The Role of Collagen in the Dermal Armor of the Boxfish
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
MAF Underwatermission Synopsis Final
Conceived by Max Serio Developed by Max Serio, John Hopkins, Martin Kase, Tina Dalton Directed by Max Serio, Tina Dalton Narrated by Rachel King, Juliet Jordan, Marcello Fabrizi Underwater Mission: Cleaner Friends First episode of the series. Our heroes: Sara,Maxi and Emma the sea turtle will explore who are their Cleaner Friends. Their adventure will be supported with the valuable information of "Sea Pad" their "friend-board computer". Cleaner Friends : Cleaner shrimp,moray eel,Blue Streak Cleaner Wrasse,Moorish Idols,Humphead Wrasse,Spadefish, sea star,Mushroom Coral,Bristletooths. Underwater Mission: Predators In this episode Sara and Max will experience an interesting trip with Emma the sea tur- tle. “Sea Pad” is going to show them the most interesting underwater predators and their habbits. Predators : Mooray eel (Ribbon eel, White eyed moray eel), Sand conger eel, Barracudas, Stonefish, Anglerfish, Lionfish, Mantis Shrimp, White tip reef shark, Tiger Shark Underwater Mission: Crazy Colours Maxi and Sara are going to visit the most colourful environment they have ever seen. Emma the sea turtle will take them to an underwater trip where they find the beautiful wolrd of crazy-coloured fish. Crazy-coloured fish : Gold Belly Damsel Fish, Emperor Angelfish, Yellow Ribbon Sweetlip, Peach Fairies, Anemones, Corals, Clown Trigger fish, Butterfly fish, Leopard coral trout, Scribbled Filefish, Lionfish, Cuttlefish, Nudibranch, Parrotfish Underwater Mission: Startling Shapes There are many shapes that the sea creatures and objects have. Emma, Sara and Maxi are going to discover as much of them as they can. Those they can’t spot on the first glance will be uncovered by the trusted clever “Sea pad”. -
Microstructure and Mechanical Properties of the Dactylopodites of the Chinese Mitten Crab (Eriocheir Sinensis)
applied sciences Article Microstructure and Mechanical Properties of the Dactylopodites of the Chinese Mitten Crab (Eriocheir sinensis) Ying Wang 1, Xiujuan Li 1,* ID , Jianqiao Li 1 and Feng Qiu 2 ID 1 Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130025, China; [email protected] (Y.W.); [email protected] (J.L.) 2 Key Laboratory of Automobile Materials, Ministry of Education, Department of Materials Science and Engineering, Jilin University, Changchun 130025, China; [email protected] * Correspondence: [email protected]; Tel.:+86-431-8509-5760 Received: 1 April 2018; Accepted: 21 April 2018; Published: 26 April 2018 Abstract: The dactylopodites of the Chinese mitten crab (Eriocheir sinensis) have evolved extraordinary resistance to wear and impact loading after direct contact with rough surfaces or clashing with hard materials. In this study, the microstructure, components, and mechanical properties of the dactylopodites of the Chinese mitten crab were investigated. Images from a scanning electron microscope show that the dactylopodites’ exoskeleton was multilayered, with an epicuticle, exocuticle, and endocuticle. Cross sections and longitudinal sections of the endocuticle revealed a Bouligand structure, which contributes to the dactylopodites’ mechanical properties. The main organic constituents of the exoskeleton were chitin and protein, and the major inorganic compound was CaCO3, crystallized as calcite. Dry and wet dactylopodites were brittle and ductile, respectively, characteristics that are closely related to their mechanical structure and composition. The findings of this study can be a reference for the bionic design of strong and durable structural materials. Keywords: dactylopodite; microstructure; composition; mechanical properties 1. Introduction After hundreds of millions of years of evolution, the functional properties of parts of organisms tend to have optimal structural and material characteristics, as well as excellent adaptability and longevity [1,2]. -
Allen-Etal-Calcium-2009.Pdf
This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/copyright Author's personal copy Comparative Biochemistry and Physiology, Part A 154 (2009) 437–450 Contents lists available at ScienceDirect Comparative Biochemistry and Physiology, Part A journal homepage: www.elsevier.com/locate/cbpa Calcium regulation in wild populations of a freshwater cartilaginous fish, the lake sturgeon Acipenser fulvescens Peter J. Allen a,b,⁎, Molly A.H. Webb c, Eli Cureton c, Ronald M. Bruch d, Cameron C. Barth a,b, Stephan J. Peake b, W. Gary Anderson a a Department of Biological Sciences, University of Manitoba, Winnipeg, Canada, MB R3T 2N2 b Canadian Rivers Institute, University of New Brunswick, Fredericton, Canada, NB E3B 5A3 c USFWS Bozeman Fish Technology Center, Bozeman, MT, 59715, USA d Wisconsin Department of Natural Resources, 625 East County Road Y, Suite 700, Oshkosh, WI 54901, USA article info abstract Article history: Lake sturgeon, Acipenser fulvescens, are one of a few species of cartilaginous fishes that complete their life Received 27 May 2009 cycle entirely in freshwater. -
The Morphology and Sculpture of Ossicles in the Cyclopteridae and Liparidae (Teleostei) of the Baltic Sea
Estonian Journal of Earth Sciences, 2010, 59, 4, 263–276 doi: 10.3176/earth.2010.4.03 The morphology and sculpture of ossicles in the Cyclopteridae and Liparidae (Teleostei) of the Baltic Sea Tiiu Märssa, Janek Leesb, Mark V. H. Wilsonc, Toomas Saatb and Heli Špilevb a Institute of Geology at Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia; [email protected] b Estonian Marine Institute, University of Tartu, Mäealuse Street 14, 12618 Tallinn, Estonia; [email protected], [email protected], [email protected] c Department of Biological Sciences and Laboratory for Vertebrate Paleontology, University of Alberta, Edmonton, Alberta T6G 2E9 Canada; [email protected] Received 31 August 2009, accepted 28 June 2010 Abstract. Small to very small bones (ossicles) in one species each of the families Cyclopteridae and Liparidae (Cottiformes) of the Baltic Sea are described and for the first time illustrated with SEM images. These ossicles, mostly of dermal origin, include dermal platelets, scutes, tubercles, prickles and sensory line segments. This work was undertaken to reveal characteristics of the morphology, sculpture and ultrasculpture of these small ossicles that could be useful as additional features in taxonomy and systematics, in a manner similar to their use in fossil material. The scutes and tubercles of the cyclopterid Cyclopterus lumpus Linnaeus are built of small denticles, each having its own cavity viscerally. The thumbtack prickles of the liparid Liparis liparis (Linnaeus) have a tiny spinule on a porous basal plate; the small size of the prickles seems to be related to their occurrence in the exceptionally thin skin, to an adaptation for minimizing weight and/or metabolic cost and possibly to their evolution from isolated ctenii no longer attached to the scale plates of ctenoid scales. -
The Integumental Appendages of the Turtle Shell: an Evo-Devo Perspective JACQUELINE E
COMMENTARY AND PERSPECTIVE The Integumental Appendages of the Turtle Shell: An Evo-Devo Perspective JACQUELINE E. MOUSTAKAS-VERHO1* 2 AND GENNADII O. CHEREPANOV 1Institute of Biotechnology, University of Helsinki, Helsinki, Finland 2Department of Vertebrate Zoology, Faculty of Biology, St. Petersburg State University, St. Petersburg, Russia ABSTRACT The turtle shell is composed of dorsal armor (carapace) and ventral armor (plastron) covered by a keratinized epithelium. There are two epithelial appendages of the turtle shell: scutes (large epidermal shields separated by furrows and forming a unique mosaic) and tubercles (numerous small epidermal bumps located on the carapaces of some species). In our perspective, we take a synthetic, comparative approach to consider the homology and evolution of these integumental appendages. Scutes have been more intensively studied, as they are autapomorphic for turtles and can be diagnostic taxonomically. Their pattern of tessellation is stable phylogenetically, but labile in the individual. We discuss the history of developmental investigations of these structures and hypotheses of evolutionary and anomalous variation. In our estimation, the scutes of the turtle shell are an evolutionary novelty, whereas the tubercles found on the shells of some turtles are homologous to reptilian scales. J. Exp. Zool. (Mol. Dev. Evol.) 324B:221–229, 2015. © 2015 Wiley Periodicals, Inc. J. Exp. Zool. (Mol. Dev. Evol.) How to cite this article: Moustakas-Verho JE, Cherepanov GO. 2015. The integumental 324B:221–229, appendages of the turtle shell: An evo-devo perspective. J. Exp. Zool. (Mol. Dev. Evol.) 324B: 2015 221–229. EVOLUTIONARY ORIGIN AND DEVELOPMENT OF TURTLE Turtles can often be recognized by the pattern of scutes, or lack SCUTES thereof, on their shell. -
Carapacial Scute Anomalies of Star Tortoise (Geochelone Elegans) In
TAPROBANICA, ISSN 1800-427X. October, 2012. Vol. 04, No. 02: pp. 105-107, 1 pl. © Taprobanica Private Limited, 146, Kendalanda, Homagama, Sri Lanka. Carapacial scute anomalies of star tortoise arrangement and the carapace drawings are (Geochelone elegans) in Western India from the sources of Deraniyagala (1939). But the ‘Figure 5’ (on page 13) shows something The basic taxonomy and classification of reptile else, an illustration which is not a typical scale species and genera often use pholidotic drawing of the species. This figure of a tortoise characters. Despite that each species has a shows abnormal scales and scutes, especially standard pattern, there are always deviant vertebral, costal and marginal scutes, which are individuals in terms of scale number, shape, in higher numbers than the provided description size, or color. Turtles are excellent models for of the species by Schoepff (1795). the study of developmental instability because anomalies are easily detected in the form of Observations (see plate 1 for figures) malformations, additions, or reductions in the During the last eleven years (1990-2011), I number of scutes or scales (Velo-Antón et al., have come across many star tortoises in the 2011). The normal number of carapacial scutes wild (n=65) and in captivity (n=135), belonging in turtles is five vertebrals, four pairs of costals, to different ages and sizes (from hatchlings to a and 12 pairs of marginals, a pattern known as 55 year old, which was the largest one) (Vyas, “typical chelonian carapacial scutation” 2011). All specimens were bred under natural (Deraniyagala, 1939). Any deviation of conditions (although 5 of the 6 specimens with vertebral, costal, or marginal scute numbers or anomalies were later kept in captivity). -
18 Special Habitats and Special Adaptations 395
THE DIVERSITY OF FISHES Dedications: To our parents, for their encouragement of our nascent interest in things biological; To our wives – Judy, Sara, Janice, and RuthEllen – for their patience and understanding during the production of this volume; And to students and lovers of fishes for their efforts toward preserving biodiversity for future generations. Front cover photo: A Leafy Sea Dragon, Phycodurus eques, South Australia. Well camouflaged in their natural, heavily vegetated habitat, Leafy Sea Dragons are closely related to seahorses (Gasterosteiformes: Syngnathidae). “Leafies” are protected by Australian and international law because of their limited distribution, rarity, and popularity in the aquarium trade. Legal collection is highly regulated, limited to one “pregnant” male per year. See Chapters 15, 21, and 26. Photo by D. Hall, www.seaphotos.com. Back cover photos (from top to bottom): A school of Blackfin Barracuda, Sphyraena qenie (Perciformes, Sphyraenidae). Most of the 21 species of barracuda occur in schools, highlighting the observation that predatory as well as prey fishes form aggregations (Chapters 19, 20, 22). Blackfins grow to about 1 m length, display the silvery coloration typical of water column dwellers, and are frequently encountered by divers around Indo-Pacific reefs. Barracudas are fast-start predators (Chapter 8), and the pan-tropical Great Barracuda, Sphyraena barracuda, frequently causes ciguatera fish poisoning among humans (Chapter 25). Longhorn Cowfish, Lactoria cornuta (Tetraodontiformes: Ostraciidae), Papua New Guinea. Slow moving and seemingly awkwardly shaped, the pattern of flattened, curved, and angular trunk areas made possible by the rigid dermal covering provides remarkable lift and stability (Chapter 8). A Silvertip Shark, Carcharhinus albimarginatus (Carcharhiniformes: Carcharhinidae), with a Sharksucker (Echeneis naucrates, Perciformes: Echeneidae) attached. -
Fauna of Australia 2A
FAUNA of AUSTRALIA 16. MORPHOLOGY AND PHYSIOLOGY OF THE CHELONIA John M. Legler 1 16. MORPHOLOGY AND PHYSIOLOGY OF THE CHELONIA Turtles are the subject of some of the earliest accounts of vetebrate anatomy, for example Bojanus (1819). Much of the work on turtle anatomy was done in Europe before 1920. The following important anatomical studies include but do not emphasise Australian turtles. Hoffman (1890) commented on the Australian chelid genera Chelodina and Emydura and several South American chelids, and Siebenrock (1897) discussed the skull of Chelodina longicollis. More recently, Schumacher (1973) described the jaw musculature of Chelodina longicollis and Emydura species and Walther (1922) presented a thorough anatomical study of a single specimen of Carettochelys insculpta Ashley (1955) and Bojanus (1819) described and illustrated typical turtle anatomy (Pseudemys and Emys), which is applicable to turtles of both suborders. Surveys of anatomy and physiology prepared before the middle of this century are based largely on the common or easily available taxa (for example Emys, Testudo, Chrysemys and Chelydra) in Europe, Asia and North America. Australian turtles received attention in direct proportion to their availability in collections outside Australia. The expansion of modern biological studies and especially Australian chelids since the 1950s essentially began with Goode (1967). Terminology for chelonian shell structures varies. That standardised by Carr (1952) is used here (Figs 16.1, 16.2). Unpublished data and observations, especially for Australian chelids, are drawn from the author’s research, and appear in statements which lack citations, unless otherwise indicated. EXTERNAL CHARACTERISTICS Turtles range widely in size. Using carapace length as a basis for comparison, the smallest are the North American Sternotherus sp. -
Training Manual Series No.15/2018
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CMFRI Digital Repository DBTR-H D Indian Council of Agricultural Research Ministry of Science and Technology Central Marine Fisheries Research Institute Department of Biotechnology CMFRI Training Manual Series No.15/2018 Training Manual In the frame work of the project: DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals 2015-18 Training Manual In the frame work of the project: DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals 2015-18 Training Manual This is a limited edition of the CMFRI Training Manual provided to participants of the “DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals” organized by the Marine Biotechnology Division of Central Marine Fisheries Research Institute (CMFRI), from 2nd February 2015 - 31st March 2018. Principal Investigator Dr. P. Vijayagopal Compiled & Edited by Dr. P. Vijayagopal Dr. Reynold Peter Assisted by Aditya Prabhakar Swetha Dhamodharan P V ISBN 978-93-82263-24-1 CMFRI Training Manual Series No.15/2018 Published by Dr A Gopalakrishnan Director, Central Marine Fisheries Research Institute (ICAR-CMFRI) Central Marine Fisheries Research Institute PB.No:1603, Ernakulam North P.O, Kochi-682018, India. 2 Foreword Central Marine Fisheries Research Institute (CMFRI), Kochi along with CIFE, Mumbai and CIFA, Bhubaneswar within the Indian Council of Agricultural Research (ICAR) and Department of Biotechnology of Government of India organized a series of training programs entitled “DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals”. -
OSTRACIIDAE Boxfishes by K
click for previous page 3948 Bony Fishes OSTRACIIDAE Boxfishes by K. Matsuura iagnostic characters: Small to medium-sized (to 40 cm) fishes; body almost completely encased Din a bony shell or carapace formed of enlarged, thickened scale plates, usually hexagonal in shape and firmly sutured to one another; no isolated bony plates on caudal peduncle. Carapace triangular, rectangular, or pentangular in cross-section, with openings for mouth, eyes, gill slits, pectoral, dorsal, and anal fins, and for the flexible caudal peduncle. Scale-plates often with surface granulations which are prolonged in some species into prominent carapace spines over eye or along ventrolateral or dorsal angles of body. Mouth small, terminal, with fleshy lips; teeth moderate, conical, usually less than 15 in each jaw. Gill opening a moderately short, vertical to oblique slit in front of pectoral-fin base. Spinous dorsal fin absent; most dorsal-, anal-, and pectoral-fin rays branched; caudal fin with 8 branched rays; pelvic fins absent. Lateral line inconspicuous. Colour: variable, with general ground colours of either brown, grey, or yellow, usually with darker or lighter spots, blotches, lines, and reticulations. carapace no bony plates on caudal peduncle 8 branched caudal-fin rays Habitat, biology, and fisheries: Slow-swimming, benthic-dwelling fishes occurring on rocky and coral reefs and over sand, weed, or sponge-covered bottoms to depths of 100 m. Feed on benthic invertebrates. Taken either by trawl, other types of nets, or traps. Several species considered excellent eating in southern Japan, although some species are reported to have toxic flesh and are also able to secrete a substance when distressed that is highly toxic, both to other fishes and themselves in enclosed areas such as holding tanks. -
A Sinusoidally-Architected Helicoidal Biocomposite
Submitted to A Sinusoidally-Architected Helicoidal Biocomposite N.A. Yaraghi, N. Guarín-Zapata, L.K. Grunenfelder, E. Hintsala, S. Bhowmick, J.M. Hiller, M. Betts, E.L. Principe, Jae-Young Jung, J. McKittrick, R. Wuhrer, P.D. Zavattieri, D. Kisailus Abstract A fibrous herringbone-modified helicoidal architecture is identified within the exocuticle of an impact-resistant crustacean appendage. This previously unreported composite microstructure, which features highly textured apatite mineral templated by an alpha-chitin matrix, provides enhanced stress redistribution and energy absorption over the traditional helicoidal design under compressive loading. Nanoscale toughening mechanisms are also identified using high load nanoindentation and in-situ TEM picoindentation. Keywords: Composites, Toughness, Impact, Biomineral, Ultrastructure DOI: 10.1002/adma.201600786 Graphical Abstract 1 Submitted to DOI: 10.1002/adma.201600786 A Sinusoidally-Architected Helicoidal Biocomposite By Nicholas A. Yaraghi, Nicolás Guarín-Zapata, Lessa K. Grunenfelder, Eric Hintsala, Sanjit Bhowmick, Jon M. Hiller, Mark Betts, Edward L. Principe, Jae-Young Jung, Leigh Sheppard, Richard Wuhrer, Joanna McKittrick, Pablo D. Zavattieri and David Kisailus* * Prof. D. Kisailus, Nicholas A. Yaraghi Materials Science and Engineering Program University of California, Riverside Riverside, CA 92521 (USA) E-mail: [email protected] Nicolás Guarín-Zapata, Prof. P.D. Zavattieri Lyles School of Civil Engineering Purdue University West Lafayette, IN 47907 (USA) Dr. L.K. Grunenfelder, Prof. D. Kisailus Department of Chemical and Environmental Engineering University of California Riverside, CA 92521 (USA) Dr. E. Hintsala Department of Chemical Engineering and Materials Science University of Minnesota Minneapolis, MN 55455 (USA) Dr. S. Bhowmick Hysitron Inc. Minneapolis, MN 55344 (USA) Jon M. -
Annotated Checklist of the Fish Species (Pisces) of La Réunion, Including a Red List of Threatened and Declining Species
Stuttgarter Beiträge zur Naturkunde A, Neue Serie 2: 1–168; Stuttgart, 30.IV.2009. 1 Annotated checklist of the fish species (Pisces) of La Réunion, including a Red List of threatened and declining species RONALD FR ICKE , THIE rr Y MULOCHAU , PA tr ICK DU R VILLE , PASCALE CHABANE T , Emm ANUEL TESSIE R & YVES LE T OU R NEU R Abstract An annotated checklist of the fish species of La Réunion (southwestern Indian Ocean) comprises a total of 984 species in 164 families (including 16 species which are not native). 65 species (plus 16 introduced) occur in fresh- water, with the Gobiidae as the largest freshwater fish family. 165 species (plus 16 introduced) live in transitional waters. In marine habitats, 965 species (plus two introduced) are found, with the Labridae, Serranidae and Gobiidae being the largest families; 56.7 % of these species live in shallow coral reefs, 33.7 % inside the fringing reef, 28.0 % in shallow rocky reefs, 16.8 % on sand bottoms, 14.0 % in deep reefs, 11.9 % on the reef flat, and 11.1 % in estuaries. 63 species are first records for Réunion. Zoogeographically, 65 % of the fish fauna have a widespread Indo-Pacific distribution, while only 2.6 % are Mascarene endemics, and 0.7 % Réunion endemics. The classification of the following species is changed in the present paper: Anguilla labiata (Peters, 1852) [pre- viously A. bengalensis labiata]; Microphis millepunctatus (Kaup, 1856) [previously M. brachyurus millepunctatus]; Epinephelus oceanicus (Lacepède, 1802) [previously E. fasciatus (non Forsskål in Niebuhr, 1775)]; Ostorhinchus fasciatus (White, 1790) [previously Apogon fasciatus]; Mulloidichthys auriflamma (Forsskål in Niebuhr, 1775) [previously Mulloidichthys vanicolensis (non Valenciennes in Cuvier & Valenciennes, 1831)]; Stegastes luteobrun- neus (Smith, 1960) [previously S.