Check List 10(6): 1324–1330, 2014 © 2014 Check List and Authors Chec List ISSN 1809-127X (available at www.biotaxa.org/cl) Journal of species lists and distribution pecies

S macrophytes in water sup ly reservoirs

of Floristic survey and species richness of aquatic 1 1 2

ists Suelen Cristina Alves-da-Silva *, Cleusa Bona , Maria Cecília de Chiara Moço and Armando Carlos L Cervi 1 p

1 Universidade Federal do Paraná, Departamento de Botânica, Centro Politécnico, Av. Coronel Francisco Heráclito dos Santos, 210, Jardim das PortoAméricas. Alegre, 81531-970 RS, . Curitiba, PR, Brazil. *2 CorrespondingUniversidade Federal author. do E-mail: Rio Grande [email protected] do Sul, Departamento de Botânica. Campus do Vale, Av. Bento Gonçalves 9500, Agronomia, 91509-900,

Abstract:

The present study aimed a floristic survey of aquatic macrophytes in four water supply reservoirs (Iraí, Passaúna, Piraquara I and II) of the Iguaçu River basin, Paraná, Brazil. Sampling and herborization of biological material followed methods described in literature. The species were classified by life forms. We found 90 species in 57 genera and 36 families, were 52.7% are monospecific. The richest reservoir was Passaúna (40 spp.), followed by Iraí, Piraquara I and SincePiraquara aquatic II (36 macrophytes spp. each). structureCyperaceae and was contribute the most to representative environment biodiversity,with 17 spp., the followed present by study , can assist Onagraceae management and andPolygonaceae implementation (7 spp. of each). biodiversity Amphibious conservation and emergent efforts. life forms were equally express throughout species (41% each).

DOI: 10.15560/10.6.1324

Introduction composition and biological forms in four water supply Reservoirs are derived from rivers damming for reservoirs of the Iguaçu river basin, Paraná, Brazil; and industrial or public supply as well as power generation 2) discuss conservation (native species) or management (opportunistic species) of aquatic macrophyte in these environments. locateduse. For at public the Iguaçu supply River purposes, basin. Thesethe State reservoirs of Paraná differ have as five reservoirs (Alagados Passaúna, Iraí, Piraquara I and II) Materials and Methods in reservoirs water provides an increased proliferation The study was conducted in four urban reservoirs ofto theirmostly trophic aquatic level (IAPmacrophytes 2009). The weeds increase species. of nutrients The managed by the environmental sanitation company of intense growing of such species can reduce the diversity of macrophytes and/or associated organisms, beyond inferring water multiple uses (e.g., navigation, public Paraná State (SANEPAR): Iraí (25°23′55.85″ S, 49°05′ supply and energy generation) (Pompêo et al 57.18″W), Passaúna (25°30′01.35″ S, 49°22’20.20″ W), However, in great conditions, aquatic macrophytes reservoirsPiraquara II provide(25°29′49.01″ public S, water49°03’55.95″ supply W), for and the Piraquara city of promote a central structuring role in aquatic. ecosystems,2005). CuritibaI (25°29′08.86″ and its metropolitan S, 49°00’35.66″ region W) in the (Figure State 1).of Paraná, These promoting complex habitat that determines the abundance south of Brazil. Considering the trophic level, the reservoirs can be ranked as: Piraquara I (Mesotrophic/Oligotrophic), ofand aquatic biodiversity macrophytes of aquatic contribute flora and to biodiversity fauna (Thomaz patterns and Bini 2003). In this context, studies of floristic composition Passaúna (Mesotrophic), Piraquara II (Mesotrophic) and Iraí (Eutrophic) (IAP 2009). containedand knowledge in species processes lists assist (Thomaz monitoring and management Bini 2003; macrophytesThe floristic were survey collected includes by boat collections inspections made along in Pompêo and Moschini-Carlos 2003). The basic information 2007, 2009, 2011 and 2012 in four seasons. The aquatic were made aiming to detect species presence along the (Maltchik(Thomaz andet al Bini 1998, 2003; Pompêo 1999; Thomaz reservoirs.all the reservoirs The extent. were Furthermore collected using visual the inspections methods 2002) and may direct environmental classification . 2007). supplyThe reservoirsstudies of floristic(Cervi etsurveys al of aquatic macrophyteset al in Pedralli (1990), photographed in their natural in the Paraná State focuses on rivers,et al floodplain or energyet al. Municipalhabitat, collected Botanical for Museum identification (MBM) and and deposited the Herbarium in the et al . 1983; Souza . 1997; Herbarium of the Federal University of Paraná (UPCB), aquaticThomaz macrophytesand Bini 2003; is onlyThomaz cited for. 2004;one water Milne supply 2005; Cervi . 2009). However floristic survey of wellof the as Pontifical comparison Catholic with University the MBM herbariumof Paraná (HUCP). specimens For aimed to: 1) present aquatic macrophytes species richness, species identification, pertinent literature was studied, as reservoir (Rocha and Martins 2011). Thus, this study previously determined by experts. The classification 1324 Alves-da-Silva et al. | Aquatic macrophytes in water supply reservoirs

Among the families, the number of Cyperaceae species et al. stood out considerably. The predominance of Cyperaceae followed the APG III (2009) for angiosperms; Buck et al correctand Goffinet nomenclature (2000) and for quotation, bryophyte and and native Smith species Cervi et al et al (2006) for nonflowering vascularet al plants. For authors was also observed by Moura-Junior . (2013—70 spp.), were considered according to Irgang et al. attributed .to (2009—22 its perennial spp.), nature and and Pivari tolerance . (2011—10 to drought identification was used Forzza . (2012). Life forms periodsspp.). The (Bove significant et al presence of Cyperaceae species is (1984) and family were present in all four seasons analyzed as well Pedralli (1990): 1) RS, rooted submerged; 2) FS, free as Poaceae species.. 2003).However Indeed the representativesrhizomes forming of thisthe submerged; 3) RF, rooted floating; 4) FF, free floating; 5) ResultsEM, emergent; 6) AM, amphibious; and 7) EP, epiphytes.

660000 670000 680000 690000 700000

Almirante Tamandaré Colombo The floristic survey resulted in 90 species, is57 endemic genera Campo Cuphea glutinosa Magro Quatro Barras and 36 families of aquatic macrophytes (Table 1) which to the south and southeast of the country. Ludwigia hookeri 7090000 Pinhais is52.7% endemic are monospecific.only for the State Only of Paraná. The species Centella Campo Largo asiatica, Drymaria cordata, Nympheae caerulea and Rumex CURITIBA Piraquara 7180000 obtusifolius are not native but naturalized in Brazil. All Morretes

Cyperaceae except for Carex brasiliensis and Cyperus Araucária São José dos Pinhais consanguineus Juncus micranthus 7170000 Iguaçu River basin Fazenda Rio Grande and J. microcephalus) are found in the Atlantic forest, but 660000 670000 680000 690000 700000 without citation as for well the asState Juncaceae of Paraná. ( All other species et al The opportunist specie Eichhornia crassipes was reported Passaúna reservoir Iraí reservoir onlyare native at Iraí andreservoir; not endemic the most to trophicBrazil (Forzza of all, while Salvinia. 2012). auriculata reservoirs. was reported at Passaúna and Piraquara II Emergent and amphibious were the most representative Piraquara I reservoir life forms in all reservoirs. Respectively they represented Piraquara II reservoir

2000 m 45% and 42.5% at Passaúna; 47.2% and 36.1% at Iraí; Figure 1. 38.8%The andmost 36,1% representative at Piraquara family I and; for 52.7% all reservoirs and 25% was at Geographic locality of the four water supply reservoirs studied. CyperaceaePiraquara II (17 (Figure spp.) 2). followed by Asteraceae, Polygonaceae and Onagraceae (7 spp. each). The genera Ludwigia was the most representative (7 spp.) followed by Polygonum

(6 spp.) (Table 1). Passaúna reservoirPycreus had thedecumbens greater forrichness its considerably with 20 families, presence 30 genera along andthe 40reservoir species (visual (Table 2). Cyperaceae had 8 spp.; highlighting inspection); followed by Poaceae and Asteraceae (4 spp. each). The Iraí reservoir presented 18 families, 22 genera spp.).and 36 However, species (TableAlternanthera 2). Onagraceae philoxeroides was the propagated richest (7 intenselyspp.) followed over bythe Polygonaceae reservoir. The (4 Piraquara spp.) and PoaceaeI reservoir (4 spp.).presented The most 20 families, representative 28 genera species and 36for speciesthis reservoir (Table was2). Cyperaceae Salvinia minima had 6and spp., Cyperus followed luzulae by . PolygonaceaeThe Piraquara (5 II sppreservoir (Table presented 2). 22 families, 26 genera and 36 species. Cyperaceae was the most representative with a total of 8 Discussion The great number of families, genera and species in reservoirs has indicated the considerable biological diversity of these environments (Thomaz et al. Figure 2. Species life form related to species richness and participation often is notice the presence of aquatic macrophyte 1997, weeds 1999; Rocha and Martins 2011). Therefore among the species due to the fact that reservoirs are considered stepping- emergent;in richness AM,of the amphibious. four reservoirs. Life forms: RS, rooted submerged; RF, stones for invasion species (Havel et al Piraquararooted floating; I; PRII FS, - Piraquara free submerged; II. FF, free floating; EP, epiphyte; EM, Reservoirs: PS - Passaúna; IR - Iraí; PRI - . 2014). 1325 Alves-da-Silva et al. | Aquatic macrophytes in water supply reservoirs

Martins et al et al underground systemet al are efficient in propagation (Pott State. The richness. (2008) contrast reported with the the present occurrence study of may 39 . 1989) as well as the fruit dispersal made by water bespecies related in to18 thereservoirs sampling of methodfive river performed basins of by São Martins Paulo families.or wind (JuddAsteraceae . 2009).species This are leads especially us to consider common that in et al et al openthese regions.qualities Its favor frequent the floristic presence representation is presumably of thesefrom of transects, even in large numbers, is still not enough for reliably. (2008). sampled According aquatic to Thomaz vegetation. Thus,. (2004), the thecare use in et al sampling becomes necessary since richness and diversity andwind Polygonaceae dispersal and/or species the success attract ofis inflorescenceslikely due to the for of species subsidize the management and conservation of generalist pollinators (Judd . 2009). Onagraceae aquatic environments. et al Ludwigia The present study can be considered the third richest pollination by bees, flies, moths and birds, reconciled with et areas.wind andThe waterrepresentativeness dispersal (Judd of Ludwigia. 2009). al et al studiesspecies with occur aquatic throughout macrophytes Brazil, particularly weeds is due in floodedmainly 153floristic spp. survey Although for the numberParaná State of species preceded can beby affectedCervi in floristic by. (2009)various with environmental 117 spp and factors Ferreira such .as (2011) nutrients, with pneumatophores.to certain floral and These morphophysiological structures allow representativescharacteristics, et al. such as the presence of floral resource (nectary) and fluctuation of water level, current velocity and spatial anoxic environments, i.e., typically as eutrophic reservoir atheterogeneity the environment, (Thomaz a great and amount Bini 2003). available Pompeo can favor of genus greaterLudwigia efficiency in pollination and resistance to the(2005) proliferation reported thatof aquatic if nutrients macrophytes are not aweeds. limited Indeed factor Emergent and amphibious life forms were also a in Iraí reservoir the proliferation of Alternanthera remarkableIraí (8 spp. of representation ) (Sousa observed and Lorenzi by other 2012). authors philoxeroides was considerably. The growth of opportunist (Bove et al et al et al species (Eichhornia crassipes, Salvinia auriculata and Amphibian and emergent species exhibit morphological Alternanthera­ philoxeroides) hampers the colonization and physiological. 2003; Matiasadjustments . 2003;which Pereiramake them . able2012). to and development of aquatic macrophytes with low survive between terrestrial and aquatic environments competition potential, thus reducing the ecosystem et al

(Moura-Junior . 2013). richness. Furthermore opportunist species promote Table 1. Collector number: CB, Cleusa Bona et al Alves-da-Silva List of et aquatic al macrophytes of four reservoirs of the Iguaçu river basin, Paraná, Brazil. Life forms: RS, rooted submerged; FS, free submerged; RF, rooted floating; FF, free floating; EM, emergent; AM, amphibious; EP, epiphyte. . (2007, 2009, 2011); AS, RESERVOIRS COLECTOR FAMILY/SPECIES. (2012). LIFE FORMS PS IR PR I PR II NUMBER Acanthaceae Hygrophila costata Nees EM X X Alismataceae AS 70; 97 Echinodorus grandiflorus (Cham. & Schltdl.) Micheli EM X X

Sagittaria montevidensis Cham. & Schltdl. EM X CB 477 AS 38; 91 Amaranthaceae AS 44 Alternanthera philoxeroides EM X X X X Apiaceae (Mart) Griseb. CB 419; 460; 467; 511; 527; 536; 571 Centella asiatica EM X

Araceae (L.) Urb. CB 383 AS 60 Lemna valdiviana Phil. X CB Spirodela intermedia X FF 596 Araliaceae W. Koch FF CB 598 Hydrocotyle bonariensis X Hydrocotyle ranunculoides X X X Lam. RF CB 418 Asteraceae L.f. RF CB 522; 608 AS 40; 111 Austroeupatorium picturatum AM X Bidens laevis AM X (Malme) R.M. King & H. Rob. CB 396 Erigeron maximus AM X (L.) Britton, Sterns & Poggenb AS 130 Pluchea sagittalis AM X (D. Don) DC. CB 429 Senecio jurgensii Mattf. AM X X X (Lam.) Cabrera CB 424 Solidago chilensis Meyen AM X CB 549; 603 Urolepis hecatantha AM X CB 405 Campanulaceae (DC.) R.M. King & H. Rob. CB 406 Lobelia hassleri Zahlbr. AM X Caryophyllaceae AS 107 Drymaria cordata & Schult. AM X

(L.) Willd. ex Roem. CB 469 1326 Alves-da-Silva et al. | Aquatic macrophytes in water supply reservoirs

Table 1. Continued.

RESERVOIRS COLECTOR FAMILY/SPECIES LIFE FORMS PS IR PR I PR II NUMBER Commelinaceae Commelina erecta AM X

Commelina diffusa L. AM X ASCB 131459; 471 AS 43 Cyperaceae Burm. F Carex brasiliensis A. St.-Hil. EM X Cyperus consanguineus EM X CB 528 Cyperus esculentus EM X Kunth CB 541; 545 Cyperus haspan EM X L. CB 408 Cyperus luzulae EM X X L. CB 587 Eleocharis acutangula(L.) Retz. (Roxb.) Schult. EM X X CB 526; 531 AS 63; 69 Eleocharis maculosa EM X AS 53; 90 Eleocharis montana EM X X (Vohl.) Roem. & Schult. AS 59 Eleocharis niederleinii(Kunth) Boeckeler Roem. & Schult. EM X ASCB 73589; 612 AS 81; 121 Eleocharis sellowiana EM X X AS 117 Eleocharis subarticulata Kunth (Nees) Boeckeler EM X X CB 520

Fimbristylis complanata EM X CB 588 AS 41 Fuirena incompleta Nees EM X (Retz.) Link CB 423 Pycreus decumbens EM X X CB 402 Rhynchospora asperulaT. Koyama (Nees) Steud. AM X CB 472; 544; 556 AS 56; 129 Rhynchospora corymbosa AM X X X X CB 410 CB 403; 463; 507; 524; 550; 583; 604 Rhynchospora marisculus (L.) Britton AM X AS 82 Haloragaceae Lindl. & Nees 25 AS 84 Myriophyllum aquaticum RS X X X X Hypericaceae (Vell.) Verdc. CB 420; 461; 508; 543; 606 Hypericum brasiliense Choisy AM X Hypericum rigidum A.St.-Hil. AM X AS 78 Iridaceae CB 432 Sisyrinchium vaginatum Spreng ssp. marchio AM X AS 77 Ravenna Juncaceae (Vell.)

Juncus micranthus Schrad. ex Meyers EM X X CB 386 Juncus microcephalus EM X AS 80 CB 610 Lamiaceae Kunth AS 92 Hyptis fasciculata Benth. AM X Hyptis uliginosa A.St.-Hil. ex Benth. AM X CB 384 Leutibulariaceae AS 95 Utricularia gibba X X X X CB 518; 540; 601; 607 Linderniaceae L. FS AS 108 Lindernia rotundifolia AM X Lythraceae (L.) Alston AS 42 Cuphea calophylla subsp. mesostemon AM X Cuphea carthagenensis AM X X X (Koehne) Lourteig CB 417 Cuphea glutinosa Cham. & Schltdl. AM X (Jacq.) J.Macbr. CB 382; 436; 465; 504 Malvaceae AS 94 Pavonia guerkeana AM X Mayacaceae R.E.Fr. CB 391; 502 Mayaca fluviatilis Aubl. RS X X

Melastomataceae CB 525; 569 AS 119 Rhynchanthera dichotoma AM X Nymphaeaceae (Desr.) DC. CB 430 Nymphaea caerulea Savigny X

RF CB 567 1327 Alves-da-Silva et al. | Aquatic macrophytes in water supply reservoirs

Table 1. Continued.

RESERVOIRS COLECTOR FAMILY/SPECIES LIFE FORMS PS IR PR I PR II NUMBER Onagraceae Ludwigia elegans (Cambess.) H. Hara EM X X

Ludwigia grandiflora EM X X CB 399 AS 126 Ludwigia hookeri (Micheli) H. Hara EM X AS 35 (Michx.) Greuter & Burdet AS 29; 47;76; 89 Ludwigia leptocarpa (Nutt.) H. Hara EM X X AS 127 Ludwigia longifolia EM X X X CB 398 Ludwigia peruviana EM X X (DC.) H. Hara AS 48; 85;115 Ludwigia sericea (Cambess.) H. Hara EM X X X X (L.) H. Hara CB 412; 413; 426 Orchidaceae CB 401; 414; 427 AS 34;106 Habenaria paranaensis Barb.Rodr. EP X Habenaria repens Nutt. EP X AS 104 Plantaginaceae CB 554 Gratiola peruviana AM X Poaceae L. AS 46 Luziola peruviana AM X X Panicum aquaticum Poir. AM X Juss. ex J.F.Gmel. AS 50; 68; 105 Panicum repens AM X X AS 45 Panicum schwackeanum Mez AM X X X X L. CB 385; 422; 473 Paspalum mandiocanum Trin. AM X CB 609 AS 31; 49; 99 Polygonaceae AS 67 Polygonum acuminatum EM X X

Polygonum hydropiperoidesKunth Michx. EM X X X X CB 431;572 457; 506; 576 AS 30 Polygonum meisnerianum Cham. EM X X X AS 32; 71; 74; 75; 96 Polygonum persicaria . EM X CB 393 AS 37; 116 Polygonum punctatum Elliott EM X X L CB 380 Polygonum stelligerum Cham. EM X CB 433; 475 Rumex obtusifolius EM X AS 83 Pontederiaceae L. AS 434 Eichhornia crassipes (Mart.) Solms X Heteranthera zosterifolia Mart. EM X FF CB 481 Pontederia lanceolata EM X AS 3387 Potamogetonaceae L. CB 486 Potamogeton polygonus Cham. & Schltdl. RS X Rubiaceae AS 64 Diodia alata Nees & Mart. AM X X

Diodia saponariifolia AM X X CB 390 AS 112114 Oldenlandia salzmannii(Cham. & Schltdl.) K.Schum ex AM X X X X CB 381

Solanaceae (DC.) Benth. & Hook.f. CB 389; 582 B.D.Jacks. AS 58; 98; 110; 120 Solanum pseudocapsicum AM X Typhaceae L. CB 392 Typha latifolia AM X Xyridaceae L. AS 66 Xyris jupicai Rich. AM X AS 122 Ricciaceae Ricciocarpus natans X Salviniaceae (L.) Corda FF CB 565 Azolla filiculoides X X X

Salvinia auriculata Lam. Aubl. FF X X CB 562 AS 26; 109 Salvinia minima Baker X FF AS 102; 103 FF CB 611 AS 101; 118 1328 Alves-da-Silva et al. | Aquatic macrophytes in water supply reservoirs

Sistemática Vegetal: Um enfoque Filogenético. Porto Alegre: Artmed.

Monitoramento da Qualidade phytoplanktondecrease pH (Pedralli alteration, 2003); substrate retention retention, of nitrogen biodiversity and 632 pp. phosphorus; increased biochemical oxygen demand (BOD); das Águas dos Reservatórios do Estado do Paraná no Período de IAP (Instituto2005 a 2008 Ambiental do Paraná). 2009.+ appendices (http://www.iap. reduction,The present and tubing survey obstruction reported relevant (Thomaz species 2002) richness raising . Fundamento. 120 pp.). pr.gov.br/arquivos/File/boletins/RELATORIO_AGUA/relatorio_ inthe water costs insupply reservoirs reservoirs management of the (Pompêo Iguaçu River1999). basin. RESERVATORIOS_2005_2008.pdf Roessleria The endemism is restricted to the south, southeast and Irgang, B.E., G. Pedralli and J.I. Waechter. 1984. Macrófitos aquáticos da Paraná State for Cuphea glutinosa and Ludwigia hookeri Estação Ecológica do Taim, ,Effects Brasil. of hydrological 6(1): respectively. The presence of opportunist species 395–404. Maltchik,wetland L., of A.S. southern Rolon Brazil. and P. Limnology Schott. 2007. as Alternanthera philoxeroides, Eichhornia crassipes, variation on the aquatic). community in a floodplain palustrine and Salvinia auriculata must be considered, once in 8(1): 23–28 (doi: 10.1007/ proliferation situation, they become problematic for noble s10201-006-0192-y reservoirs uses (navigation, public water supply and Martins, D., D.V. Costa and S.R Marchii. 2008.Planta Caracterização Daninha da comunidade de plantas aquáticas em dezoito reservatórios). de cinco hydroelectric power generation). The present study is the bacias hidrográficas do Estado de São Paulo. 26(1): 17–32 (doi: 10.1590/S0100-83582008000100003Acta Botanica Brasilica understanding. Moreover, for a correct management and Matias, L.Q., E.R. Amado and E.P. Nunes. 2003. Macrófitas aquáticas). da implementationfirst step to aquatic of biodiversity macrophytes conservation community efforts, dynamics basic Lagoa de Jijoca de Jericoacoara, Ceará, Brasil. information about the composition of communities is aquáticas17(4): 623–631 do alto (doi: rio 10.1590/S0102-33062003000400015 Paraná: respostas às alterações do estresse Milne, J.M., K.J. Murphy and S.M. Thomaz. 2005. Comunidades de plantas indispensable (Bini et al ambiental. Caderno de biodiversidade Aquatic macrophytes 5(1): 12–15. of Northeastern Brazil: Acknowledgements: . 2006). Moura-Júnior,checklist, richness,E.G.; L.F. distributionLima, S.S.L Silva,and life R.M.S. forms. Paiva, Check F.A List Ferreira, C.M Zickel and A. Pott. 2013. (SANEPAR) for their assistanceWe thank in inspections the funding of reservoirs institution yielding CAPES- boat 312 ( ). REUNI as well the environmental sanitation company of Paraná State 9(2): 298– Mauricio Bergamini over all collections and implementation of this study. Estudoshttp://www.checklist.org.br/getpdf?SL033-12 de Biologia and boatmen. We also appreciate the help, company and friendship of Dr Pedralli, G. 1990. Macrófitos aquáticos: técnicas e métodos de estudos. Eleocharis and Salvinia respectively). 26: 5–24. Professors Dr. Rafael Trevisan and Drª. Vali Joana Pott for aid in species Pedralli, G. 2003. Macrófitas aquáticas comoEcologia bioindicadoras e manejo de da macrófitas qualidade identification ( Literature Cited deaquáticas água: alternativa para usos múltiplos de reservatórios;http://www.eduem. pp. 171– 188,uem.br/livros/ebook/ebook_eemdma.pdf in: S.M Thomaz and L.M. Bini. ). (1ª ed). Maringá: EDUEM. 341 pp ( Botanical Journal APGof III. the2009. Linnean An update Society of the Angiosperm Phylogeny Group classification Pereira, S.A, C.R.T. Trindade, E.F. Albertoni and C. Palma-Silva. 2012. for the orders and). families of flowering plants. Check List http://www. 161(2): 105–121 (doi: 10.1111/j.1095- Aquatic macrophytes of six subtropical). shallow lakes, Rio Grande, 8339.2009.00996.x Rio Grande do Sul, Brazil. 8(2): 187–191 ( checklist.org.br/getpdf?SL018-11 Bini,gradients L.M., J.A.F. and Diniz-Filho, conservation T.F.L.V.B. planning Rangel, in R.P. a Bastosbiodiversity and M.P. hotspot. Pinto. Pivari, M.O., V.B. Oliveira and F.M. Costa. 2011. Macrófitas aquáticas Diversity2006. Challenging and Distributions Wallacean and Linnean shortfalls: Knowledge Rodriguésia. http://rodriguesia.jbrj.gov.br/ do sistema lacustre do Vale do Rio Doce, Minas). Gerais, Brasil. 12(5): 475–482. 62(4): 759–770 ( FASCICULOS/rodrig62-4/04%20-%20ID322.pdf Bove, C.P., A.S.B. Gill, C.B. Moreira and R.F.B. Anjos.Acta Botanica 2003. Hidrófitas Brasilica fanerogâmicas de ecossistemas aquáticos temporários da planície Pompêo,Perspectivas M.L.M. 1999. na Limnologia As macrófitas do aquáticasBrasil em reservatórios tropicais: aspectos ecológicos e propostas de monitoramento e manejo. pdfcosteira). do estado do , Brasil. http://www.ib.usp.br/limnologia/Perspectivas/ 17(1): 119–135 (http://www.scielo.br/pdf/abb/v17n1/a09v17n1. ). . São Luís: Gráfica e Editora União. 198 pp ( Bryophyte Macrófitas Aquáticas e arquivo%20pdf/Capitulo%207.pdf Buck,Biology. W.R and B. Goffinet. 2000. Morfologia e classificação de musgos; Perifíton — Aspectos ecológicos e Metodológicos Pompêo, M.L.M. and V. Moschini-Carlos. 2003. pp. 71–119, in: A.J.). Shaw and B. Goffinet (eds.). ). . São Carlos: RiMA. Cambridge: Cambridge University PressNota (doi: prévia 10.1017/ sobre 124 pp (http://www.ib.usp.br/limnologia/Macrofitaseperifiton/ plantasCBO9780511754807 aquáticas (fanerogâmicas) do Estado do Paraná (Brasil). da qualidade de águas continentais brasileiras: O processo de Cervi, A.C., G. Hatschbach and O.A Guimarães. 1983. Pompêo, M.L.M., S.C.Saneas Silva and V. Moschini-Carlos.http://www.aesabesp.org.br/ 2005. A deterioração arquivos/saneas/saneas21.pdf). eutrofização. . 21(2): 24–28 ( aquáticasCuritiba: Boletim do Município do Museu de Botânicogeneral Carneiro,Municipal. Paraná, 17 pp. Brasil. Biota Cervi,Neotropica A.C., C. Bona, M.C. de C Moço and L. V. Linsingen. 2009. Macrófitas Pott, V.J., N.C. Bueno, R.A.C. Pereira, S.M. Sallis and N.L. Vieira. 1989. ). Acta Botanica Brasilica. 9(3): 1–8 (http://www.biotaneotropica.org.br/v9n3/pt/ Distribuição de macrófitas aquáticas numa). lagoa na Fazenda Nhumirim, abstract?inventory+bn00409032009 Nhecolândia, Pantanal, MS. 3(2): 153–168 (doi: 10.1590/S0102-33061989000300015 Ferreira,comparison F.A., R.P. with Mormul, other large S.M., Thomaz,South American A. Pott wetlands. and V.J. Pott. Revista 2011. de Planta Rocha, D.C. and D. Martins. 2011. Levantamento de plantas daninhas BiologiaMacrophytes Tropical in the upper Paraná Riverhttp://www.scielo.sa.cr/scielo. floodplain: Checklist and Daninha ). aquáticas no reservatórioBotânica de Alagados, Sistemática: Ponta Guia Grossa—PR. Ilustrado para 2(29): 237–246 (doi: 10.1590/S0100-83582011000200001 nrm=iso). 2(59): 541–556 ( Identificação das Famílias de Fanerógamas Nativas e Exóticas no php?script=sci_arttext&pid=S0034-77442011000200002&lng=en& Sousa,Brasil, V.C, BaseadoH. Lorenzi. em APG 2012. III .

Nova Odessa: Instituto Plantarum. 768 pp. Forzza, R.C., J.R. Stehmann,Lista de Espécies M. Nadruz, da FloraF.L.R. Filardi,do Brasil. A. Costa, A.A. Carvalho Taxon Jr., A.L. Peixoto, B.M.T. Walter, C. Bicudo, C.W.N. Moura and D. Zappi. Smith,(https://pryerlab.biology.duke.edu/uploads/media_items/smith-et- A.R., K.M. Pryer, E. Schuettpelz, P. Korall, H. Schneider and P.G. (Org.). 2012. Jardim Botânico do Wolf. 2013. A classification). for extant ferns. 55(3): 705–731 Rio de Janeiro). (http://floradobrasil.jbrj.gov.br/jabot/listaBrasil/ PrincipalUC/PrincipalUC.do;jsessionid=DBACF69077A4254158DEA al-taxon-2006.original.pdf . Souza, M.C., J. Cislinski and M.B. Romagnol. 1997. Levantamento 482BB3919AC Bioscience A Planície de Inundação do Alto Rio Paraná: Aspectos Físicos, Florístico; pp. 343–368, in: A.E.A. Agostinho, A.A. Hahn and N.S Havel, J.E., C.E. Lee, M.J.V. Zanden. 2014. Do Reservoirs. Facilitate Biológicos e Sócio-econômicos invasions into Landscapes? 55(6): 518–525 (doi: Vazzoler. 10.1641/0006-3568(2005)055[0518:DRFIIL]2.0.CO;2) . Maringá: EDUEM. Judd, W.S, C.S. Campbell, E.A. Kellog, P.F Stevens and M.J. Donoghue. 2009. Thomaz, S.M. 2002. Fatores ecológicos associados à colonização e ao 1329 Alves-da-Silva et al. | Aquatic macrophytes in water supply reservoirs

Planta Daninha Reservatório de Segredo: Bases desenvolvimento de macrófitas). aquáticas e desafios de manejo. Ecológicasde Segredo: para padrões o Manejo de variação. Maringá: espacial Eduem. e temporal; pp. 19–37, in: . 20(special ed.): 21–34 (doi:The 10.1590/S0100- Upper Paraná A.A. Agostinho and L.C. Gomes (eds.). River83582002000400003 and its Floodplain — Physical Aspects, Ecology and Conservation. Aquatic macrophytes of Itaipu Reservoir, Brazil: survey of species Thomaz, S.M., A.A. Agostinho and N.S. Hahn. 2004. Thomaz,and ecologicalS.M., L.M. Bini,considerations. M.C. Souza, K.K.Brazilian Kita and Archives A.F.M. Camargo.of Biology 1999. and Technology ). Leiden: BackhuysActa Publishers. Limnologica 393 Brasiliensiapp. Thomaz, S.M. and L.M. Bini. 1998. EcologiaEcologia e manejo e de Manejo macrófitas de Macrófitas aquáticas 42(1): 1–8 (doi: 10.1590/S1516-8913199 9000100003 Aquáticasem reservatórios. 10(1): 103–116. Thomaz,(http://www.eduem.uem.br/livros/ebook/ebook_eemdma.pdf S.M. and L.M. Bini. 2003. ). Received: October 2013 . Maringá: Universidade Estadual de Maringá. 341 pp Accepted: September 2014 Published online: December 2014 Thomaz, S.M., L.M. Bini and S.M. Albert. 1997. Limnologia do reservatório Editorial responsibility: Frederico Augusto Guimarães Guilherme

1330