Solar Powered Beach Buggy Challenge
Total Page:16
File Type:pdf, Size:1020Kb
Solar Powered Beach Buggy Challenge Group #1 Team Members: Jared Cozart Jose Rosales Robinson Charles Tony Jimogaon Summer 2018 June 30, 2018 Sponsored by Duke Energy Table of Contents 1. Executive Summary …………………………………………………………...1 2. Project Description …………………………………………………………...2 2.1. Block Diagram ……………………………………………………...2 2.2. Requirement Specifications ………………………...……………...3 2.3. Project Constraints …………………...……………...……………...4 2.4. Economic and Time Constraints …………………...……………...4 2.5. Ethical, Health, and Safety Constraints ……………...…………...5 2.6. Environmental, Social, and Political Constraints ……………...6 2.7. Manufacturability and Sustainability constraints ……………...6 2.8. House of Quality …………………...……………...……………...6 2.9. Objectives ……………...……………...……………...……………...8 3. Initial Research ……………...……………...……………...……………...9 3.1. Mechanical Components ……………...……………...……………...9 3.1.1. Chassis ...…………………...……………...……………...9 3.1.2. Suspension .…………………...……………...……………...10 3.1.3. Drivetrain ….…………………...……………...……………...11 3.1.4. Frame Structure and Material Selection ……………...12 3.1.5. Beach Buggy Tires ……………...……………...…………...13 3.1.6. Motors ………………………...……………...……………...14 3.1.7. Batteries ………………………...……………...……………...17 3.1.8. Frame Materials ……………...……………...……………...20 3.1.9. Steering ………………………...……………...……………...21 3.2. Electrical Components ……………...……………...……………...22 3.2.1. Solar Cells …………………...……………...……………...22 3.2.1.1. Advantages ……………...……………...……………..24 3.2.1.2. Disadvantages ………………………...……………...25 3.2.2. Inverters ……………...……………...……………...25 3.2.2.1. String Inverters ……………………...……………...26 3.2.2.2. Micro Inverters ………………………...……………...26 3.2.2.3. Power Optimizers …………………...……………...27 3.2.3. Single Board Computer …………………...……………...28 3.2.4. GPS Tracking Unit ………………………...……………...30 3.2.4.1. GPS Antennae ………………………...……………...33 3.2.5. Wireless Networking ………………………...……………...34 3.2.6. Voltage Regulator ..………………………...……………...35 3.2.7. Linear Voltage Regulator …………………...……………...35 3.2.8. Switching Regulators ………………………...……………...36 i | P a g e 3.2.9. Voltage Regulator Circuits …………………...……………...36 3.2.10. Motor Controller …………………………………………...37 3.2.11. Motor Controller Selection …………………...……………...38 3.2.12. Solar Charge Controller …………………...……………...39 3.2.13. Types of Solar Charge Controller ………………………...39 3.2.13.1. PWM ………………………………………………...40 3.2.13.2. MPPT ………………………………………………...41 3.2.14. LIDAR ……………………………………………………...44 3.2.15. Power Calculation …………………………………………...48 3.3. Software Components …………………………………………...49 3.3.1. Programming Languages …………………...……………...49 3.3.2. Robot Control …………………………………………...50 3.3.3. Operating System …………………………………………...50 4. Related Standards ...……………………………...………...……………...51 4.1. PCB Standard …………………………...…………...……………...51 4.2. Software Testing Standard (ISO/IEC/IEEE 29119) ……………...52 4.2.1. Part 2 - Test Processes …………………...……………...52 4.2.2. Part 4 - Test Techniques …………………...……………...53 5. Project Hardware and Software Design Details …………………………54 5.1. LIDAR …………………………………………………………………54 5.2. Solar Cells ……………………………………………………………66 5.3. Code Design ...………………………………………………………67 5.3.1. Robot Operating System ……………………………………67 5.3.1.1. Nodes ………………………………………………67 5.3.1.2. Advantage of ROS ……………………………………67 5.3.1.3. Limitations …….………………………………………67 5.3.1.4. Data Flow ………………………………………………68 5.3.1.5. ROS Messages …………………………………..…..69 5.3.2. Python …………………………………..…..………………70 5.3.2.1. Python Libraries ………………………………………70 5.3.3. Additional Libraries ………………………………………71 5.3.4. Other Software ………………………………………………72 5.4. Sensor Design ………………………………………………………73 5.4.1. Components …………………………………………………73 5.5. Navigation Design ………………………………………………76 5.5.1. Components ………………………………………………76 5.5.2. Concept ………………………………………………………76 5.6. Obstacle Avoidance Design ………………………………………77 5.7. Software Design ………………………………………………78 5.8. Hardware Design ………………………………………………80 ii | P a g e 5.8.1. Breadboard Design ………………………………………82 5.8.2. PCB Design ………………………………………………83 5.8.3. PCB Vendor and Assembly ………………………………83 5.9. Buggy and Electronics Platform ……………………………………84 6. Prototype Testing and Construction ………………………………………84 6.1. Hardware Testing ……………………………………………………84 6.1.1. Testing Environment …………………………………………84 6.1.2. Solar Panel ……………………………………………………85 6.1.3. Solar Charge Controller …………………………………85 6.1.4. Battery ……………………………………………………85 6.1.5. Motor Controller …………………………………………86 6.1.6. Motor ……………………………………………………86 6.2. Software Testing ……………………………………………………87 6.2.1. Testing Environment …………………………………………87 6.2.2. Lidar Node ……………………………………………………87 6.2.3. Servo Node ……………………………………………………88 6.2.4. GPS Node ……………………………………………………88 6.2.5. Motor Control Node …………………………………………88 6.2.6. Buggy Node ……………………………………………………89 6.3. Construction …………………………………………………………90 6.3.1. Buggy Construction …………………………………………90 7. Administrative Content ………………………………………………………98 7.1. Milestone Discussion ………………………………………………98 7.2. Budget and Finance Discussion ………………………………..99 8. Conclusion ………………………………………………………………100 8.1. References …………………………………………………………101 9. Appendix …………………………………………………………………….103 9.1. Review of Relevant Papers ……………………………………….103 9.1.1. Navigator Design Report 2011 Intelligent Ground Vehicle Competition ………………………………………………..103 9.1.2. End to End Learning for Self-Driving Cars ……………….103 9.1.3. End-to-End Driving via Conditional Imitation Learning ….104 9.1.4. Autonomous Off-Road Vehicle Control Using End-to-End Learning …………………………………………………….104 9.2. Development Environment Setup Instructions ………………...105 9.2.1. Raspberry Pi 3 Operating System Install ………………..105 9.2.2. ROS ………………………………………………………….105 9.2.3. Arduino IDE ………………………………………………….105 9.2.4. Rosserial Arduino ……………..………………………..106 9.2.5. Publishing a Message to ROS via Terminal..…………….106 iii | P a g e 9.2.6. Listening to a ROS Topic via Terminal ………………….106 9.2.7. Initializing the GPS Node …………………………………106 9.2.8. Initializing the rosserial Nodes ……………………………107 9.3. Development Environment Resources ………………………….107 9.4. Miscellaneous Specifications ……….………………………….108 9.5. SolidWorks CAD Iteration Information …………………………..110 9.6. Ansys Analysis Data ……………………………………………...111 9.7. Requests for Image Use ………………………………………….117 iv | P a g e List of Figures 1. Block Diagram for Electrical System of The Buggy 2 2. House of Quality 7 3. UFP Baja Presenting Solid-Rear-Axle 9 4. UFP Baja With Independent Axles 10 5. Vehicle with Single-Strutted Frame Example 11 6. Function of Space Frame 11 7. Comparison of Tire Types 13 8. Brushless DC Motor Characteristics 14 9. Car Frame Materials 21 10. Rack and Pinion System 21 11. Differential Steering 22 12. Images of Single-Board Computers 28 13. Images of GPS Tracking Units 31 14. Buck Converter Voltage Regulator Circuit With 5V Output 36 15. Buck Converter Voltage Regulator Circuit With 3.3V Output 37 16. Different Motor Controllers in Consideration 37 17. PWM Solar Charge Controller Wiring Diagrams 40 18. Efficiency Curve Vs. Output Current 41 19. Rover 20A MPPT Solar Charge Controller 42 20. Diagram of a Typical LIDAR System 43 21. Schematic Diagram of a Typical Avalanche Pulser 45 22. Peak Amplitudes of Current Pulses as a Function Of Supply Voltage 46 23. Output of Laser Diodes at Full and 100 Mhz Bandwidth 46 24. The Test Management Process 53 25. Basic Diagram of the Operation of The Lidar System 55 26. Basic Block Diagram of the Lidar System 56 27. Illustration of the Timing Relationship Between Signals 57 28. Basic Principle of SETS Sampling 58 29. Receiver Circuit 59 30. Circuit Schematic of the Sequential-Equivalent-Timing Circuit 60 31. Laser Driver 61 32. Control Logic Schematic 62 33. ROS Core Data Flow 69 34. Raspberry Pi 3 B+ GPIO Pins 74 35. Servo Pins 75 36. Lidar Pins 75 37. Navigation Map 77 38. UML Activity Diagram 78 39. 5V Switching Regulator 80 v | P a g e 40. 3.3V Voltage Regulator 80 41. Microcontroller Circuit 81 42. Overall Power Distribution Board Circuit 82 43. Breadboard Schematic Diagram 83 44. Forward Buggy Profile Sans Rear Axle 91 45. Side Buggy Profile Sans Rear Axle 91 46. Front Buggy View Sans Rear Axle 92 47. Rear Buggy View with Casters Installed 92 48. Painted Buggy View with Platform and Battery 93 49. Top Buggy View with Platform and Battery 93 50. Alternate View of Painted Buggy 94 51. Battery Used 94 52. Size Comparison of Battery Terminal with a Coin 95 53. Buggy with Unsecured Platform 95 54. Closer View of Unsecured Platform 96 55. Buggy with Platform Secured 96 56. Fully Assembled Buggy 97 57. Side View of Fully Assembled Buggy 97 58. ATMega328P PDIP Pinout 108 59. ATMega328P TQFP Pinout 111 60. Emails Requesting Image Use 116 vi | P a g e List of Tables 1. Components of buggy system and team member responsible 3 2. Various properties of common metals 13 3. Comparison of AC and DC motors 15 4. Comparison of Brush and Brushless motors 16 5. Battery types: Cost vs. Performance 17 6. Battery Types: Advantages and Disadvantages 20 7. Lead Acid Battery Comparison 20 8. Solar Panel Comparison 27 9. Single-Board Computer Comparison 29 10. GPS Chipset Specifications 32 11. GPS Antennae Comparison 33 12. Wireless Technologies Comparison 34 13. 5V Switching Regulator Comparison 36 14. 3.3V Voltage Regulator Comparison 36 15. Specifications for 3 DC motor controllers 38 16. Solar Charge Controller Comparison 42 17. Measurements of Current, Power and Width of Optical Pulses 47 18. Power Consumption of System by Parts 48 19. LIDAR PCB Parts List 63 20. Open Source LIDAR Specification 64 21. TFMini LIDAR Specification 65 22. Solar Panel Testing Module 85 23.