The Analysis of Sea Turtle and Bovid Keratin Artefacts Using Drift
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Foot and Mouth Disease Fastfact
Foot and Mouth Disease (FMD) What is foot and mouth How does FMD affect my Who should I contact if I disease and what causes it? animal? suspect FMD? Foot and mouth disease (FMD) is The most common signs of foot Contact your veterinarian a highly contagious viral disease of and mouth disease are fever and immediately. FMD is not currently cloven-hoofed (two-toed) animals (e.g., the formation of blisters, ulcers and found in the United States; suspicion cattle, pigs, sheep). FMD causes painful sores on the mouth, tongue, nose, of the disease requires immediate sores and blisters on the feet, mouth feet, and teats. Foot lesions occur in attention. the area of the coronary band and and teats of animals. between the toes. Infected cattle are How can I protect my animal Foot and mouth disease is a high depressed, reluctant to move, and from FMD? consequence livestock disease due to unwilling or unable to eat, which can To prevent the introduction of FMD, its potential for rapid spread, severe lead to decreased milk production, use strict biosecurity procedures on trade restrictions and the subsequent weight loss, and poor growth. Affected your farm. Isolate any new introductions economic impacts that would result. animals may also have nasal discharge or animal returning to the farm for The disease occurs in parts of Asia, and excessive salivation. Pigs often several weeks before introducing them have sore feet but less commonly into the herd. Minimize visitors on Africa, the Middle East and South develop mouth lesions. Sheep and your farm, especially those that have America, but has been eradicated goats show very mild, if any, signs of traveled from countries with FMD. -
Tortoiseshell Real Or Fake?
Tortoiseshell Real or Fake? How to tell the difference This article will concentrate upon the use of tortoiseshell for ornamental hair combs, as well as the various materials which have been employed to imitate it. However much of the material included here will be of interest to collectors of other antique and vintage shell objects. I will outline some rules of thumb for distinguishing genuine from imitation tortoiseshell, and methods for caring for it. Introduction For collectors of antiques and vintage items there are many reasons why it is important to be able to distinguish real from fake (or faux) tortoiseshell. 1) Real turtle shell is not allowed on eBay. If you are a seller and you are reported by a snitch for selling items in real shell you will get your listing/s pulled and a policy violation. You could even have your account suspended. 2) Much more significant is the fact that trade in real shell violates several US and other international laws. There are different regulations for antique and modern items made from turtle shell. The legal situation is extremely complex and what is allowed in one state or country may be prohibited in another. This however, is not an area that I intend to discuss here. Further information and reference to the various laws can be found in the eBay help section dealing with prohibited items. 3) Antique items made from real shell command a far higher price than those in synthetic or other substitutes because of their rarity value. So if you are a seller or serious collector it is important for economic (as well as aesthetic) reasons to be able to distinguish it from other substances. -
Allen-Etal-Calcium-2009.Pdf
This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/copyright Author's personal copy Comparative Biochemistry and Physiology, Part A 154 (2009) 437–450 Contents lists available at ScienceDirect Comparative Biochemistry and Physiology, Part A journal homepage: www.elsevier.com/locate/cbpa Calcium regulation in wild populations of a freshwater cartilaginous fish, the lake sturgeon Acipenser fulvescens Peter J. Allen a,b,⁎, Molly A.H. Webb c, Eli Cureton c, Ronald M. Bruch d, Cameron C. Barth a,b, Stephan J. Peake b, W. Gary Anderson a a Department of Biological Sciences, University of Manitoba, Winnipeg, Canada, MB R3T 2N2 b Canadian Rivers Institute, University of New Brunswick, Fredericton, Canada, NB E3B 5A3 c USFWS Bozeman Fish Technology Center, Bozeman, MT, 59715, USA d Wisconsin Department of Natural Resources, 625 East County Road Y, Suite 700, Oshkosh, WI 54901, USA article info abstract Article history: Lake sturgeon, Acipenser fulvescens, are one of a few species of cartilaginous fishes that complete their life Received 27 May 2009 cycle entirely in freshwater. -
Rangifer Tarandus) Hoof Suitable for Efficient Locomotion on Complex Grounds
J Vet Res 61, 223-229, 2017 DE DE GRUYTER OPEN DOI:10.1515/jvetres-2017-0029 G Macro-microscopic research in reideer (Rangifer tarandus) hoof suitable for efficient locomotion on complex grounds Rui Zhang, Yu Qiao, Qiaoli Ji, Songsong Ma, Jianqiao Li Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Nanguan District, Changchun, 130022, People's Republic of China [email protected] Received: November 25, 2016 Accepted: May 8, 2017 Abstract Introduction: Reindeer are adapted to long distance migration. This species can cope with variations in substrate, especially in ice and snow environment. However, few detailed studies about reindeer hoof are available. Thus this article describes the results of studies on macro- and micro-structures of reindeer hoof. Material and Methods: The gross anatomy of the reindeer hooves was examined. Stereo microscope (SM) and a scanning electron microscope (SEM) were used to observe four key selected positions of reindeer hooves. Moreover, element contents of the three selected positions of reindeer hooves were analysed using the SEM equipped with energy dispersive spectroscope. Results: Hoof bone structures were similar to other artiodactyl animals. In the microscopic analysis, the surfaces of the ungula sphere and ungula sole presented irregular laminated structure. Ungula edge surfaces were smooth and ungula cusp surfaces had unique features. Aside from C, O, and N, reindeer hooves contained such elements as S, Si, Fe, Al, and Ca. The content of the elements in different parts varied. Ti was the particular element in the ungula sole, and ungula edge lacked Mg and S which other parts contained. -
The Morphology and Sculpture of Ossicles in the Cyclopteridae and Liparidae (Teleostei) of the Baltic Sea
Estonian Journal of Earth Sciences, 2010, 59, 4, 263–276 doi: 10.3176/earth.2010.4.03 The morphology and sculpture of ossicles in the Cyclopteridae and Liparidae (Teleostei) of the Baltic Sea Tiiu Märssa, Janek Leesb, Mark V. H. Wilsonc, Toomas Saatb and Heli Špilevb a Institute of Geology at Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia; [email protected] b Estonian Marine Institute, University of Tartu, Mäealuse Street 14, 12618 Tallinn, Estonia; [email protected], [email protected], [email protected] c Department of Biological Sciences and Laboratory for Vertebrate Paleontology, University of Alberta, Edmonton, Alberta T6G 2E9 Canada; [email protected] Received 31 August 2009, accepted 28 June 2010 Abstract. Small to very small bones (ossicles) in one species each of the families Cyclopteridae and Liparidae (Cottiformes) of the Baltic Sea are described and for the first time illustrated with SEM images. These ossicles, mostly of dermal origin, include dermal platelets, scutes, tubercles, prickles and sensory line segments. This work was undertaken to reveal characteristics of the morphology, sculpture and ultrasculpture of these small ossicles that could be useful as additional features in taxonomy and systematics, in a manner similar to their use in fossil material. The scutes and tubercles of the cyclopterid Cyclopterus lumpus Linnaeus are built of small denticles, each having its own cavity viscerally. The thumbtack prickles of the liparid Liparis liparis (Linnaeus) have a tiny spinule on a porous basal plate; the small size of the prickles seems to be related to their occurrence in the exceptionally thin skin, to an adaptation for minimizing weight and/or metabolic cost and possibly to their evolution from isolated ctenii no longer attached to the scale plates of ctenoid scales. -
The Integumental Appendages of the Turtle Shell: an Evo-Devo Perspective JACQUELINE E
COMMENTARY AND PERSPECTIVE The Integumental Appendages of the Turtle Shell: An Evo-Devo Perspective JACQUELINE E. MOUSTAKAS-VERHO1* 2 AND GENNADII O. CHEREPANOV 1Institute of Biotechnology, University of Helsinki, Helsinki, Finland 2Department of Vertebrate Zoology, Faculty of Biology, St. Petersburg State University, St. Petersburg, Russia ABSTRACT The turtle shell is composed of dorsal armor (carapace) and ventral armor (plastron) covered by a keratinized epithelium. There are two epithelial appendages of the turtle shell: scutes (large epidermal shields separated by furrows and forming a unique mosaic) and tubercles (numerous small epidermal bumps located on the carapaces of some species). In our perspective, we take a synthetic, comparative approach to consider the homology and evolution of these integumental appendages. Scutes have been more intensively studied, as they are autapomorphic for turtles and can be diagnostic taxonomically. Their pattern of tessellation is stable phylogenetically, but labile in the individual. We discuss the history of developmental investigations of these structures and hypotheses of evolutionary and anomalous variation. In our estimation, the scutes of the turtle shell are an evolutionary novelty, whereas the tubercles found on the shells of some turtles are homologous to reptilian scales. J. Exp. Zool. (Mol. Dev. Evol.) 324B:221–229, 2015. © 2015 Wiley Periodicals, Inc. J. Exp. Zool. (Mol. Dev. Evol.) How to cite this article: Moustakas-Verho JE, Cherepanov GO. 2015. The integumental 324B:221–229, appendages of the turtle shell: An evo-devo perspective. J. Exp. Zool. (Mol. Dev. Evol.) 324B: 2015 221–229. EVOLUTIONARY ORIGIN AND DEVELOPMENT OF TURTLE Turtles can often be recognized by the pattern of scutes, or lack SCUTES thereof, on their shell. -
The Role of Collagen in the Dermal Armor of the Boxfish
j m a t e r r e s t e c h n o l . 2 0 2 0;9(xx):13825–13841 Available online at www.sciencedirect.com https://www.journals.elsevier.com/journal-of-materials-research-and-technology Original Article The role of collagen in the dermal armor of the boxfish a,∗ b c b Sean N. Garner , Steven E. Naleway , Maryam S. Hosseini , Claire Acevedo , d e a e c Bernd Gludovatz , Eric Schaible , Jae-Young Jung , Robert O. Ritchie , Pablo Zavattieri , f Joanna McKittrick a Materials Science and Engineering Program, University of California, San Diego, La Jolla, CA 92093–0411, USA b Department of Mechanical Engineering, University of Utah, Salt Lake City, UT 84112, USA c Lyles School of Civil Engineering, Purdue University, West Lafayette, IN 47907, USA d School of Mechanical & Manufacturing Engineering, UNSW Sydney, NSW 2052, Australia e Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA f Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA 92093–0411, USA a r t i c l e i n f o a b s t r a c t Article history: This research aims to further the understanding of the structure and mechanical properties Received 1 June 2020 of the dermal armor of the boxfish (Lactoria cornuta). Structural differences between colla- Accepted 24 September 2020 gen regions underlying the hexagonal scutes were observed with confocal microscopy and Available online 5 October 2020 microcomputed tomography (-CT). -CT revealed a tapering of the mineral plate from the center of the scute to the interface between scutes, suggesting the structure allows for more Keywords: flexibility at the interface. -
Carapacial Scute Anomalies of Star Tortoise (Geochelone Elegans) In
TAPROBANICA, ISSN 1800-427X. October, 2012. Vol. 04, No. 02: pp. 105-107, 1 pl. © Taprobanica Private Limited, 146, Kendalanda, Homagama, Sri Lanka. Carapacial scute anomalies of star tortoise arrangement and the carapace drawings are (Geochelone elegans) in Western India from the sources of Deraniyagala (1939). But the ‘Figure 5’ (on page 13) shows something The basic taxonomy and classification of reptile else, an illustration which is not a typical scale species and genera often use pholidotic drawing of the species. This figure of a tortoise characters. Despite that each species has a shows abnormal scales and scutes, especially standard pattern, there are always deviant vertebral, costal and marginal scutes, which are individuals in terms of scale number, shape, in higher numbers than the provided description size, or color. Turtles are excellent models for of the species by Schoepff (1795). the study of developmental instability because anomalies are easily detected in the form of Observations (see plate 1 for figures) malformations, additions, or reductions in the During the last eleven years (1990-2011), I number of scutes or scales (Velo-Antón et al., have come across many star tortoises in the 2011). The normal number of carapacial scutes wild (n=65) and in captivity (n=135), belonging in turtles is five vertebrals, four pairs of costals, to different ages and sizes (from hatchlings to a and 12 pairs of marginals, a pattern known as 55 year old, which was the largest one) (Vyas, “typical chelonian carapacial scutation” 2011). All specimens were bred under natural (Deraniyagala, 1939). Any deviation of conditions (although 5 of the 6 specimens with vertebral, costal, or marginal scute numbers or anomalies were later kept in captivity). -
Fauna of Australia 2A
FAUNA of AUSTRALIA 16. MORPHOLOGY AND PHYSIOLOGY OF THE CHELONIA John M. Legler 1 16. MORPHOLOGY AND PHYSIOLOGY OF THE CHELONIA Turtles are the subject of some of the earliest accounts of vetebrate anatomy, for example Bojanus (1819). Much of the work on turtle anatomy was done in Europe before 1920. The following important anatomical studies include but do not emphasise Australian turtles. Hoffman (1890) commented on the Australian chelid genera Chelodina and Emydura and several South American chelids, and Siebenrock (1897) discussed the skull of Chelodina longicollis. More recently, Schumacher (1973) described the jaw musculature of Chelodina longicollis and Emydura species and Walther (1922) presented a thorough anatomical study of a single specimen of Carettochelys insculpta Ashley (1955) and Bojanus (1819) described and illustrated typical turtle anatomy (Pseudemys and Emys), which is applicable to turtles of both suborders. Surveys of anatomy and physiology prepared before the middle of this century are based largely on the common or easily available taxa (for example Emys, Testudo, Chrysemys and Chelydra) in Europe, Asia and North America. Australian turtles received attention in direct proportion to their availability in collections outside Australia. The expansion of modern biological studies and especially Australian chelids since the 1950s essentially began with Goode (1967). Terminology for chelonian shell structures varies. That standardised by Carr (1952) is used here (Figs 16.1, 16.2). Unpublished data and observations, especially for Australian chelids, are drawn from the author’s research, and appear in statements which lack citations, unless otherwise indicated. EXTERNAL CHARACTERISTICS Turtles range widely in size. Using carapace length as a basis for comparison, the smallest are the North American Sternotherus sp. -
AZA Ungulate TAG Midyear Meetings March 23-25, 2021 “Many Hooves, One Herd”
AZA Ungulate TAG Midyear Meetings March 23-25, 2021 “Many Hooves, One Herd” Tuesday March 23 - DAY 1 (All times are Eastern Standard Time) 11am-1pm Welcome, Overview, and Agenda for the Week – Moderator, Steve Metzler, Antelope, Cattle, Giraffid, and Camelid TAG Chair AZA Ungulate TAG Chair Briefings • Rhino TAG – Adam Eyres, TAG Chair, Fossil Rim Wildlife Center • Equid TAG – Tim Thier, TAG Chair, Saint Louis Zoo • Hippo, Peccary, Pig, and Tapir TAG – Martin Ramirez, TAG Chair, Woodland Park Zoo • Deer (Cervid/Tragulid) TAG – Michelle Hatwood, TAG Chair, Audubon Species Survival Center • Caprinae TAG – Gil Myers, TAG Chair, Smithsonian National Zoo • Antelope, Cattle, Giraffid, and Camelid (ACGC) TAG – Steve Metzler, TAG Chair, San Diego Zoo Wildlife Alliance 1pm-2:30pm Animal Program Leaders Meeting 3pm-5pm The Future of SSPs and How it May Impact the Ungulate TAGs and Collection Planning – Presentations and Discussion, Moderator, Steve Metzler • Panelists, Dave Powell, Animal Population Management Committee, Saint Louis Zoo and Ungulate TAG Chairs Wednesday March 24 – DAY 2 (All times are Eastern Standard Time) 11am-1pm Reports from the Field Part 1 – Moderators, Wendy Enright and RoxAnna Breitigan, The Living Desert Zoo and Gardens • Peninsular Pronghorn Conservation Project – Melodi Tayles, San Diego Zoo Wildlife Alliance • Large-antlered Muntjac CGF Grant – Michelle Hatwood, Audubon Species Survival Center • Action Indonesia Update – James Burton, IUCN Asian Wild Cattle Specialist Group • Saola Working Group activities - James Burton, -
Short-Range Movements of Hawksbill Turtles (Eretmochelys Imbricata) from Nesting to Foraging Areas Within the Hawaiian Islands1
Short-Range Movements of Hawksbill Turtles (Eretmochelys imbricata) from Nesting to Foraging Areas within the Hawaiian Islands1 Denise M. Parker,2,3,4 George H. Balazs,3 Cheryl S. King,5 Larry Katahira,6 and William Gilmartin5 Abstract: Hawksbill sea turtles, Eretmochelys imbricata, reside around the main Hawaiian Islands but are not common. Flipper-tag recoveries and satellite track- ing of hawksbills worldwide have shown variable distances in post-nesting travel, with migrations between nesting beaches and foraging areas ranging from 35 to 2,425 km. Nine hawksbill turtles were tracked within the Hawaiian Islands using satellite telemetry. Turtles traveled distances ranging from 90 to 345 km and took between 5 to 18 days to complete the transit from nesting to foraging areas. Results of this study suggest that movements of Hawaiian hawksbills are rela- tively short-ranged, and surveys of their foraging areas should be conducted to assess status of the habitat to enhance conservation and management of these areas. Hawksbill sea turtles, Eretmochelys im- 1900s because of toxicity, but as hawksbill bricata (L.), are found in nearshore habitats numbers declined due to harvesting for scutes in tropical regions of all oceans. Hawksbill (Carrillo et al. 1999, Campbell 2003) toxicity turtles are listed as Critically Endangered in also seemed to decline. McClenachan et al. the International Union for Conservation of (2006) suggested that this reduction in toxicity Nature (IUCN) Redbook (Hilton-Taylor may be connected to the declines in hawksbill 2000) and as Endangered under the Conven- numbers because of an increased availability tion on International Trade in Endangered of less-toxic sponges on which hawksbills Species of Wild Fauna and Flora (CITES) prefer to forage. -
Footrot in Sheep and Goats Lynn Pezzanite, Animal Sciences Student Dr
PURDUE EXTENSION Animal Sciences AS-596-W Footrot in Sheep and Goats Lynn Pezzanite, Animal Sciences Student Dr. Mike Neary, Small Ruminant Extension Specialist, Purdue University Terry Hutchens, Extension Goat Specialist, University of Kentucky Footrot is a costly disease in the sheep and goat warms to mud. Footrot is most prevalent and highly industry. Countless producers lose time and money contagious in wet, moist areas. When pastures have each year in an attempt to control it in their flock or been consistently wet with no dry spells there is a herd. If footrot becomes a problem, it takes much higher incidence of outbreaks. The ideal soil reservoir effort and labor to control symptoms and eliminate is high in moisture at temperatures between 50°F to it. However, footrot is a preventable disease with 70°F. attentive management. Symptoms Causes of Footrot Foot scald and footrot result in lameness, reduced Footrot is caused by the coexistence of two weight gain, decreased milk and wool production, gram-negative, anaerobic bacteria, Fusobacterium and decreased reproductive capabilities as severely necrophorum and Dichelobacter nodosus (also infected animals are reluctant to move in order to feed. referred to as Bacteroides nodosus). Several different Affected animals often carry the affected leg or lie strains of D. nodosus affect both sheep and goats, down for extended periods, rubbing off the wool/hair and can also be carried by cattle, deer, and horses. In on their flanks, brisket, and knees. These conditions general, sheep are affected more severely than goats. result in production losses, treatment and prevention The bacteria Fusobacterium necrophorum causes costs, premature culling, and reduced sale value of a common disease known as foot scald.