The Natural History & Distribution of Riverine Turtles in West Virginia

Total Page:16

File Type:pdf, Size:1020Kb

The Natural History & Distribution of Riverine Turtles in West Virginia Marshall University Marshall Digital Scholar Theses, Dissertations and Capstones 2010 The aN tural History & Distribution of Riverine Turtles in West Virginia Linh Diem Phu Follow this and additional works at: http://mds.marshall.edu/etd Part of the Aquaculture and Fisheries Commons, and the Terrestrial and Aquatic Ecology Commons Recommended Citation Phu, Linh Diem, "The aN tural History & Distribution of Riverine Turtles in West Virginia" (2010). Theses, Dissertations and Capstones. Paper 787. This Thesis is brought to you for free and open access by Marshall Digital Scholar. It has been accepted for inclusion in Theses, Dissertations and Capstones by an authorized administrator of Marshall Digital Scholar. For more information, please contact [email protected]. The Natural History & Distribution of Riverine Turtles in West Virginia Thesis submitted to the Graduate College of Marshall University In partial fulfillment of the requirements for the degree of Master of Science in Biological Sciences By Linh Diem Phu Dr. Thomas K. Pauley, Ph.D., Committee Chairperson Dr. Dan Evans, Ph.D. Dr. Suzanne Strait, Ph.D. Marshall University May 2010 Abstract Turtles are unique evolutionary marvels that evolved from amphibians and developed their protective shelled form more than 200 million years ago. In West Virginia, there are 10 native species of turtles, 9 of which are aquatic. Most of these aquatic turtles feed on carrion and dead plant matter, in the water and essentially "clean" our water systems. Turtles are long-lived animals with sensitive life stages that can serve as both long-term and short-term bioindicators of environmental health. With the increase in commercial trade, habitat fragmentation, degradation, destruction, there has been a marked decline in turtle species. The need for well documented distribution and natural history of “common” aquatic turtles is necessary to help guide management decisions about these turtles and ensure that they remain common. The main objective of this research was to determine distribution and note any changes in the extent of aquatic turtle populations in West Virginia. This was done by surveying major river systems and examining historical records and field notes. There have been few extensive surveys done on aquatic turtles in the state. Much of the data available have been from individual river populations including the New River and the Kanawha River or as incidental findings that are part of a larger scale project and museum collections. Survey techniques included live capture with hoop traps, catfish traps, fyke nets, and basking traps as well as visual surveys on shore, aboard bass boats and canoes. A total of 10 rivers, one lake, one pond, and two wetland areas were surveyed which resulted in 219 new turtle records and 10 new county records of 5 different species in West Virginia. The efficacy of survey techniques and recommendations based on research findings are also included that may will provide insight into the management of the various populations of aquatic turtles in West Virginia. i Acknowledgements This thesis is dedicated in loving memory of my father, Cuong V. Phu (July 4, 1942 – March 19, 2007) who taught me that through hard work and perseverance anything is possible. His courageous 3 year battle with brain cancer was testament to his perseverance and his will to live, despite being told that he only had 3 months to live following major brain surgeries. It is because of this perseverance that I found the will power and strength to finish this thesis after a long hiatus. I would like to express deep gratitude towards my advisor Dr. Thomas K. Pauley for his guidance, support, and patience as I completed my thesis. He has inspired and encouraged me more than he would ever realize. I am also thankful to my committee members, Dr. Dan Evans and Dr. Suzanne Strait for their time and support. This research would not have been possible without the help of Vanessa Dozeman, who traveled with me throughout the state in her trusty Chevy Silverado hauling bass boats, canoes, traps, and turtles. Her ability to balance on wet logs to set traps, live in tents for 4 excruciatingly wet months, survive on MREs and PBJ sandwiches, and provide me with unwavering friendship has meant the world to me. For all of her help, I am deeply thankful. I would also like to take the opportunity to thank many of the people I had the privilege to do field work with and who made my time at Marshall University enjoyable and productive including: Adam Mann, Melissa Mann, Seth Myers, Mike Osbourn, Cody Lockhart, Bill Sutton, Robert Makowsky, and Liz Fet. I would like to thank the West Virginia Department of Natural Resources that provided me with a grant for my research. And last by not least I would like to thank my family. My mom’s love and bravery through life’s personal struggles are inspirational and have provided me so much guidance. I would like to thank my brothers Long and Lanny who are constant sources of humor and whose love has helped me through some very hard times. Finally, I would also like to thank my husband Andy, whose unwavering love and support (and nagging) has helped me to finally finish this thesis. ii Table of Contents Abstract i Acknowledgments ii List of Figures iv List of Maps v 1.0 Introduction 1 1.1 Objectives 1 1.2 Turtles and the Ecosystem 1 1.3 Conservation Issues 3 2.0 Natural History of Riverine Turtle Species in West Virginia 4 2.1 Family Chelydridae 4 2.2 Family Emydidae 7 2.2.1 Genus Chrysemys 7 2.2.2 Genus Graptemys 10 2.2.3 Genus Pseudemys 13 2.2.4 Genus Trachemys 16 2.3 Family Kinosternidae 19 2.4 Family Trionychidae 22 3.0 Study Area and Data Collection Methods 25 3.1 Historical Records Search 25 3.2 Study Area 25 3.3 Methods 26 4.0 Results 31 4.1 Historical Records Findings 31 4.2 Survey Efforts 31 4.3 Site Accounts 32 4.4 Turtle Species Accounts 48 4.5 New Records Based on Counties & Watersheds 52 5.0 Discussion & Conclusions 54 5.1 Trapping Response and Behaviors 54 5.2 Species Not Found 56 5.3 Sexual Dimorphism in Select Species 59 5.4 Trapping Efficiency & Effectiveness 61 5.5 Trapping Recommendations 62 5.6 Conclusions 64 Distribution Maps 65 Bibliography 86 Appendix 91 Vita 103 iii List of Figures Figure 1.1-1.2: Chelydra s. serpentina 5 Figure 2.1: Chrysemys p. picta 5 Figure 2.2: Chrysemys p. marginata 8 Figure 2.3: Basking Chrysemys p. marginata 9 Figure 3.1: Graptemys o. ouachitensis 11 Figure 3.2: Graptemys geographica 11 Figure 4.1: Pseudemys concinna 14 Figure 4.2: Pseudemys rubriventris 15 Figure 5.1: Trachemys scripta elegans sub-adult 17 Figure 5.2-5.3: Trachemys scripta elegans variations 18 Figure 6.1-6.4: Sternotherus odoratus 20-21 Figure 7.1-7.3: Apalone s. spinifera 23-24 Figure 8.1-8.2: Photos of Basking Traps 28 Figure 9: Images of Traps Used 29 Figure 10: Images of Deployed Traps 30 Figure 11: Table of Study Areas & Trapping Dates 32 Figure 12: Drainage of the Guyandotte & Mud River 33 Figure 13: Photo of Mud River 33 Figure 14: Trap Locations on the Mud River 34 Figure 15: Trap Locations on the Guyandotte River 35 Figure 16: Drainage of the Monongahela Watershed; Photo of Buckhannon River 36 Figure 17: Trap Locations on the Buckhannon River 36 Figure 18: Drainage of the Little Kanawha River; Photo of Little Kanawha River 37 Figure 19: Trap Locations on the Little Kanawha 38 Figure 20: Aerial Photo of Crab Creek 38 Figure 21: Trap Locations Near Ohio River (Mason & Cabell County) 39 Figure 22: Aerial Map of Crooked Creek 40 Figure 23: Deformed C.p.marginata from Crooked Creek 40 Figure 24: Aerial Photo of Greenbottom WMA 41 Figure 25: Aerial Photo of Mill Creek 42 Figure 26: Photo of Mill Creek 42 Figure 27: Trap Locations of Mill Creek & Turkey Run 43 Figure 28: Photo of Turkey Run 44 Figure 29: Drainage of Greenbrier River, photo of Greenbrier River 45 Figure 30: Trap Locations of the Greenbrier River 45 Figure 31 Drainage of Tygart River, photos of Tygart River 46 Figure 32: Trap Locations of the Tygart River 47 Figure 33: Photos Upper Pleasant Creek Wetland Complex 47 Figure 34: Photos of Tygart River near Phillipi 48 Figure 35: Basking Behaviors of Apalone s. spinifera 49 Figure 36: Basking behaviors of Chelydra s. serpentina 49 Figure 37: Basking behaviors of Chrysemys p. marginata 50 Figure 38: Basking behaviors of Sternotherus odoratus 51 Figure 39: Basking behaviors of Trachemys scripta elegans 51 Figure 40: Table of new county records for individual species 52 Figure 41: Table of new watershed records for individual species 52 Figure 42: Table of turtle records and percent increase 53 Figure 43: Table of species caught & method 54 Figure 44: Graph of species caught & method 55 Figure 45: Distribution of Graptemys o. ouachitensis 58 iv Figure 46: Approximate route of the ancient Teays River 59 Figure 47: Graphs of carapace length and width Chelydra s. serpentina 60 Figure 48: Graphs of carapace length and width Chrysemys p. picta 60 Figure 49: Graphs of carapace length and width Chrysemys p. marginata 61 Figure 50: Graph of trapping efficiency rate 62 Figure 51: Recommended survey techniques 64 List of Maps Map 1: Trap Sites by River Systems 65 Map 2: Historical Records 66 Map 3: Historical vs. New County Records 67 Map 4: Trap Sites by County 68 Map 5: Apalone s.
Recommended publications
  • Proposed Rule
    This document is scheduled to be published in the Federal Register on 01/28/2020 and available online at https://federalregister.gov/d/2020-01012, and on govinfo.gov DEPARTMENT OF THE INTERIOR Fish and Wildlife Service 50 CFR Part 17 [Docket No. FWS–R5–ES–2019–0098; 4500090023] RIN 1018-BE19 Endangered and Threatened Wildlife and Plants; Designation of Critical Habitat for the Big Sandy Crayfish and the Guyandotte River Crayfish AGENCY: Fish and Wildlife Service, Interior. ACTION: Proposed rule. SUMMARY: We, the U.S. Fish and Wildlife Service (Service), propose to designate critical habitat for the Big Sandy crayfish (Cambarus callainus) and the Guyandotte River crayfish (C. veteranus) under the Endangered Species Act of 1973, as amended (Act). In total, approximately 582 stream kilometers (skm) (362 stream miles (smi)) in Martin and Pike Counties, Kentucky; Buchanan, Dickenson, and Wise Counties, Virginia; and McDowell, Mingo, and Wayne Counties, West Virginia, are proposed as critical habitat for the Big Sandy crayfish. Approximately 135 skm (84 smi) in Logan and Wyoming Counties, West Virginia, are proposed as critical habitat for the Guyandotte River crayfish. If we finalize this rule as proposed, it would extend the Act’s protections to these species’ critical habitat. We also announce the availability of a draft economic analysis of the proposed designation of critical habitat for these species. DATES: We will accept comments on the proposed rule or draft economic analysis (DEA) that are received or postmarked on or before [INSERT DATE 60 DAYS AFTER DATE OF 1 PUBLICATION IN THE FEDERAL REGISTER]. Comments submitted electronically using the Federal eRulemaking Portal (see ADDRESSES, below) must be received by 11:59 p.m.
    [Show full text]
  • Ecology of the River Cooter, Pseudemys Concinna, in a Southern Illinois Floodplain Lake
    He!peto!ogica! Nalllral Historv, 5(2), 1997, pages 135-145. 135 ©1997 by the International Herpetological Symposium. Inc. ECOLOGY OF THE RIVER COOTER, PSEUDEMYS CONCINNA, IN A SOUTHERN ILLINOIS FLOODPLAIN LAKE Michael J. Dreslikl Department of Zoology, Eastern Illinois University, Charleston, Illinois 61920, USA Abstract. In Illinois, the river cooter, Pseudemys concinna. is a poorly studied endangered species. During 1994-1996. I quantified growth, population size and structure. and diet of a population from a floodplain lake in Gallatin County, Illinois. For males and females. growth slowed between 8-15 and 13-24 years, respectively. Comparisons between male and female curves revealed that growth parameters and proportional growth toward the asymptote were not significantly different, while asymptotes differed significantly. Differences of scute ring- and Sexton-aged individuals from von Bertalanffy model estimates were not significant through age five for males and six for females. I estimated that 153, !57, and 235 individuals were found in the lake at densities of 5.1, 5.2, and 7.8 turtles/ha in 1994. 1995, and 1996, respectively. Associated biomass estimates were 3.84, 3.94, and 5.90 kg/ha, respectively. The overall sex ratio was female-biased, whereas the adult sex ratio was male-biased; both were not significantly different from equality. Key Words: Population ecology: Growth: Diet: Population structure; Tcstudines; Emydidae: Pseudemys concinna. Ecological studies can elucidate specific life its state-endangered status in Illinois (Herkert history traits which can be utilized in conservation 1992), and because of the scarcity of information and management planning. Many chelonian ecology concerning its natural history and ecology.
    [Show full text]
  • Little Kanawha Byway
    Little Kanawha Byway Perhaps the most accessible of all of West Virginia’s byways, the Little Kanawha Byway is bookended by I-77 and I-79. Starting in the west at I-77, the parkway begins its journey in Mineral Wells and mirrors the banks of the Little Kanawha River. Being totally paved, this roadway is perfect for RVs and others wanting a smooth ride so they can take in all of the beautiful pastoral sites. Hughes River Wildlife Management Area The byway passes the Hughes River Wildlife Management Area (WMA). This 10,000-acre WMA allows hunting for turkey, deer, grouse, squirrel, and rabbit. The nearby Hughes River, along with the Little Kanawha, is filled with muskellunge, smallmouth bass, and channel catfish perfect for a weekend fishing trip. Burning Springs Further along the river, the town of Burning Springs was once one of the major hubs of the American oil industry. In 1859, and later in the 1890s, the area around Burning Springs and Parkersburg was literally seeping with oil just beneath the surface. These oil strikes turned many men into millionaires in only a few months until the shallow wells ran dry. For those interested in seeing a piece of the Mountain State’s oil history, The Parkersburg Oil & Gas Museum is restoring one of the old derricks that stood above the oilfields in Burning Springs. Burnsville Lake Wildlife Management Area At the eastern edge of the byway, the beautiful lake and surrounding protected fields and forests of the Burnsville Lake Wildlife Management Area provide a welcome respite from the hurried pace of today’s world.
    [Show full text]
  • 02070001 South Branch Potomac 01605500 South Branch Potomac River at Franklin, WV 01606000 N F South Br Potomac R at Cabins, WV 01606500 So
    Appendix D Active Stream Flow Gauging Stations In West Virginia Active Stream Flow Gauging Stations In West Virginia 02070001 South Branch Potomac 01605500 South Branch Potomac River At Franklin, WV 01606000 N F South Br Potomac R At Cabins, WV 01606500 So. Branch Potomac River Nr Petersburg, WV 01606900 South Mill Creek Near Mozer, WV 01607300 Brushy Fork Near Sugar Grove, WV 01607500 So Fk So Br Potomac R At Brandywine, WV 01608000 So Fk South Branch Potomac R Nr Moorefield, WV 01608070 South Branch Potomac River Near Moorefield, WV 01608500 South Branch Potomac River Near Springfield, WV 02070002 North Branch Potomac 01595200 Stony River Near Mount Storm,WV 01595800 North Branch Potomac River At Barnum, WV 01598500 North Branch Potomac River At Luke, Md 01600000 North Branch Potomac River At Pinto, Md 01604500 Patterson Creek Near Headsville, WV 01605002 Painter Run Near Fort Ashby, WV 02070003 Cacapon-Town 01610400 Waites Run Near Wardensville, WV 01611500 Cacapon River Near Great Cacapon, WV 02070004 Conococheague-Opequon 01613020 Unnamed Trib To Warm Spr Run Nr Berkeley Spr, WV 01614000 Back Creek Near Jones Springs, WV 01616500 Opequon Creek Near Martinsburg, WV 02070007 Shenandoah 01636500 Shenandoah River At Millville, WV 05020001 Tygart Valley 03050000 Tygart Valley River Near Dailey, WV 03050500 Tygart Valley River Near Elkins, WV 03051000 Tygart Valley River At Belington, WV 03052000 Middle Fork River At Audra, WV 03052450 Buckhannon R At Buckhannon, WV 03052500 Sand Run Near Buckhannon, WV 03053500 Buckhannon River At Hall, WV 03054500 Tygart Valley River At Philippi, WV Page D 1 of D 5 Active Stream Flow Gauging Stations In West Virginia 03055500 Tygart Lake Nr Grafton, WV 03056000 Tygart Valley R At Tygart Dam Nr Grafton, WV 03056250 Three Fork Creek Nr Grafton, WV 03057000 Tygart Valley River At Colfax, WV 05020002 West Fork 03057300 West Fork River At Walkersville, WV 03057900 Stonewall Jackson Lake Near Weston, WV 03058000 West Fork R Bl Stonewall Jackson Dam Nr Weston 03058020 West Fork River At Weston, WV 03058500 W.F.
    [Show full text]
  • The Case of Deirocheline Turtles
    bioRxiv preprint doi: https://doi.org/10.1101/556670; this version posted February 21, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Body coloration and mechanisms of colour production in Archelosauria: 2 The case of deirocheline turtles 3 Jindřich Brejcha1,2*†, José Vicente Bataller3, Zuzana Bosáková4, Jan Geryk5, 4 Martina Havlíková4, Karel Kleisner1, Petr Maršík6, Enrique Font7 5 1 Department of Philosophy and History of Science, Faculty of Science, Charles University, Viničná 7, Prague 6 2, 128 00, Czech Republic 7 2 Department of Zoology, Natural History Museum, National Museum, Václavské nám. 68, Prague 1, 110 00, 8 Czech Republic 9 3 Centro de Conservación de Especies Dulceacuícolas de la Comunidad Valenciana. VAERSA-Generalitat 10 Valenciana, El Palmar, València, 46012, Spain. 11 4 Department of Analytical Chemistry, Faculty of Science, Charles University, Hlavova 8, Prague 2, 128 43, 12 Czech Republic 13 5 Department of Biology and Medical Genetics, 2nd Faculty of Medicine, Charles University and University 14 Hospital Motol, V Úvalu 84, 150 06 Prague, Czech Republic 15 6 Department of Food Science, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life 16 Sciences, Kamýcká 129, Prague 6, 165 00, Czech Republic 17 7 Ethology Lab, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, C/ 18 Catedrátic José Beltrán Martinez 2, Paterna, València, 46980, Spain 19 Keywords: Chelonia, Trachemys scripta, Pseudemys concinna, nanostructure, pigments, chromatophores 20 21 Abstract 22 Animal body coloration is a complex trait resulting from the interplay of multiple colour-producing mechanisms.
    [Show full text]
  • Year of the Turtle News No
    Year of the Turtle News No. 1 January 2011 Basking in the Wonder of Turtles www.YearoftheTurtle.org Welcome to 2011, the Wood Turtle, J.D. Kleopfer Bog Turtle, J.D. Willson Year of the Turtle! Turtle conservation groups in partnership with PARC have designated 2011 as the Year of the Turtle. The Chinese calendar declares 2011 as the Year of the Rabbit, and we are all familiar with the story of the “Tortoise and the Hare”. Today, there Raising Awareness for Turtle State of the Turtle Conservation is in fact a race in progress—a race to extinction, and turtles, unfortunately, Trouble for Turtles Our Natural Heritage of Turtles are emerging in the lead, ahead The fossil record shows us that While turtles (which include of birds, mammals, and even turtles, as we know them today, have tortoises) occur in fresh water, salt amphibians. The majority of turtle been on our planet since the Triassic water, and on land, their shells make threats are human-caused, which also Period, over 220 million years ago. them some of the most distinctive means that we can work together to Although they have persisted through animals on Earth. Turtles are so address turtle conservation issues many tumultuous periods of Earth’s unique that some scientists argue that and to help ensure the continued history, from glaciations to continental they should be in their own Class of survival of these important animals. shifts, they are now at the top of the vertebrates, Chelonia, separate from Throughout the year we will be raising list of species disappearing from the reptiles (such as lizards and snakes) awareness of the issues surrounding planet: 47.6% of turtle species are and other four-legged creatures.
    [Show full text]
  • Notable Local Floods of 1942-43
    Notable Local Floods of 1942-43 GEOLOGICAL SURVEY WATER-SUPPLY PAPER 1134 UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1952 CONTENTS The letters in parenthesis preceding the titles are those used to designate the separate chapters] Page (A) Flood of August 4-5, 1943, in central West Virginia, by H. M. Erskine. 1 (B) Floods of July 18, 1942, in north-central Pennsylvania, by William S. Eisenlohr, Jr________________________________________________ 59 ILLUSTRATIONS PLATE 1. Map of West Virginia showing location of points where flood determinations were made__________--_-_--__-_-_-_--__-_ 48 2. Map of flood area showing locations of stream-gaging stations, rainfall-measurement points, and isohyetal lines for July 17-18, 1942-____-___________________-___-______--_-_-____- In pocket FIGURE 1. Map of West Virginia showing location of Little Kanawha River basin_________________________-__-__--_-_---_-_ 2 2. Residence of Yeager family, which was flooded. ____________ 5 3. Residence, near Heaters, which was washed dowiistream_____ 6 4. Washed-out railroad bridge on Copen Run _________________ 6 5. Washed-out fill on State Route 5 at Jobs Run______________ 7 6. Rock and mud deposit from a hillside wash________________ 7 7. Typical sand and gravel deposits__________________________ 8 8. Typical hillside erosion_____________________-_____-__--__ 8 9. Cornfield destroyed by flood. _--_____________-__-__-_-__- 9 10. Isohyetal map of Little Kanawha River basin showing total rainfall July 26-30, 1943__________________--_-____--- 10 11. Isohyetal map of Little Kanawha River basin showing total rainfall August 4-5, 1943__ ______________-___-_--__--__ 13 12.
    [Show full text]
  • The Logan Plateau, a Young Physiographic Region in West Virginia, Kentucky, Virginia, and Tennessee
    The Logan Plateau, a Young Physiographic Region in West Virginia, Kentucky, Virginia, and Tennessee U.S. GEOLOGICAL SURVEY BULLETIN 1620 . II • r ,j • • ~1 =1 i1 .. ·~ II .I '1 .ill ~ I ... ... II 'II .fi :. I !~ ...1 . ~ !,~ .,~ 'I ~ J ·-=· ..I ·~ tJ 1;1 .. II "'"l ,,'\. d • .... ·~ I 3: ... • J ·~ •• I -' -\1 - I =,. The Logan Plateau, a Young Physiographic Region in West Virginia, Kentucky, Virginia, and Tennessee By WILLIAM F. OUTERBRIDGE A highly dissected plateau with narrow valleys, steep slopes, narrow crested ridges, and landslides developed on flat-lying Pennsylvanian shales and subgraywacke sandstone during the past 1.5 million years U.S. GEOLOGICAL SURVEY BULLETIN 1620 DEPARTMENT OF THE INTERIOR DONALD PAUL HODEL, Secretary U.S. GEOLOGICAL SURVEY Dallas L. Peck, Director UNITED STATES GOVERNMENT PRINTING OFFICE: 1987 For sale by the Books and Open-File Reports Section, U.S. Geological Survey, Federal Center, Box 25425, Denver, CO 80225 Library of Congress Cataloging-in-Publication Data Outerbridge, William F. The Logan Plateau, a young physiographic region in West Virginia, Kentucky, Virginia, and Tennessee. (U.S. Geological Survey bulletin ; 1620) Bibliography: p. 18. Supt. of Docs. no.: I 19.3:1620 1. Geomorphology-Logan Plateau. I. Title. II. Series. QE75.B9 no. 1620 557.3 s [551.4'34'0975] 84-600132 [GB566.L6] CONTENTS Abstract 1 Introduction 1 Methods of study 3 Geomorphology 4 Stratigraphy 9 Structure 11 Surficial deposits 11 Distribution of residuum 11 Depth of weathering 11 Soils 11 Landslides 11 Derivative maps of the Logan Plateau and surrounding area 12 History of drainage development since late Tertiary time 13 Summary and conclusions 17 References cited 18 PLATES [Plates are in pocket] 1.
    [Show full text]
  • The Natural History, Distribution, and Phenotypic Variation of Cave-Dwelling Spring Salamanders, Gyrinophilus Spp
    Marshall University Marshall Digital Scholar Theses, Dissertations and Capstones 2005 The aN tural History, Distribution, and Phenotypic Variation of Cave-dwelling Spring Salamanders, Gyrinophilus spp. Cope (Plethodontidae), in West Virginia Michael Steven Osbourn Follow this and additional works at: http://mds.marshall.edu/etd Part of the Aquaculture and Fisheries Commons, and the Ecology and Evolutionary Biology Commons Recommended Citation Osbourn, Michael Steven, "The aN tural History, Distribution, and Phenotypic Variation of Cave-dwelling Spring Salamanders, Gyrinophilus spp. Cope (Plethodontidae), in West Virginia" (2005). Theses, Dissertations and Capstones. Paper 735. This Thesis is brought to you for free and open access by Marshall Digital Scholar. It has been accepted for inclusion in Theses, Dissertations and Capstones by an authorized administrator of Marshall Digital Scholar. For more information, please contact [email protected]. The Natural History, Distribution, and Phenotypic Variation of Cave-dwelling Spring Salamanders, Gyrinophilus spp. Cope (Plethodontidae), in West Virginia. Thesis submitted to The Graduate College of Marshall University In partial fulfillment of the Requirements for the degree of Master of Science Biological Sciences By Michael Steven Osbourn Thomas K. Pauley, Committee Chairperson Daniel K. Evans, PhD Thomas G. Jones, PhD Marshall University May 2005 Abstract The Natural History, Distribution, and Phenotypic Variation of Cave-dwelling Spring Salamanders, Gyrinophilus spp. Cope (Plethodontidae), in West Virginia. Michael S. Osbourn There are over 4000 documented caves in West Virginia, potentially providing refuge and habitat for a diversity of amphibians and reptiles. Spring Salamanders, Gyrinophilus porphyriticus, are among the most frequently encountered amphibians in caves. Surveys of 25 caves provided expanded distribution records and insight into ecology and diet of G.
    [Show full text]
  • N.C. Turtles Checklist
    Checklist of Turtles Historically Encountered In Coastal North Carolina by John Hairr, Keith Rittmaster and Ben Wunderly North Carolina Maritime Museums Compiled June 1, 2016 Suborder Family Common Name Scientific Name Conservation Status Testudines Cheloniidae loggerhead Caretta caretta Threatened green turtle Chelonia mydas Threatened hawksbill Eretmochelys imbricata Endangered Kemp’s ridley Lepidochelys kempii Endangered Dermochelyidae leatherback Dermochelys coriacea Endangered Chelydridae common snapping turtle Chelydra serpentina Emydidae eastern painted turtle Chrysemys picta spotted turtle Clemmys guttata eastern chicken turtle Deirochelys reticularia diamondback terrapin Malaclemys terrapin Special concern river cooter Pseudemys concinna redbelly turtle Pseudemys rubriventris eastern box turtle Terrapene carolina yellowbelly slider Trachemys scripta Kinosternidae striped mud turtle Kinosternon baurii eastern mud turtle Kinosternon subrubrum common musk turtle Sternotherus odoratus Trionychidae spiny softshell Apalone spinifera Special concern NOTE: This checklist was compiled and updated from several sources, both in the scientific and popular literature. For scientific names, we have relied on: Turtle Taxonomy Working Group [van Dijk, P.P., Iverson, J.B., Rhodin, A.G.J., Shaffer, H.B., and Bour, R.]. 2014. Turtles of the world, 7th edition: annotated checklist of taxonomy, synonymy, distribution with maps, and conservation status. In: Rhodin, A.G.J., Pritchard, P.C.H., van Dijk, P.P., Saumure, R.A., Buhlmann, K.A., Iverson, J.B., and Mittermeier, R.A. (Eds.). Conservation Biology of Freshwater Turtles and Tortoises: A Compilation Project of the IUCN/SSC Tortoise and Freshwater Turtle Specialist Group. Chelonian Research Monographs 5(7):000.329–479, doi:10.3854/crm.5.000.checklist.v7.2014; The IUCN Red List of Threatened Species.
    [Show full text]
  • Species Results from Database Search
    Species Results From Database Search Category Reptiles Common Name Alabama Map Turtle Scientific Name Graptemys pulchra LCC Global Trust N No. of States 1 Habitat_Feature Category Reptiles Common Name Black Kingsnake Scientific Name Lampropeltis getula nigra LCC Global Trust N No. of States 2 Habitat_Feature Category Reptiles Common Name Black Racer Scientific Name Coluber constrictor constrictor LCC Global Trust N No. of States 1 Habitat_Feature Category Reptiles Common Name Black Rat Snake Scientific Name Elaphe obsoleta LCC Global Trust N No. of States 2 Habitat_Feature Category Reptiles Common Name Bog turtle Scientific Name Clemmys (Glyptemys) muhlen LCC Global Trust Y No. of States 4 Habitat_Feature Monday, January 28, 2013 Page 1 of 14 Category Reptiles Common Name Broadhead Skink Scientific Name Eumeces laticeps LCC Global Trust N No. of States 5 Habitat_Feature Category Reptiles Common Name Coal Skink Scientific Name Eumeces anthracinus LCC Global Trust Y No. of States 8 Habitat_Feature Category Reptiles Common Name Common Five-lined Skink Scientific Name Eumeces fasciatus LCC Global Trust N No. of States 2 Habitat_Feature Category Reptiles Common Name Common Map Turtle Scientific Name Graptemys geographica LCC Global Trust N No. of States 6 Habitat_Feature Category Reptiles Common Name Common Musk Turtle Scientific Name Sternotherus odoratus LCC Global Trust N No. of States 2 Habitat_Feature Monday, January 28, 2013 Page 2 of 14 Category Reptiles Common Name Common Ribbonsnake Scientific Name Thamnophis sauritus sauritus LCC Global Trust N No. of States 6 Habitat_Feature Category Reptiles Common Name Common Snapping Turtle Scientific Name Chelydra serpentina LCC Global Trust N No. of States 2 Habitat_Feature Category Reptiles Common Name Corn snake Scientific Name Elaphe guttata guttata LCC Global Trust N No.
    [Show full text]
  • The Common Snapping Turtle, Chelydra Serpentina
    The Common Snapping Turtle, Chelydra serpentina Rylen Nakama FISH 423: Olden 12/5/14 Figure 1. The Common Snapping Turtle, one of the most widespread reptiles in North America. Photo taken in Quebec, Canada. Image from https://www.flickr.com/photos/yorthopia/7626614760/. Classification Order: Testudines Family: Chelydridae Genus: Chelydra Species: serpentina (Linnaeus, 1758) Previous research on Chelydra serpentina (Phillips et al., 1996) acknowledged four subspecies, C. s. serpentina (Northern U.S. and Figure 2. Side profile of Chelydra serpentina. Note Canada), C. s. osceola (Southeastern U.S.), C. s. the serrated posterior end of the carapace and the rossignonii (Central America), and C. s. tail’s raised central ridge. Photo from http://pelotes.jea.com/AnimalFact/Reptile/snapturt.ht acutirostris (South America). Recent IUCN m. reclassification of chelonians based on genetic analyses (Rhodin et al., 2010) elevated C. s. rossignonii and C. s. acutirostris to species level and established C. s. osceola as a synonym for C. s. serpentina, thus eliminating subspecies within C. serpentina. Antiquated distinctions between the two formerly recognized North American subspecies were based on negligible morphometric variations between the two populations. Interbreeding in the overlapping range of the two populations was well documented, further discrediting the validity of the subspecies distinction (Feuer, 1971; Aresco and Gunzburger, 2007). Therefore, any emphasis of subspecies differentiation in the ensuing literature should be disregarded. Figure 3. Front-view of a captured Chelydra Continued usage of invalid subspecies names is serpentina. Different skin textures and the distinctive pink mouth are visible from this angle. Photo from still prevalent in the exotic pet trade for C.
    [Show full text]