is a fascinating account of how century and up to the present time. Its overall aim is to groundbreaking scientists think and enlighten, entertain and stimulate. work. This is the insider’s view of the process and demands made on the Contents: The Discovery of Insulin (Robert Tattersall) • The experts of the Nobel Foundation who Discovery of the Cure for Pernicious Anaemia, Vitamin B12 assess the originality and significance (A Victor Hoffbrand) • The Discovery of -
Nobel Lecture by Toshihide Maskawa
WHAT DOES CP VIOLATION TELL US? Nobel Lecture, December 8, 2008 by Toshihide Maskawa Kyoto Sangyo University, Kyoto 603-8555, Japan. I would first like to thank the Royal Swedish Academy of Sciences and the Nobel Foundation for awarding me this honour, of which I had never even dreamt. I was born in 1940, the son of a furniture craftsman in the city of Nagoya, in Japan. My father wanted to change his job and was taking a correspondence course to become an electrical engineer, while he was a trainee furniture craftsman. However, he told me that he could not really understand sine and cosine, since he had not received a basic education. Eventually, though, he did manage a small furniture factory employing a few craftsmen and worked there himself. But this came to nothing because of the War, that reckless and miserable war which our country caused. After the War, he displayed in front of his house the door hinges, wood screws and other pieces of furniture, which remained at hand. They sold quite well. Getting a taste for selling, he became a merchant dealing with sugar as an ingredient for cakes. He still wanted to boast of his knowledge of electricity, but he could not find anyone suitable to explain it to. One day, though, he found a good tar- get: his son. In those poor days after the war, almost all the houses were without bath- rooms and so people went to the public bath. On his way to and from the public bath, he boasted of his knowledge: Why do three-phase current mo- tors rotate? Why don’t the solar and lunar eclipses occur every month? He explained proudly that it was because of the revolution planes of the earth around the sun, and of the moon around the earth, which are tilted at an angle of 5 degrees. -
The Beta-Decay Induced by Neutrino Flux B
9 772153119007 0605 Journal of Modern Physics, 2020, 11, 593-765 https://www.scirp.org/journal/jmp ISSN Online: 2153-120X ISSN Print: 2153-1196 Table of Contents Volume 11 Number 5 May 2020 How to See Invisible Universes A. A. Antonov………………….………………………………………………………………………………………593 The Beta-Decay Induced by Neutrino Flux B. V. Vasiliev…………………………………………...………………………………………………………………608 The Pioneer Effect: A New Physics with a New Principle R. Bagdoo………………………………………………………………………………………………………………616 Density Profiles of Gases and Fluids in Gravitational Potentials from a Generalization of Hydrostatic Equilibrium R. B. Holmes………………………....…………………………………………………………………………………648 Photon Can Be Described as the Normalized Mutual Energy Flow S.-R. Zhao………………………………………………………………………………………………………………668 Kolmogorov’s Probability Spaces for “Entangled” Data-Subsets of EPRB Experiments: No Violation of Einstein’s Separation Principle K. Hess…………………………………….……………………………………………………………………………683 Melia’s Rh = ct Model Is by No Means Flat R. Burghardt…………………………...………………………………………….……………………………………703 Theoretical Prediction of Negative Energy Specific to the Electron K. Suto……………………………….…………………………………………………………………………………712 The Bell Inequalities: Identifying What Is Testable and What Is Not L. Sica……………………………………….…………………………………………..………………………………725 Proton and Neutron Electromagnetic Form Factors Based on Bound System in 3 + 1 Dimensional QCD T. Kurai…………………….……………………………………………………………..……………………………741 The figure on the front cover is from the article published in Journal of Modern Physics, 2020, -
English Song Booklet
English Song Booklet SONG NUMBER SONG TITLE SINGER SONG NUMBER SONG TITLE SINGER 100002 1 & 1 BEYONCE 100003 10 SECONDS JAZMINE SULLIVAN 100007 18 INCHES LAUREN ALAINA 100008 19 AND CRAZY BOMSHEL 100012 2 IN THE MORNING 100013 2 REASONS TREY SONGZ,TI 100014 2 UNLIMITED NO LIMIT 100015 2012 IT AIN'T THE END JAY SEAN,NICKI MINAJ 100017 2012PRADA ENGLISH DJ 100018 21 GUNS GREEN DAY 100019 21 QUESTIONS 5 CENT 100021 21ST CENTURY BREAKDOWN GREEN DAY 100022 21ST CENTURY GIRL WILLOW SMITH 100023 22 (ORIGINAL) TAYLOR SWIFT 100027 25 MINUTES 100028 2PAC CALIFORNIA LOVE 100030 3 WAY LADY GAGA 100031 365 DAYS ZZ WARD 100033 3AM MATCHBOX 2 100035 4 MINUTES MADONNA,JUSTIN TIMBERLAKE 100034 4 MINUTES(LIVE) MADONNA 100036 4 MY TOWN LIL WAYNE,DRAKE 100037 40 DAYS BLESSTHEFALL 100038 455 ROCKET KATHY MATTEA 100039 4EVER THE VERONICAS 100040 4H55 (REMIX) LYNDA TRANG DAI 100043 4TH OF JULY KELIS 100042 4TH OF JULY BRIAN MCKNIGHT 100041 4TH OF JULY FIREWORKS KELIS 100044 5 O'CLOCK T PAIN 100046 50 WAYS TO SAY GOODBYE TRAIN 100045 50 WAYS TO SAY GOODBYE TRAIN 100047 6 FOOT 7 FOOT LIL WAYNE 100048 7 DAYS CRAIG DAVID 100049 7 THINGS MILEY CYRUS 100050 9 PIECE RICK ROSS,LIL WAYNE 100051 93 MILLION MILES JASON MRAZ 100052 A BABY CHANGES EVERYTHING FAITH HILL 100053 A BEAUTIFUL LIE 3 SECONDS TO MARS 100054 A DIFFERENT CORNER GEORGE MICHAEL 100055 A DIFFERENT SIDE OF ME ALLSTAR WEEKEND 100056 A FACE LIKE THAT PET SHOP BOYS 100057 A HOLLY JOLLY CHRISTMAS LADY ANTEBELLUM 500164 A KIND OF HUSH HERMAN'S HERMITS 500165 A KISS IS A TERRIBLE THING (TO WASTE) MEAT LOAF 500166 A KISS TO BUILD A DREAM ON LOUIS ARMSTRONG 100058 A KISS WITH A FIST FLORENCE 100059 A LIGHT THAT NEVER COMES LINKIN PARK 500167 A LITTLE BIT LONGER JONAS BROTHERS 500168 A LITTLE BIT ME, A LITTLE BIT YOU THE MONKEES 500170 A LITTLE BIT MORE DR.