Structural Alert/Reactive Metabolite Concept As Applied in Medicinal Chemistry to Mitigate the Risk of Idiosyncratic Drug Toxici

Total Page:16

File Type:pdf, Size:1020Kb

Structural Alert/Reactive Metabolite Concept As Applied in Medicinal Chemistry to Mitigate the Risk of Idiosyncratic Drug Toxici REVIEW pubs.acs.org/crt Structural Alert/Reactive Metabolite Concept as Applied in Medicinal Chemistry to Mitigate the Risk of Idiosyncratic Drug Toxicity: A Perspective Based on the Critical Examination of Trends in the Top 200 Drugs Marketed in the United States † † ‡ † || Antonia F. Stepan, ‡Daniel P. Walker, Jonathan Bauman, David A. Price, Thomas A. Baillie, Amit S. Kalgutkar,*, and Michael D. Aleo§ † ‡ Worldwide Medicinal Chemistry, Pharmacokinetics, Dynamics and Metabolism, and §Investigative Toxicology, Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States Department) of Medicinal Chemistry, School of Pharmacy, University of Washington, Seattle, Washington, 98195 bS Supporting Information ABSTRACT: Because of a preconceived notion that eliminating reactive metabolite (RM) formation with new drug candidates could mitigate the risk of idiosyncratic drug toxicity, the potential for RM formation is routinely examined as part of lead optimization efforts in drug discovery. Likewise, avoidance of “structural alerts” is almost a norm in drug design. However, there is a growing concern that the perceived safety hazards associated with structural alerts and/or RM screening tools as standalone predictors of toxicity risks may be over exaggerated. In addition, the multifactorial nature of idiosyncratic toxicity is now well recognized based upon observations that mechanisms other than RM formation (e.g., mitochondrial toxicity and inhibition of bile salt export pump (BSEP)) also can account for certain target organ toxicities. Hence, fundamental questions arise such as: When is a molecule that contains a structural alert (RM positive or negative) a cause for concern? Could the molecule in its parent form exert toxicity? Can a low dose drug candidate truly mitigate metabolism-dependent and -independent idiosyncratic toxicity risks? In an effort to address these questions, we have retrospectively examined 68 drugs (recalled or associated with a black box warning due to idiosyncratic toxicity) and the top 200 drugs (prescription and sales) in the United States in 2009 for trends in physiochemical characteristics, daily doses, presence of structural alerts, evidence for RM formation as well as toxicity mechanism(s) potentially mediated by parent drugs. Collectively, our analysis revealed that a significant proportion (∼78À86%) of drugs associated with toxicity contained structural alerts and evidence indicating that RM formation as a causative factor for toxicity has been presented in 62À69% of these molecules. In several cases, mitochondrial toxicity and BSEP inhibition mediated by parent drugs were also noted as potential causative factors. Most drugs were administered at daily doses exceeding several hundred milligrams. There was no obvious link between idiosyncratic toxicity and physicochemical properties such as molecular weight, lipophilicity, etc. Approximately half of the top 200 drugs for 2009 (prescription and sales) also contained one or more alerts in their chemical architecture, and many were found to be RM-positive. Several instances of BSEP and mitochondrial liabilities were also noted with agents in the top 200 category. However, with relatively few exceptions, the vast majority of these drugs are rarely associated with idiosyncratic toxicity, despite years of patient use. The major differentiating factor appeared to be the daily dose; most of the drugs in the top 200 list are administered at low daily doses. In addition, competing detoxication pathways and/or alternate nonmetabolic clearance routes provided suitable justifications for the safety records of RM-positive drugs in the top 200 category. Thus, while RM elimination may be a useful and pragmatic starting point in mitigating idiosyncratic toxicity risks, our analysis suggests a need for a more integrated screening paradigm for chemical hazard identificationindrug discovery. Thus, in addition to a detailed assessment of RM formation potential (in relationship to the overall elimination mechanisms of the compound(s)) for lead compounds, effects on cellular health (e.g., cytotoxicity assays), BSEP inhibition, and mitochondrial toxicity are the recommended suite of assays to characterize compound liabilities. However, the prospective use of such data in compound selection will require further validation of the cellular assays using marketed agents. Until we gain a better understanding of the pathophysiological mechanisms associated with idiosyncratic toxicities, improving pharmacokinetics and intrinsic potency as means of decreasing the dose size and the associated “body burden” of the parent drug and its metabolites will remain an overarching goal in drug discovery. Received: April 25, 2011 Published: June 24, 2011 r 2011 American Chemical Society 1345 dx.doi.org/10.1021/tx200168d | Chem. Res. Toxicol. 2011, 24, 1345–1410 Chemical Research in Toxicology REVIEW ’ CONTENTS The precise mechanisms of IADRs remain unclear; however, it is believed that the majority of these reactions are caused by 1.0. Introduction 1346 immunogenic conjugates formed from the reaction of an electro- 2.0. Physicochemical Trends in Drugs Associated with philic reactive metabolite (RM) of a drug with cellular proteins IADRs 1355 resulting in direct cellular dysfunction or an immune response via 3.0. Structural Alert and RM Analyses for Drugs Recalled the formation of a hapten. Much of the groundwork of the RM Due to IADRs 1356 theory was laid by James and Elizabeth Miller who elegantly 3.1. Acidic Compounds 1356 demonstrated that the carcinogenic and hepatotoxic activity of 3.2. Basic Compounds 1361 aminoazo dyes resulted from their metabolic activation (also referred to as bioactivation) to RMs.3,4 Over the decades, bioacti- 3.3. Neutral Compounds 1362 vation of xenobiotics, including drugs, has been clearly implicated 4.0. Structural Alert and RM Analyses for Drugs with in causing DNA modification and mutations relevant to cancer.5 BBW 1363 The extension of the RM concept to idiosyncratic drug toxicity 4.1. Acidic Compounds 1364 was first provided from studies on the anti-inflammatory agent 6 4.2. Basic Compounds 1365 and hepatotoxicant acetaminophen. Mechanistic studies, which 4.3. Neutral Compounds 1371 established the cytochrome P450 (CYP) mediated oxidation of acetaminophen to a reactive quinoneÀimine intermediate,7 cap- 5.0. Structural Alert and RM Analyses for the Top 20 able of depleting levels of the endogenous antioxidant glutathione Drugs in the US Market in 2009, by Dispensed (GSH) and/or binding covalently to liver proteins leading to Prescriptions 1375 liver injury, have served as a paradigm for drug toxicity assessment 6.0. Structural Alert and RM Analyses for the Top 20 over the decades. Studies with model compounds and drugs such Drugs in the US Market in 2009, by Sales 1383 as acetaminophen have aided in defining the role that chemical 7.0. Structural Alert and RM Analyses for the Remaining stress and bioactivation can have in biological outcomes that may ff 180 Drugs in the US Market in 2009, by Dispensed be triggered by RMs. These include e ects on cell signaling/ defense, transcription factors, apoptosis, necrosis, and inflamma- Prescriptions 1385 tion, activation of the innate and adaptive immune systems. 8.0. Structural Alert and RM Analyses for the Remaining Under the basic premise that a RM-negative compound could 180 Drugs in the US Market in 2009, by Sales 1393 mitigate immune-mediated IADR risks, most drug discovery 9.0. Lessons Learned from the Structural Alert/RM efforts have implemented screens to assess RM formation from Analyses for Drugs Associated with IADRs and the new compounds with the ultimate goal of minimizing or eliminat- Top 200 Drugs of 2009 1395 ing this liability through iterative design. General avoidance of Associated Content 1399 functional groups that have been associated with RM formation “ ” 8 Author Information 1399 (referred to as structural alerts ) is almost a norm in drug design, particularly at the lead optimization/candidate selection Abbreviations 1399 stage. While these approaches appear reasonable in the quest for References 1399 safer medicines, there is a growing concern that the perceived safety hazards associated with incorporation of a structural alert may be over exaggerated. For instance, almost half of all new 1.0. INTRODUCTION small molecule drugs launched in the past five years possess at Despite tremendous strides in the field of chemical toxicology, least one structural alert. Moreover, the vast majority of drugs reliably predicting the occurrence of idiosyncratic adverse drug possess a phenyl ring, which is a structural alert in its own right, reactions (IADRs) for new drug candidates represents a significant since phenyl ring metabolism to the corresponding phenol can challenge. The term “idiosyncratic” simply represents terminol- proceed through a reactive epoxide intermediate. Aromatic ring epoxidation also represents the rate-limiting step in the carcino- ogy suggesting that little is known about the underlying mechan- ff ism and that the toxicity is unpredictable. Many IADRs possess genic and/or hepatotoxic e ects of organic solvents such as an immune component and occur in only a subset of patients benzene and bromobenzene. In addition, there are real concerns that simple RM screening tools,9 such as GSH trapping and either acutely or as a delayed response. The observations that covalent binding assays, may be too stringent and could halt the certain IADRs (e.g., hypersensitivity associated
Recommended publications
  • Endothelin System and Therapeutic Application of Endothelin Receptor
    xperim ACCESS Freely available online & E en OPEN l ta a l ic P in h l a C r m f o a c l a o n l o r g u y o J Journal of ISSN: 2161-1459 Clinical & Experimental Pharmacology Research Article Endothelin System and Therapeutic Application of Endothelin Receptor Antagonists Abebe Basazn Mekuria, Zemene Demelash Kifle*, Mohammedbrhan Abdelwuhab Department of Pharmacology, School of Pharmacy, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia ABSTRACT Endothelin is a 21 amino acid molecule endogenous potent vasoconstrictor peptide. Endothelin is synthesized in vascular endothelial and smooth muscle cells, as well as in neural, renal, pulmonic, and inflammatory cells. It acts through a seven transmembrane endothelin receptor A (ETA) and endothelin receptor B (ETB) receptors belongs to G protein-coupled rhodopsin-type receptor superfamily. This peptide involved in pathogenesis of cardiovascular disorder like (heart failure, arterial hypertension, myocardial infraction and atherosclerosis), renal failure, pulmonary arterial hypertension and it also involved in pathogenesis of cancer. Potentially endothelin receptor antagonist helps the treatment of the above disorder. Currently, there are a lot of trails both per-clinical and clinical on endothelin antagonist for various cardiovascular, pulmonary and cancer disorder. Some are approved by FAD for the treatment. These agents are including both selective and non-selective endothelin receptor antagonist (ETA/B). Currently, Bosentan, Ambrisentan, and Macitentan approved
    [Show full text]
  • Prnu-BICALUTAMIDE
    PRODUCT MONOGRAPH PrNU-BICALUTAMIDE Bicalutamide Tablets, 50 mg Non-Steroidal Antiandrogen NU-PHARM INC. DATE OF PREPARATION: 50 Mural Street, Units 1 & 2 October 16, 2009 Richmond Hill, Ontario L4B 1E4 Control#: 133521 Page 1 of 27 Table of Contents PART I: HEALTH PROFESSIONAL INFORMATION....................................................... 3 SUMMARY PRODUCT INFORMATION ............................................................................. 3 INDICATIONS AND CLINICAL USE ................................................................................... 3 CONTRAINDICATIONS ........................................................................................................ 3 WARNINGS AND PRECAUTIONS....................................................................................... 4 ADVERSE REACTIONS......................................................................................................... 5 DRUG INTERACTIONS ......................................................................................................... 9 DOSAGE AND ADMINISTRATION ................................................................................... 10 OVERDOSAGE...................................................................................................................... 10 ACTION AND CLINICAL PHARMACOLOGY.................................................................. 10 STORAGE AND STABILITY............................................................................................... 11 DOSAGE FORMS, COMPOSITION AND PACKAGING
    [Show full text]
  • Medical Review Officer Manual
    Department of Health and Human Services Substance Abuse and Mental Health Services Administration Center for Substance Abuse Prevention Medical Review Officer Manual for Federal Agency Workplace Drug Testing Programs EFFECTIVE OCTOBER 1, 2010 Note: This manual applies to Federal agency drug testing programs that come under Executive Order 12564 dated September 15, 1986, section 503 of Public Law 100-71, 5 U.S.C. section 7301 note dated July 11, 1987, and the Department of Health and Human Services Mandatory Guidelines for Federal Workplace Drug Testing Programs (73 FR 71858) dated November 25, 2008 (effective October 1, 2010). This manual does not apply to specimens submitted for testing under U.S. Department of Transportation (DOT) Procedures for Transportation Workplace Drug and Alcohol Testing Programs (49 CFR Part 40). The current version of this manual and other information including MRO Case Studies are available on the Drug Testing page under Medical Review Officer (MRO) Resources on the SAMHSA website: http://www.workplace.samhsa.gov Previous Versions of this Manual are Obsolete 3 Table of Contents Chapter 1. The Medical Review Officer (MRO)........................................................................... 6 Chapter 2. The Federal Drug Testing Custody and Control Form ................................................ 7 Chapter 3. Urine Drug Testing ...................................................................................................... 9 A. Federal Workplace Drug Testing Overview..................................................................
    [Show full text]
  • Clinical Biochemistry of Hepatotoxicity
    linica f C l To o x l ic a o n r l o u g Singh, J Clinic Toxicol 2011, S:4 o y J Journal of Clinical Toxicology DOI: 10.4172/2161-0495.S4-001 ISSN: 2161-0495 ReviewResearch Article Article OpenOpen Access Access Clinical Biochemistry of Hepatotoxicity Anita Singh1, Tej K Bhat2 and Om P Sharma2* 1CSK Himachal Pradesh, Krishi Vishva Vidyalaya, Palampur (HP) 176 062, India 2Biochemistry Laboratory, Indian Veterinary Research Institute, Regional Station, Palampur (HP) 176 061, India Abstract Liver plays a central role in the metabolism and excretion of xenobiotics which makes it highly susceptible to their adverse and toxic effects. Liver injury caused by various toxic chemicals or their reactive metabolites [hepatotoxicants) is known as hepatotoxicity. The present review describes the biotransformation of hepatotoxicants and various models used to study hepatotoxicity. It provides an overview of pathological and biochemical mechanism involved during hepatotoxicity together with alteration of clinical biochemistry during liver injury. The review has been supported by a list of important hepatotoxicants as well as common hepatoprotective herbs. Keywords: Hepatotoxicity; Hepatotoxicant; In Vivo models; In Vitro production of bile thus leading to the body’s inability to flush out the models; Pathology; Alanine aminotransferase; Alkaline phosphatase; chemicals through waste. Smooth endoplasmic reticulum of the liver is Bilirubin; Hepatoprotective the principal ‘metabolic clearing house’ for both endogenous chemicals like cholesterol, steroid hormones, fatty acids and proteins, and Introduction exogenous substances like drugs and alcohol. The central role played by liver in the clearance and transformation of chemicals exposes it to Hepatotoxicity refers to liver dysfunction or liver damage that is toxic injury [4].
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2004/0116357 A1 Fushimi Et Al
    US 2004O116357A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2004/0116357 A1 Fushimi et al. (43) Pub. Date: Jun. 17, 2004 (54) GLUCOPYRANOSYLOXYPYRAZOLE DERVATIVES AND MEDICINAL USE THEREOF (I) (76) Inventors: Nobuhiko Fushimi, Matsumoto-shi (JP); Hideki Fujikura, Matsumoto-shi (JP); Toshihiro Nishimura, Minamiazumi-gun (JP); Kenji Katsuno, Kamiina-gun (JP); Masayuki Isaji, Shiojiri-shi (JP) Correspondence Address: SUGHRUE MION, PLLC 2100 PENNSYLVANIAAVENUE, N.W. SUTE 800 WASHINGTON, DC 20037 (US) (21) Appl. No.: 10/469,140 (22) PCT Filed: Feb. 26, 2002 (86) PCT No.: PCT/JP02/01708 wherein R', R and R represent a hydrogen atom or a (30) Foreign Application Priority Data halogen atom; R" represents a lower alkyl group or a halo(lower alkyl) group; and R represents a hydrogen atom, Feb. 27, 2001 (JP)...................................... 2001-053085 a lower alkyl group, a lower alkoxy group, a lower alkylthio group, etc., a pharmaceutically acceptable Salt thereof or a Publication Classification prodrug thereof., which exert an excellent inhibitory activity (51) Int. Cl. ................................................ A61K 31/7056 in human SGLT2, and therefore are useful as drugs for the (52) U.S. Cl. ............................................. 514/23: 536/17.4 prevention or treatment of a disease associated with hyper glycemia Such as diabetes, diabetic complications or obesity, (57) ABSTRACT pharmaceutically acceptable Salts thereof or prodrugs The present invention provides glucopyranosyloxypyrazole thereof, production intermediates thereof and pharmaceuti derivatives represented by the general formula: cal uses thereof. US 2004/0116357 A1 Jun. 17, 2004 GLUCOPYRANOSYLOXYPYRAZOLE 0005. In recent years, development of new type antidia DERVATIVES AND MEDICINAL USE THEREOF betic agents has been progressing, which promote urinary glucose excretion and lower blood glucose level by prevent TECHNICAL FIELD ing excess glucose reabsorption at the kidney (J.
    [Show full text]
  • Campro Catalog Stable Isotope
    Introduction & Welcome Dear Valued Customer, We are pleased to present to you our Stable Isotopes Catalog which contains more than three thousand (3000) high quality labeled compounds. You will find new additions that are beneficial for your research. Campro Scientific is proud to work together with Isotec, Inc. for the distribution and marketing of their stable isotopes. We have been working with Isotec for more than twenty years and know that their products meet the highest standard. Campro Scientific was founded in 1981 and we provide services to some of the most prestigious universities, research institutes and laboratories throughout Europe. We are a research-oriented company specialized in supporting the requirements of the scientific community. We are the exclusive distributor of some of the world’s leading producers of research chemicals, radioisotopes, stable isotopes and environmental standards. We understand the requirements of our customers, and work every day to fulfill them. In working with us you are guaranteed to receive: - Excellent customer service - High quality products - Dependable service - Efficient distribution The highly educated staff at Campro’s headquarters and sales office is ready to assist you with your questions and product requirements. Feel free to call us at any time. Sincerely, Dr. Ahmad Rajabi General Manager 180/280 = unlabeled 185/285 = 15N labeled 181/281 = double labeled (13C+15N, 13C+D, 15N+18O etc.) 186/286 = 12C labeled 182/282 = d labeled 187/287 = 17O labeled 183/283 = 13C labeleld 188/288 = 18O labeled 184/284 = 16O labeled, 14N labeled 189/289 = Noble Gases Table of Contents Ordering Information.................................................................................................. page 4 - 5 Packaging Information ..............................................................................................
    [Show full text]
  • Bonviva, INN- Ibandronic Acid
    European Medicines Agency London, 1 September 2005 Doc.Ref.: EMEA/278873/2005 Bonviva International Nonproprietary Name: Ibandronic acid Following the procedure EMEA/H/C/501/X/01 7 Westferry Circus, Canary Wharf, London E14 4HB, UK Tel. (44-20) 74 18 84 00 Fax (44-20) 74 18 86 68 E-mail: [email protected] http://www.emea.eu.int EMEA 2005 Reproduction and/or distribution of this document is authorised for non commercial purposes only provided the EMEA is acknowledged 1 SCIENTIFIC DISCUSSION 1.1 Introduction and rationale The MAH submitted an extension application under Annex II, point 2 iii to Commission Regulation (EC) No 1085/2003 to request the approval of a 150 mg tablet as a monthly dosing regimen of ibandronate only for the indication of “treatment of osteoporosis in postmenopausal women, in order to reduce the risk of vertebral fractures”. This claim is based on the results of a phase III study MOBILE (BM16549) comparing 100 and 150 mg once monthly to 2.5 mg once daily. Due to the inconveniences associated with intake of oral bisphosphonates (i.e. fasting conditions, frequent upper gastrointestinal intolerance) that may result in poor compliance, it was considered desirable to develop a more convenient drug formulation. Hence a 150 mg once monthly oral regimen is expected to offer greater convenience to postmenopausal women when compared to the currently approved 2.5mg once daily tablet. The development programme No new pre-clinical pharmacodynamic and pharmacokinetic studies have been performed in addition to those included in the previous submission for ibandronate 2.5 mg daily oral tablets.
    [Show full text]
  • CCA Senior Care Options Formulary
    Commonwealth Care Alliance Senior Care Option HMO SNP 2021 List of Covered Drugs Formulary 30 Winter Street • Boston, MA 02108 PLEASE READ: THIS DOCUMENT CONTAINS INFORMATION ABOUT THE DRUGS WE COVER IN THIS PLAN This formulary was updated on 08/01/2021. For more recent information or other questions, please contact Senior Care Options Program (HMO SNP) Member Services, at 1-866-610-2273 or, for TTY users, 711, 8 a.m. – 8 p.m., 7 days a week, or visit www.commonwealthcaresco.org. HPMS Approved Formulary File Submission ID 00021589, Version Number 13 Senior Care Options Program (HMO SNP) 2021 Formulary (List of Covered Drugs) PLEASE READ: THIS DO CUMENT CONTAINS INFORMATION ABOUT THE DRUGS WE COVER IN THIS PLAN HPMS Approved Formulary File Submission ID 00021589, Version Number 13 Note to existing members: This formulary has changed since last year. Please review this document to make sure that it still contains the drugs you take. When this drug list (formulary) refers to “we,” “us”, or “our,” it means Commonwealth Care Alliance. When it refers to “plan” or “our plan,” it means 2021 Senior Care Options Program. This document includes list of the drugs (formulary) for our plan which is current as of 08/01/2021. This formulary document applies to all SCO members. For an updated formulary, please contact us. Our contact information, along with the date we last updated the formulary, appears on the front and back cover pages. You must generally use network pharmacies to use your prescription drug benefit. Benefits, formulary, pharmacy n etwork, and/or copayments/coinsurance may change on January 1, 2022, and from time to time during the year.
    [Show full text]
  • Isoxazole—A Basic Aromatic Heterocycle : Synthesis, Reactivity and Biological Activity
    International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN: 0974-4290 Vol.8, No.7, pp 297-317, 2015 Isoxazole—A Basic Aromatic Heterocycle : Synthesis, Reactivity And Biological Activity S.S.Rajput1*, Dr. S.N.Patel2, Nilesh B. Jadhav3 1Department of Chemistry, SVS’s Dadasaheb Rawal College Dondaicha 425408, Maharashtra, India. 2Department of Chemistry, S.P.D.M.College, Shirpur 425405, Maharashtra, India. 3Department of Chemistry, S.P.D.M. College, Shirpur425405, Maharashtra, India. Abstract: This review summarizes the synthetic method , reactions and biological application of isoxazoles and summarizes recent development in their derivatives such as chalcone, 5- isoxazole penicillins,shiff base etc.over the last years.The biological activities of isoxazoles is also briefly discussed .Formation of isoxazoles & fused heterocyclic isoxazoles derivatives constitute an interesting class of heterocycles which have diverse biological activities. Keywords: Isoxazoles, biological activity, 5-isoxazole penicillin. 1. Introduction Substituted Isoxazoles are important compounds of many drugs and drug candidates. It is one of the most fundamental objectives of organic and medicinal chemistry is the design and synthesis of molecules having value human therapeutic agents. The diversity of biological activities and pharmaceutical uses have been attributed to them, such as isoxazole is a part of many active molecule possessing activities such as Anti- tubercular[1], Analgesic[2], Antipyretic[2], Anti-inflammatory[2][3], Antiplatelet[4], Anti-HIV[4], Antagonist activity[4], CNS depressant[5], Antifungal[6][7], Antibacterial[6][7][8], Anti-oxidant[7], Anticancer[9][10] . The Substituted isoxazole moiety 1 appears as an interesting precursor of many biologically active of the above class compounds.
    [Show full text]
  • T.C. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Bazi Antidepresan Ilaç Numunelerinin Pcr Ve Pls
    T.C. SÜLEYMAN DEMİREL ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ BAZI ANTİDEPRESAN İLAÇ NUMUNELERİNİN PCR VE PLS İLE SPEKTROFOTOMETRİK TAYİNLERİ Nuray AYTEKİN Danışman Prof. Dr. Ahmet Hakan AKTAŞ YÜKSEK LİSANS TEZİ KİMYA ANABİLİM DALI ISPARTA - 2014 2 © 2014 [Nuray AYTEKİN] TAAHHÜTNAME Bu tezin akademik ve etik kurallara uygun olarak yazıldığını ve kullanılan tüm literatür bilgilerinin referans gösterilerek tezde yer aldığını beyan ederim. Nuray AYTEKİN ii İÇİNDEKİLER Sayfa İÇİNDEKİLER ......................................................................................................................... i ÖZET ......................................................................................................................................... iii ABSTRACT .............................................................................................................................. iv TEŞEKKÜR .............................................................................................................................. v ŞEKİLLER DİZİNİ ................................................................................................................. vi ÇİZELGELER DİZİNİ ............................................................................................................ vii SİMGELER VE KISALTMALAR DİZİNİ .......................................................................... viii 1. GİRİŞ..................................................................................................................................... 1 1.1. Sertralinenin
    [Show full text]
  • Isoxazoles: Molecules with Potential Medicinal Properties
    IJPCBS 2013, 3(2), 294-304 Jayaroopa et al. ISSN: 2249-9504 INTERNATIONAL JOURNAL OF PHARMACEUTICAL, CHEMICAL AND BIOLOGICAL SCIENCES Available online at www.ijpcbs.com Research Article ISOXAZOLES: MOLECULES WITH POTENTIAL MEDICINAL PROPERTIES K. Ajay Kumar and P. Jayaroopa* Post Graduate Department of Chemistry, Yuvaraja’s College, University of Mysore, Mysore-570 005, India. ABSTRACT Isoxazole is a five membered heterocyclic compound having various pharmacological actions. The great interest associated with isoxazoles and their derivatives is based on their versatility as synthetic building blocks, their latent functionalities as enaminones, 1,3-dicarbonyl compounds, γ-amino alcohols, and β-hydroxy nitriles have been widely exploited for the synthesis of other heterocycles and complex molecules. This review paper comprises of up to date information on isoxazole analogs. More emphasis was given to critical discussion on the synthetic strategy of isoxazole derivative, their utility as building blocks in their transformation to more biologically potent molecules. Results of isoxazole derivatives and their substitutions effect on diverse biological activities also presented. Keywords: Isoxazoles, antioxidant, antimicrobial, analgesic, anti-platelet, anti-HIV. INTRODUCTION sulfisoxazole, oxacillin, cycloserine and acivicin Nitrogen containing heterocycles with an have been in commercial use for many years. oxygen atom are considered as an important Cycloserine is the best known antibiotic drug class of compounds in medicinal chemistry that possess antitubercular, antibacterial because of their diversified biological activities and in treatment of leprosy. Acivicin is applications. The exploitation of a simple an antitumour, antileishmania drug, while molecule with different functionalities for the isoxaflutole is used as herbicidal drug. synthesis of heterocycles is a worthwhile Isoxazoles have illustrious history; their contribution in the chemistry of heterocycles.
    [Show full text]
  • Combinatorial Use of Marr Inhibitor with Efflux Pump Inhibitor
    www.nature.com/scientificreports OPEN Restoring colistin sensitivity in colistin-resistant E. coli: Combinatorial use of MarR inhibitor with efux pump inhibitor Niranjana Sri Sundaramoorthy1, Pavithira Suresh2, Subramaniapillai Selva Ganesan2, ArunKumar GaneshPrasad1 & Saisubramanian Nagarajan 1* Antibiotics like colistin are the last resort to deal with infections by carbapenem-resistant Enterobacteriaceae (CREB). Resistance to colistin severely restricts therapeutic options. To tackle this dire situation, urgent measures to restore colistin sensitivity are needed. In this study, whole-genome sequencing of colistin-resistant E. coli strain was performed and the genome analysis revealed that the strain belonged to the sequence type ST405. Multiple mutations were observed in genes implicated in colistin resistance, especially those related to the L-Ara-4-N pathway but mgrB was unmutated and mcr1-9 genes were missing. MarR inhibitor salicylate was used to re-sensitize this strain to colistin, which increased the negative charge on the cell surface especially in colistin resistant E. coli (U3790 strain) and thereby facilitated a decrease in colistin MIC by 8 fold. It is indeed well known that MarR inhibition by salicylate triggers the expression of AcrAB efux pumps through MarA. So, in order to fully restore colistin sensitivity, a potent efux pump inhibitor (BC1), identifed earlier by this group was employed. The combination of colistin with both salicylate and BC1 caused a remarkable 6 log reduction in cell counts of U3790 in time-kill assay. Infection of muscle tissue of zebrafsh with U3790 followed by various treatments showed that the combination of colistin + salicylate + BC1 was highly efective in reducing bioburden in infected muscle tissue by 4 log fold.
    [Show full text]