WO 2018/005411 Al 04 January 2018 (04.01.2018) W!P O PCT

Total Page:16

File Type:pdf, Size:1020Kb

WO 2018/005411 Al 04 January 2018 (04.01.2018) W!P O PCT (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2018/005411 Al 04 January 2018 (04.01.2018) W!P O PCT (51) International Patent Classification: (72) Inventors: BARRY, Jennifer; 7250 NW 62ND Av AOlH l/00 (2006.01) C12N 15/09 (2006.01) enue, PO BOX 552, Johnston, Iowa 5013 1-0552 (US). AOlH S/00 (2006.01) C12N 15/31 (2006.01) FINKE, Catherine; 7250 NW 62ND Avenue, PO BOX A01N 63/00 (2006.01) 552, Johnston, Iowa 5013 1-0552 (US). GERBER, Ryan; 2824 Brighton Bluff Drive, Apex, North Carolina 27539 (21) International Application Number: (US). LUM, Amy; 7250 NW 62ND Avenue, PO BOX PCT/US2017/039376 552, Johnston, Iowa 50131-0552 (US). MATHIS, John; (22) International Filing Date: 7250 NW 62ND Avenue, PO BOX 552, Johnston, Iowa 27 June 2017 (27.06.2017) 5013 1-0552 (US). ONG, Azalea; 7250 NW 62ND Av enue, PO BOX 552, Johnston, Iowa 5013 1-0552 (US). PE- (25) Filing Language: English TERSON-BURCH, Brooke; 7250 NW 62ND Avenue, (26) Publication Language: English PO BOX 552, Johnston, Iowa 5013 1-0552 (US). WOLFE, Thomas C ; 7250 NW 62ND AVE, PO BOX 552, John (30) Priority Data: ston, Iowa 5013 1-0552 (US). XIE, Weiping; 7250 NW 62/357,501 0 1 July 2016 (01 .07.2016) US 62ND Avenue, PO BOX 552, Johnston, Iowa 5013 1-0552 (71) Applicant: PIONEER HI-BRED INTERNATIONAL, (US). YALPANI, Nasser; 7250 NW 62ND Avenue, PO INC. [US/US]; 7100 N.W. 62nd Avenue, P.O. Box 1014, BOX 552, Johnston, Iowa 50131-0552 (US). ZHONG, Xi- Johnston, Iowa 5013 1-1014 (US). aohong; 7250 NW 62ND Avenue, PO BOX 552, Johnston, Iowa 5013 1-0552 (US). (54) Title: INSECTICIDAL PROTEINS FROM PLANTS AND METHODS FOR THEIR USE Fig. 2 90 o 80 E 60 u + 50 40 o 30 20 10 ECB CEW FA ECB CEW FAW EC CEW FAW ECB CEW FAW ECB CEW FAW PHP79658 PHP79659 PHP7 6S P s Control eg Control (57) Abstract: Compositions and methods for controlling pests are provided. The methods involve transforming organisms with a nucleic acid sequence encoding an insecticidal protein. In particular, the nucleic acid sequences are useful for preparing plants and microorganisms that possess insecticidal activity. Thus, transformed bacteria, plants, plant cells, plant tissues and seeds are provided. Compositions are insecticidal nucleic acids and proteins of bacterial species. The sequences find use in the construction of expression © vectors for subsequent transformation into organisms of interest including plants, as probes for the isolation of other homologous (or © partially homologous) genes. The pesticidal proteins find use in controlling, inhibiting growth or killing Lepidopteran, Coleopteran, 00 Dipteran, fungal, Hemipteran and nematode pest populations and for producing compositions with insecticidal activity. o o [Continued on nextpage] WO 2018/005411 Al llll II II 11III II I II III I III II il II I II (74) Agent: BAUER, S. Christopher; PIONEER HI-BRED IN¬ TERNATIONAL, INC., 7100 N.W. 62nd Avenue, P.O. Box 1014, Johnston, Iowa 5013 1-1014 (US). (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG). Published: — with international search report (Art. 21(3)) — with sequence listing part of description (Rule 5.2(a)) INSECTICIDAL PROTEINS FROM PLANTS AND METHODS FOR THEIR USE CROSS-REFERENCE TO RELATED APPLICATIONS This application claims priority to U.S. provisional patent application Serial Number 62/357,501 filed July 0 1 , 2016, herein incorporated by reference in its entirety. REFERENCE TO SEQUENCE LISTING SUBMITTED ELECTRONICALLY The official copy of the sequence listing is submitted electronically via EFS-Web as an ASCII formatted sequence listing with a file named "6762WOPCT_Sequencel_isting" created on June 1, 2017, and having a size of 546 kilobytes and is filed concurrently with the specification. The sequence listing contained in this ASCII formatted document is part of the specification and is herein incorporated by reference in its entirety. FIELD This disclosure relates to the field of molecular biology. Provided are novel genes that encode pesticidal proteins. These pesticidal proteins and the nucleic acid sequences that encode them are useful in preparing pesticidal formulations and in the production of transgenic pest-resistant plants. BACKGROUND Biological control of insect pests of agricultural significance using a microbial agent, such as fungi, bacteria or another species of insect affords an environmentally friendly and commercially attractive alternative to synthetic chemical pesticides. Generally speaking, the use of biopesticides presents a lower risk of pollution and environmental hazards and biopesticides provide greater target specificity than is characteristic of traditional broad- spectrum chemical insecticides. In addition, biopesticides often cost less to produce and thus improve economic yield for a wide variety of crops. Certain species of microorganisms of the genus Bacillus are known to possess pesticidal activity against a range of insect pests including Lepidoptera, Diptera, Coleoptera, Hemiptera and others. Bacillus thuringiensis {Bt) and Bacillus popilliae are among the most successful biocontrol agents discovered to date. Insect pathogenicity has also been attributed to strains of B. larvae, B. lentimorbus, B. sphaericus and B. cereus. Microbial insecticides, particularly those obtained from Bacillus strains, have played an important role in agriculture as alternatives to chemical pest control. Crop plants have been developed with enhanced insect resistance by genetically engineering crop plants to produce pesticidal proteins from Bacillus. For example, corn and cotton plants have been genetically engineered to produce pesticidal proteins isolated from strains of Bacillus thuringiensis. These genetically engineered crops are now widely used in agriculture and have provided the farmer with an environmentally friendly alternative to traditional insect-control methods. While they have proven to be very successful commercially, these genetically engineered, insect-resistant crop plants provide resistance to only a narrow range of the economically important insect pests. In some cases, insects can develop resistance to different insecticidal compounds, which raises the need to identify alternative biological control agents for pest control. Accordingly, there remains a need for new pesticidal proteins with different ranges of insecticidal activity against insect pests, e.g., insecticidal proteins which are active against a variety of insects in the order Lepidoptera and the order Coleoptera including but not limited to insect pests that have developed resistance to existing insecticides. SUMMARY In one aspect compositions and methods for conferring pesticidal activity to bacteria, plants, plant cells, tissues and seeds are provided. Compositions include nucleic acid molecules encoding sequences for pesticidal and insecticidal polypeptides, vectors comprising those nucleic acid molecules, and host cells comprising the vectors. Compositions also include the pesticidal polypeptide sequences and antibodies to those polypeptides. Compositions also comprise transformed bacteria, plants, plant cells, tissues and seeds. In another aspect isolated or recombinant nucleic acid molecules are provided encoding IPD1 03 polypeptides including amino acid substitutions, deletions, insertions, and fragments thereof. Provided are isolated or recombinant nucleic acid molecules capable of encoding IPD1 03 polypeptides of SEQ ID NO: 2, SEQ ID NO: 4 , SEQ ID NO: 6 , SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 30, SEQ ID NO: 32, SEQ ID NO: 34, SEQ ID NO: 36 or SEQ ID NO: 38, as well as amino acid substitutions, deletions, insertions, fragments thereof, and combinations thereof. Nucleic acid sequences that are complementary to a nucleic acid sequence of the embodiments or that hybridize to a sequence of the embodiments are also encompassed. The nucleic acid sequences can be used in DNA constructs or expression cassettes for transformation and expression in organisms, including microorganisms and plants. The nucleotide or amino acid sequences may be synthetic sequences that have been designed for expression in an organism including, but not limited to, a microorganism or a plant. In another aspect IPD103 polypeptides are encompassed. Also provided are isolated or recombinant IPD103 polypeptides of SEQ ID NO: 2, SEQ ID NO: 4 , SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 30, SEQ ID NO: 32, SEQ ID NO: 34, SEQ ID NO: 36, and SEQ ID NO: 38, as well as amino acid substitutions, deletions, insertions, fragments thereof and combinations thereof.
Recommended publications
  • He Great Lakes Entomologist
    The Great Lakes Entomologist Volume 26 Number 4 - Winter 1994 Number 4 - Winter Article 2 1994 December 1994 Comparative Study of Life Histories, Laboratory Rearing, and Immature Stages of Euschistus Servus and Euschistus Variolarius (Hemiptera: Pentatomidae) Joseph Munyaneza Southern Illinois University J. E. McPherson Southern Illinois University Follow this and additional works at: https://scholar.valpo.edu/tgle Part of the Entomology Commons Recommended Citation Munyaneza, Joseph and McPherson, J. E. 1994. "Comparative Study of Life Histories, Laboratory Rearing, and Immature Stages of Euschistus Servus and Euschistus Variolarius (Hemiptera: Pentatomidae)," The Great Lakes Entomologist, vol 26 (4) Available at: https://scholar.valpo.edu/tgle/vol26/iss4/2 This Peer-Review Article is brought to you for free and open access by the Department of Biology at ValpoScholar. It has been accepted for inclusion in The Great Lakes Entomologist by an authorized administrator of ValpoScholar. For more information, please contact a ValpoScholar staff member at [email protected]. Munyaneza and McPherson: Comparative Study of Life Histories, Laboratory Rearing, and Imma 1994 THE GREAT LAKES ENTOMOLOGIST 263 COMPARATIVE STUDY OF LIFE HISTORIES, LABORATORY REARING, AND IMMATURE STAGES OF EUSCHISTUS SERVUS AND EUSCHISTUS VARIOLARIUS (HEMIPTERA:PENTATOMIDAE)l Joseph Munyaneza and J. E. McPherson2 ABSTRACT A comparative study was conducted of the field life histories of Euschis­ tus servus and E. varialarius in southern Illinois, their life cycles under con­ trolled laboratory conditions, and their immature stages. The results indicate that E. servus is bivoltine and E. variolarius is univol­ tine. Adults of both species emerged from overwintering sites during early April, began feeding and copulating on leaves of common mullein (Verbascum thapsus) and surrounding vegetation, and reproduced shortly thereafter.
    [Show full text]
  • Catálogo Revisado Y Actualizado De Sphingidae De Argentina, Con Seis Nuevos Registros (Lepidoptera: Sphingidae) E
    SHILAP Revta. lepid., 43 (172), diciembre 2015: 615-631 eISSN: 2340-4078 ISSN: 0300-5267 Catálogo revisado y actualizado de Sphingidae de Argentina, con seis nuevos registros (Lepidoptera: Sphingidae) E. Núñez-Bustos Resumen Se presenta un catálogo revisado y actualizado de 123 especies de Sphingidae de Argentina compilado en base a citas bibliográficas, ejemplares de colecciones públicas y privadas y datos del autor. Son citadas seis nuevas espe- cies para el país que no poseían registros previos publicados (Manduca boliviana (B. P. Clark, 1923), M. brasiliensis (Jordan, 1911), M. prestoni (Gehlen, 1926), Nyceryx furtadoi Haxaire, 1996, Perigonia lusca (Fabricius, 1777) y Eumorpha megaeacus (Hübner, [1819])), las cuales se ilustran y comentan. Se agregan nuevas provincias al rango geográfico de varias especies en el listado. Por el contrario algunas especies citadas hace tiempo atrás, pero no halla- das en colecciones ni colectadas desde entonces, son retiradas de la lista y en otros casos al menos discutida su pre- sencia en el país. Se confirma la presencia de Manduca schausi (B. P. Clark, 1919), Callionima guiarti (Debauche, 1934) y Nyceryx continua (Walker, 1856) con ejemplares argentinos en colecciones nacionales y extranjeras. PALABRAS CLAVE: Lepidoptera, Sphingidae, listado, nuevos registros, Argentina. Revised catalog of Sphingidae from Argentina, with six new records (Lepidoptera: Sphingidae) Abstract A revised and updated catalogue of 123 species of Sphingidae from Argentina is presented. It has been compiled based on bibliographic, references, specimens in both public and private collections and information known by the author. Six new species are recorded for the country that had not previously published records (Manduca boliviana (B.
    [Show full text]
  • Molecular Evidence of Novel Spotted Fever Group Rickettsia
    pathogens Article Molecular Evidence of Novel Spotted Fever Group Rickettsia Species in Amblyomma albolimbatum Ticks from the Shingleback Skink (Tiliqua rugosa) in Southern Western Australia Mythili Tadepalli 1, Gemma Vincent 1, Sze Fui Hii 1, Simon Watharow 2, Stephen Graves 1,3 and John Stenos 1,* 1 Australian Rickettsial Reference Laboratory, University Hospital Geelong, Geelong 3220, Australia; [email protected] (M.T.); [email protected] (G.V.); [email protected] (S.F.H.); [email protected] (S.G.) 2 Reptile Victoria Inc., Melbourne 3035, Australia; [email protected] 3 Department of Microbiology and Infectious Diseases, Nepean Hospital, NSW Health Pathology, Penrith 2747, Australia * Correspondence: [email protected] Abstract: Tick-borne infectious diseases caused by obligate intracellular bacteria of the genus Rick- ettsia are a growing global problem to human and animal health. Surveillance of these pathogens at the wildlife interface is critical to informing public health strategies to limit their impact. In Australia, reptile-associated ticks such as Bothriocroton hydrosauri are the reservoirs for Rickettsia honei, the causative agent of Flinders Island spotted fever. In an effort to gain further insight into the potential for reptile-associated ticks to act as reservoirs for rickettsial infection, Rickettsia-specific PCR screening was performed on 64 Ambylomma albolimbatum ticks taken from shingleback skinks (Tiliqua rugosa) lo- cated in southern Western Australia. PCR screening revealed 92% positivity for rickettsial DNA. PCR Citation: Tadepalli, M.; Vincent, G.; amplification and sequencing of phylogenetically informative rickettsial genes (ompA, ompB, gltA, Hii, S.F.; Watharow, S.; Graves, S.; Stenos, J.
    [Show full text]
  • The Pentatomidae, Or Stink Bugs, of Kansas with a Key to Species (Hemiptera: Heteroptera) Richard J
    Fort Hays State University FHSU Scholars Repository Biology Faculty Papers Biology 2012 The eP ntatomidae, or Stink Bugs, of Kansas with a key to species (Hemiptera: Heteroptera) Richard J. Packauskas Fort Hays State University, [email protected] Follow this and additional works at: http://scholars.fhsu.edu/biology_facpubs Part of the Biology Commons, and the Entomology Commons Recommended Citation Packauskas, Richard J., "The eP ntatomidae, or Stink Bugs, of Kansas with a key to species (Hemiptera: Heteroptera)" (2012). Biology Faculty Papers. 2. http://scholars.fhsu.edu/biology_facpubs/2 This Article is brought to you for free and open access by the Biology at FHSU Scholars Repository. It has been accepted for inclusion in Biology Faculty Papers by an authorized administrator of FHSU Scholars Repository. 210 THE GREAT LAKES ENTOMOLOGIST Vol. 45, Nos. 3 - 4 The Pentatomidae, or Stink Bugs, of Kansas with a key to species (Hemiptera: Heteroptera) Richard J. Packauskas1 Abstract Forty eight species of Pentatomidae are listed as occurring in the state of Kansas, nine of these are new state records. A key to all species known from the state of Kansas is given, along with some notes on new state records. ____________________ The family Pentatomidae, comprised of mainly phytophagous and a few predaceous species, is one of the largest families of Heteroptera. Some of the phytophagous species have a wide host range and this ability may make them the most economically important family among the Heteroptera (Panizzi et al. 2000). As a group, they have been found feeding on cotton, nuts, fruits, veg- etables, legumes, and grain crops (McPherson 1982, McPherson and McPherson 2000, Panizzi et al 2000).
    [Show full text]
  • WO 2016/061206 Al 21 April 2016 (21.04.2016) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2016/061206 Al 21 April 2016 (21.04.2016) P O P C T (51) International Patent Classification: (74) Agent: BAUER, Christopher; PIONEER HI-BRED IN C12N 15/82 (2006.01) A01N 65/00 (2009.01) TERNATIONAL, INC., 7100 N.W. 62nd Avenue, John C07K 14/415 (2006.01) ston, Iowa 5013 1-1014 (US). (21) International Application Number: (81) Designated States (unless otherwise indicated, for every PCT/US2015/055502 kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (22) Date: International Filing BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, 14 October 2015 (14.10.201 5) DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (25) Filing Language: English HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, (26) Publication Language: English MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, (30) Priority Data: PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, 62/064,810 16 October 20 14 ( 16.10.20 14) US SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (71) Applicants: PIONEER HI-BRED INTERNATIONAL, INC. [US/US]; 7100 N.W.
    [Show full text]
  • Spring Australian Plants Society Armidale & District Group
    APS Armidale 2015_3 Spring Australian Plants Society Armidale & District Group PO Box 735 Armidale NSW 2350 Crowea exalata ssp magnifolia image by Maria Hitchcock Web: http://www.aps-armidale.org.au e-mail: [email protected] Spring Edition 2015 - 3 In this issue: Office bearers for 2015 ...p.2 President’s Message ...p.3 From little things, big things grow ...p.3 Garden Visits Report: Saturday 23 May …p.4 National Correa Collection Web Site ...p.5 Soltice Event Report: Sunday 21 June …p.6 Spring in Autumn and Winter ...p.6 Possum Magic in Armidale …p.7 A tale of “Pinky” and Others ...p.8 Mole Station Weekend ...p.9 A Pleasant Horticultural surprise ...p.10 Frost Likelihood Audit ...p.11 Photo: Leptospermum spectabile from the Mulquiney Garden (not in situ) photo C. Mulquiney. Frost Likelihood Audit Form ...p.14 Contact Us: Armidale & District Group PO Box 735, Armidale NSW 2350 President: Phil Rose Ph. 6775 3767 [email protected] Secretary: Helen Schwarz Ph. 6772 1584 [email protected] Treasurer: Carole Fullalove [email protected] From the newsletter editor: Dear members, this is your newsletter and all articles, snippets and photos are welcome. The issue deadlines are 2 weeks before the Business Meeting. Articles will be included based on a FIRST COME basis. Please send your articles, snippets etc to me. Page 1 APS Armidale 2015_3 Spring GROUP INFORMATION The Armidale and District Group of APS--NSW started on 6th August, 1977 as the New England Group of the Society for Growing Australian Plants. It has been running continuously since that time with a couple of name changes.
    [Show full text]
  • During 1965-66
    KyotoKyotoUniversity University Enumeration of Thai pteridophytes collected during 1965-66 by Motozi TAGAwA and Kunio IwATsuKI From November 1965 to February 1966, the Center for Southeast Asian Studies sent a botanical party to Thailand and the first Thai-Japanese Botanical Expedition was begun in cooperation with the Royal Forest Department in Bangkok. During a sojourn of more than one hundred days, we observed and collected a comprehensive number of fern species as well as flowering plants and mosses. Here is given an enumeration of all pteridophytes collected on this trip. In this paper, however, only a list of the specific identifications of the collections has been made. In the course of the investigation of the fern flora of Thailand, we met with a good many facts new to science. This information will be forthcoming in other publications. The field work of the Expedition was accomplished by the following four Japanese botanists and a Thai entomologist, who accompanied the Japanese group from beginning to end: Motozi TAGAwA, the leader, on pteridophytes and general botany Kunio IwATsuKi, on pteridophytes Naofumi KiTAGAwA, on bryophytes Nobuyuki FuKuoKA, on flowering plants in general Dumrong CHAiGLoM, on entomology in relation te forestry. The itinerary of the Expedition was as follows (with the vascular plant col- lectors' names following the location) : 1966: Nov. 11, Bangkok: M. Tagawa & K. Iwatsuki. Nov. 13. Bangkhen, north of Bangkok: K. Iwatsuki. Nov. 14. Rangsit and Bangkhen, north of Bangkok : M. Tagawa & K. Iwatsuki. Nov. 26. Pha Nuk Khao, Loey: M. Tagawa, K. Iwatsuki & N. Fukuoka. Nov. 27-30. Phu Kradung, Loey: M.
    [Show full text]
  • Genus Boophilus Curtice Genus Rhipicentor Nuttall & Warburton
    3 CONTENTS General remarks 4 Genus Amblyomma Koch 5 Genus Anomalohimalaya Hoogstraal, Kaiser & Mitchell 46 Genus Aponomma Neumann 47 Genus Boophilus Curtice 58 Genus Hyalomma Koch. 63 Genus Margaropus Karsch 82 Genus Palpoboophilus Minning 84 Genus Rhipicentor Nuttall & Warburton 84 Genus Uroboophilus Minning. 84 References 86 SUMMARI A list of species and subspecies currently included in the tick genera Amblyomma, Aponomma, Anomalohimalaya, Boophilus, Hyalomma, Margaropus, and Rhipicentor, as well as in the unaccepted genera Palpoboophilus and Uroboophilus is given in this paper. The published synonymies and authors of each spécifie or subspecific name are also included. Remaining tick genera have been reviewed in part in a previous paper of this series, and will be finished in a future third part. Key-words: Amblyomma, Aponomma, Anomalohimalaya, Boophilus, Hyalomma, Margaropus, Rhipicentor, Uroboophilus, Palpoboophilus, species, synonymies. RESUMEN Se proporciona una lista de las especies y subespecies actualmente incluidas en los géneros Amblyomma, Aponomma, Anomalohimalaya, Boophilus, Hyalomma, Margaropus y Rhipicentor, asi como en los géneros no aceptados Palpoboophilus and Uroboophilus. Se incluyen también las sinonimias publicadas y los autores de cada nombre especifico o subespecifico. Los restantes géneros de garrapatas han sido revisados en parte en un volumen previo de esta serie, y serân terminados en una futura tercera parte. Palabras claves Amblyomma, Aponomma, Anomalohimalaya, Boophilus, Hyalomma, Margaropus, Rhipicentor, Uroboophilus, Palpoboophilus, especies, sinonimias. 4 GENERAL REMARKS Following is a list of species and subspecies of ticks d~e scribed in the genera Amblyomma, Aponomma, Anomalohimalaya, Boophilus, Hyalorma, Margaropus, and Rhipicentor, as well as in the unaccepted genera Palpoboophilus and Uroboophilus. The first volume (Estrada- Pena, 1991) included data for Haemaphysalis, Anocentor, Dermacentor, and Cosmiomma.
    [Show full text]
  • In Vitro Spore Germination and Gametophytic Growth Development of a Critically Endangered Fern Pteris Tripartita Sw
    Vol. 13(23), pp. 2350-2358, 4 June, 2014 DOI: 10.5897/AJB2013.13419 Article Number: 6C227C945161 ISSN 1684-5315 African Journal of Biotechnology Copyright © 2014 Author(s) retain the copyright of this article http://www.academicjournals.org/AJB Full Length Research Paper In vitro spore germination and gametophytic growth development of a critically endangered fern Pteris tripartita Sw. Baskaran Xavier Ravi*, Jeyachandran Robert and Melghias Gabriel Department of Botany, St. Joseph’s College, Tiruchirappalli, Tamil Nadu-620 002, India. Received 24 October, 2013; Accepted 31 March, 2014 The effects of sucrose, pH and plant growth hormones on spore germination percentage and gametophyte growths of Pteris tripartita were studied. Various morphological structures of gametophytes were observed namely, filamentous, spatulate and heart stages in the MS culture medium with hormones. After 15 days, the spores of P. tripartita were sprouted in MS basal medium fortified with pH, sucrose and hormones. Maximum spore germination rates (84%) were observed in 70 g/L of sucrose and 79.33% in pH 5.7. On the other hand, the maximum gametophyte sizes were observed both in 40 and 50 g/l of sucrose on half strength MS medium. The maximum growth of gametophyte lengths (484.39 and 507.72 µm) and widths (846.58 and 1270.98 µm) were observed in both pH 5.7 and 6.7. Among three different hormones, the utmost number or percentage of spores were sprouted in GA3. However, the in vitro cultures of spore having the capability to increase the spore germinated due to addition of adequate nutrition in the culture medium and also reduce the contamination as well as environmental factors.
    [Show full text]
  • Review of Selected Literature and Epiphyte Classification
    --------- -- ---------· 4 CHAPTER 1 REVIEW OF SELECTED LITERATURE AND EPIPHYTE CLASSIFICATION 1.1 Review of Selected, Relevant Literature (p. 5) Several important aspects of epiphyte biology and ecology that are not investigated as part of this work, are reviewed, particularly those published on more. recently. 1.2 Epiphyte Classification and Terminology (p.11) is reviewed and the system used here is outlined and defined. A glossary of terms, as used here, is given. 5 1.1 Review of Selected, Relevant Li.terature Since the main works of Schimper were published (1884, 1888, 1898), particularly Die Epiphytische Vegetation Amerikas (1888), many workers have written on many aspects of epiphyte biology and ecology. Most of these will not be reviewed here because they are not directly relevant to the present study or have been effectively reviewed by others. A few papers that are keys to the earlier literature will be mentioned but most of the review will deal with topics that have not been reviewed separately within the chapters of this project where relevant (i.e. epiphyte classification and terminology, aspects of epiphyte synecology and CAM in the epiphyt~s). Reviewed here are some special problems of epiphytes, particularly water and mineral availability, uptake and cycling, general nutritional strategies and matters related to these. Also, all Australian works of any substance on vascular epiphytes are briefly discussed. some key earlier papers include that of Pessin (1925), an autecology of an epiphytic fern, which investigated a number of factors specifically related to epiphytism; he also reviewed more than 20 papers written from the early 1880 1 s onwards.
    [Show full text]
  • Boigu Islands, Form the Northern Island Group of Torres Strait, Located Approximately 150 Km North of Thursday Island (See Figure 1)
    PROFILE FOR MANAGEMENT OF THE HABITATS AND RELATED ECOLOGICAL AND CULTURAL RESOURCE VALUES OF DAUAN ISLAND January 2013 Prepared by 3D Environmental for Torres Strait Regional Authority Land & Sea Management Unit Cover image: 3D Environmental (2013) EXECUTIVE SUMMARY The granite rock pile that forms Dauan, along with nearby Saibai and Boigu Islands, form the Northern Island Group of Torres Strait, located approximately 150 km north of Thursday Island (see Figure 1). Whilst Saibai and Boigu Island are extensions of the alluvial Fly Platform, geologically part of the Papua New Guinea mainland, Dauan is formed on continental basement rock which extends northward from Cape York Peninsula to Mabadauan Hill on the south-west coast of Papua New Guinea. A total of 14 vegetation communities, within ten broad vegetation groups and 14 regional ecosystems are recognised on the island. The total known flora of comprises 402 species (14 ferns, 388 angiosperms), with 317 native and 85 naturalised species. Nine plant species are considered threatened at the commonwealth and state levels and a further 25 species considered to have significance at a regional level. As for the majority of Torres Strait Islands there is a lack of systematic survey of fauna habitats on the island. A desktop review identified 135 fauna species that are reported to occur on Dauan. This can be compared with the 384 terrestrial fauna species that have been reported for the broader Torres Strait Island group. The Dauan fauna comprises 20 reptiles, 100 birds, 3 frogs and 12 mammals. Of these, one reptile, one bird and four mammal species are introduced.
    [Show full text]
  • Running Title: Bacterial Community Profiling Highlights Complex Diversity and Novel Organisms in Wildlife Ticks. Authors: Siobho
    bioRxiv preprint doi: https://doi.org/10.1101/807131; this version posted October 17, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Running title: Bacterial community profiling highlights complex diversity and novel 2 organisms in wildlife ticks. 3 4 Authors: Siobhon L. Egan1, Siew-May Loh1, Peter B. Banks2, Amber Gillett3, Liisa A. 5 Ahlstrom4, Una M. Ryan1, Peter J. Irwin1 and Charlotte L. Oskam1,* 6 7 1 Vector and Waterborne Pathogens Research Group, College of Science, Health, 8 Engineering and Education, Murdoch University, Perth, Western Australia, Australia 9 2 School of Life and Environmental Sciences, The University of Sydney, Sydney, New South 10 Wales, Australia 11 3 Australia Zoo Wildlife Hospital, Beerwah, Queensland, Australia 12 4 Bayer Australia Ltd, Animal Health, Pymble, New South Wales, Australia 13 * Corresponding author 14 15 S.L.E [email protected]; https://orcid.org/0000-0003-4395-4069 16 S-M.L. [email protected] 17 P.B.B. [email protected]; https://orcid.org/0000-0002-4340-6495 18 A.G. [email protected] 19 L.A.A [email protected] 20 U.M.R. [email protected]; https://orcid.org/0000-0003-2710-9324 21 P.J.I. [email protected]; https://orcid.org/0000-0002-0006-8262 22 C.L.O. c.o [email protected] ; https://orcid.org/0000-0001-8886-2120 23 24 Abstract 25 Ticks (Acari: Ixodida) transmit a greater variety of pathogens than any other blood-feeding 1 bioRxiv preprint doi: https://doi.org/10.1101/807131; this version posted October 17, 2019.
    [Show full text]