FLOW Portfolio of Measures: the Role of Walking and Cycling in Reducing

Total Page:16

File Type:pdf, Size:1020Kb

FLOW Portfolio of Measures: the Role of Walking and Cycling in Reducing THE ROLE OF WALKING AND CYCLING IN REDUCING CONGESTION A PORTFOLIO OF MEASURES A PORTFOLIO OF MEASURES FLOW DOCUMENT TITLE The Role of Walking and Cycling in Reducing Congestion: A Portfolio of Measures AUTHORS Thorsten Koska, Frederic Rudolph (Wuppertal Institut für Klima, Umwelt, Energie gGmbH); Case Studies: Benjamin Schreck, Andreas Vesper (Bundesanstalt für Straßenwesen), Tamás Halmos (Budapesti Közlekedési Központ), Tamás Mátrai (Budapesti Műszaki és Gazdaságtudományi Egyetem), Alicja Pawłowska (Municipality of Gdynia), Jacek Oskarbski (Politechnika Gdanska), Benedicte Swennen (European Cyclists’ Federation), Nora Szabo (PTV AG), Graham Cavanagh (Rupprecht Consult GmbH), Florence Lepoudre (Traject), Katie Millard (Transport Research Laboratory), Martin Wedderburn (Walk21), Miriam Müller, David Knor (Wuppertal Institut für Klima, Umwelt, Energie gGmbH) CONTACT Project coordinator: Rupprecht Consult Bernard Gyergyay: [email protected] Kristin Tovaas: [email protected] Project dissemination manager: Polis Daniela Stoycheva: [email protected] CITATION FLOW Project (2016). The Role of Walking and Cycling in Reducing Congestion: A Portfolio of Measures. Brussels. Available at http://www.h2020-flow.eu. IMAGE DISCLAIMER The images in this document are used as a form of visual citation to support and clarify statements made in the text. The authors have made great effort to provide credit for every image used. If, despite our efforts, we have not given sufficient credit to the author of any images used, please contact us directly at [email protected] LAYOUT PEAK Sourcing DATE July 2016 The sole responsibility for the content of this publication lies with the authors. It does not necessarily reflect the opinion of the European Union. Neither the INEA nor the European Commission is responsible for any use that may be made of the information contained therein. www.h2020-flow.eu | FLOW on Twitter: @FlowH2020 | FLOW LinkedIn Group: FLOW Project A PORTFOLIO OF MEASURES FLOW This text in this document is licensed under a Creative Commons Attribution-Share-Alike 4.0 International License. See http://creativecommons.org/licenses/by-sa/4.0/ Copyright is reserved for all images. 3 A PORTFOLIO OF MEASURES FLOW Table of content About FLOW 5 Executive summary 6 01. Introduction 8 02. General findings about the role of measures supportive of walking and cycling in relieving congestion 10 03. Case studies of measures supportive of walking and cycling 14 1. New York: New Bicycle Lanes 19 2. Brighton: Lewes Road Corridor 21 3. Germany: Advisory Cycle Lanes 23 4. Germany: Upgrading Cycling Facilities Following Technical Design Guidelines 25 5. Netherlands: Cycle Highways 27 6. Ruhr Area: Cycle Highway 30 7. Oxford: The Plain Roundabout 32 8. Strasbourg: Reshaping Road Space at Pont Kuss 34 9. Ljubljana: Pedestrian Zones in the City Centre 36 10. Münster: Bicycle Station (Bike + Ride) 40 11. Bordeaux: Bike Sharing to Ease Congestion Caused by Construction Works 42 12. Bolzano: School Streets 45 13. Copenhagen: Green Wave for Cyclists 46 14. London: Pedestrian Countdown at Signalised Junctions 49 15. Stockholm Congestion Charge 52 16. Groningen: Campaign to Promote the Use of an Alternative Bike Route 54 17. London:Demand Management “Get ahead of the Games” 55 18. Gdynia: Campaign Promoting Walking and Cycling in Kindergartens 57 19. Ghent: B401 Viaduct Removal 60 20. Budapest: Comprehensive Development of a Bike-Friendly Inner City 61 04. Conclusions 64 05. References 69 4 A PORTFOLIO OF MEASURES FLOW About FLOW espite the acknowledged benefits of walking and The FLOW objectives are: cycling in terms of health, travel-time reliability • to define the role of walking and cycling in and cost effectiveness, motorised traffic is still D congestion reduction; often the main focus of mainstream urban mobility policy. FLOW sees a need for: • to develop and apply tools for assessing the congestion-reducing potential of various • a clear link between (currently poorly measures supportive of walking and cycling; connected) walking and cycling, traffic performance and congestion. • to increase awareness of the congestion reduction potential of walking and cycling; • a paradigm shift wherein non-motorised transport, often seen from a transport policy • to actively support take-up of congestion perspective simply as a nice “extra”, is placed reducing walking and cycling measures by on an equal footing with motorised modes. public administrations; • improving the understanding of walking and • to foster the market for new walking and cycling measures that have the potential cycling products and services for congestion to improve traffic performance and reduce reduction; urban congestion. • to communicate congestion reduction facts The mission of the FLOW project is to place non- on walking and cycling. motorised transport on an equal footing with motorised FLOW includes six partner cities: Budapest, Dublin, modes with regard to urban road traffic performance Gdynia, Lisbon, Munich and Sofia. All are employing and congestion. It will achieve this by developing the FLOW tools and methodology to assess the role of a methodology and tools to assess the ability of walking and/or cycling in congestion reduction. Within walking and cycling measures to reduce congestion this context, each city is holding a Congestion Busting in European cities. Forum during the course of the project. 5 A PORTFOLIO OF MEASURES FLOW Executive summary his portfolio of measures describes the measures, three contained traffic management actual effects of different types of measures measures and three mobility management measures. on congestion by presenting case studies of T An important finding is that most of the measures successfully implemented urban measures supportive described below were not implemented with the of walking and cycling. The measures described have intention of reducing congestion. Almost all cases helped reduce congestion or at least have increased showed that there are additional beneficial effects, walking and/or cycling levels without increasing such as a shift to sustainable modes or improved congestion. safety. These could be seen simply as “co-benefits” In ten of the 20 cases, congestion could be reduced, from the perspective of congestion reduction. On the in eight cases, the measure did not affect congestion other hand, these effects are interdependent and can or an effect could not be measured. Only two cases help reduce congestion in the long run. Most of the showed slight increases in congestion of motor vehicles. walking and cycling measures described below have Reduction of motor vehicle congestion could be seen the potential to invite behaviour change and improve in different types of measures: Five of the cases the modal split of non-motorised modes over time. with reduced congestion implemented infrastructure 6 THE ROLE OF WALKING AND CYCLING IN REDUCING CONGESTION A portfolio of measures A PORTFOLIO OF MEASURES FLOW 01 INTRODUCTION A PORTFOLIO OF MEASURES FLOW Introduction ongestion – mostly understood as the congestion of motorised traffic – is regarded as one of the major problems in urban transport, affecting travel times, the emission of pollutants and noise, and the overall Cquality of life in cities. Still, this understanding does not show the whole picture. Congestion can be also regarded as a sign of successful economic development, as an OECD/ECMT report states, and it rations scarce space to allow users to reach desired goals in crowded urban areas (OECD/ECMT 2007: 15). Most existing urban road transport performance cycling measures to relieve urban congestion. Cities analyses do not properly analyse the impact of walking are actively seeking information and implementation and cycling measures on congestion. Instead, they experience from other cities. However, information focus solely on motor vehicle transport performance available on websites, portals and good-practice guides and either exclude pedestrians and cyclists or include is of mixed quality (Marsden et al. 2011). In providing them as disruption factors to motor vehicle traffic. By more information on the impact of walking and cycling considering methodologies for putting walking and measures, this portfolio aims at contributing to political cycling on an equal footing with motorised transport, agenda setting and measure selection. the FLOW Multimodal Urban Road Transport Network Attempts to reduce congestion by offering more Performance Analysis Methodology (see FLOW road capacity can operate as “pull factors”, triggering Deliverable D1.1 , http://h2020-flow.eu/methodology) more motorised transport (i.e. induced demand) aims to contribute to a more informed technical and and thereby generating further congestion (Litman public debate on the role of walking and cycling in 2014). By contrast, “push measures” can include a transport system performance. reduction of road capacity in order to provide space The positive impacts of walking and cycling for for bike lanes or wider sidewalks, eventually leading travellers and cities are widely known and documented to less congestion in the long run – through a modal (e.g. Ogilvie et al. 2007, Pucher et al. 2010, Goodman shift towards walking and cycling. Thus, one possible et al. 2013). A remarkable body of knowledge exists approach to reduce congestion is to change the modal on how to effectively introduce walking and cycling split: reducing motorised transport and strengthening measures in
Recommended publications
  • Urban Mobility and Sustainable Urban Transport Index
    Urban Mobility and Sustainable Urban Transport Index Islamic Republic of Iran Tehran Sustainable Transport Indicators(SUTI) October 2019 The Metropolis of Tehran Tehran Sustainable Transportation Indicators(SUTI) Tehran characteristics Population (million) 9 Area (km²) 750 southern slopes Location of Alborz mountains Average slope from north to 4.5% south Tehran Sustainable Transportation Indicators(SUTI) Tehran characteristics Municipal districts 22 12,100 District 10 Most density District 22 Least density Tehran Transportation Tehran Sustainable Transportation Indicators(SUTI) Tehran Road Network (km) Highways, freeways and 931 ramps & loops Major streets (primary & 1,053 secondary arterials) local streets 1,552 Tehran Sustainable Transportation Indicators(SUTI) Tehran's Restricted Traffic Zones Central restricted • Free for public vehicles zone (32 km²) • Charges for private cars • Free for public vehicles • Free for 20 days of each low emission zone- season for private cars LEZ (89 km²) • Charges for private cars, more than 20 days Tehran Sustainable Transportation Indicators(SUTI) Public Transport Bus system Subway Bus : 220 Lines 6 BRT : 10 Length(km) 3,000 215 Public sector: 1,348 Wagons: 1343 Fleet Private sector: 4,800 Trains: 183 Bus : 4,785 109 Stations BRT : 347 Tehran Sustainable Transportation Indicators(SUTI) Paratransit Types Fleet Rotary taxi 34,000 Fixed- route taxi 16,000 Private Taxi 28,000 Internet taxi NA Tehran Sustainable Transportation Indicators(SUTI) Active Transport Cycling Walking •Bike House: Facilities 153
    [Show full text]
  • Written Comments
    Written Comments 1 2 3 4 1027 S. Lusk Street Boise, ID 83706 [email protected] 208.429.6520 www.boisebicycleproject.org ACHD, March, 2016 The Board of Directors of the Boise Bicycle Project (BBP) commends the Ada County Highway District (ACHD) for its efforts to study and solicit input on implementation of protected bike lanes on Main and Idaho Streets in downtown Boise. BBP’s mission includes the overall goal of promoting the personal, social and environmental benefits of bicycling, which we strive to achieve by providing education and access to affordable refurbished bicycles to members of the community. Since its establishment in 2007, BBP has donated or recycled thousands of bicycles and has provided countless individuals with bicycle repair and safety skills each year. BBP fully supports efforts to improve the bicycle safety and accessibility of downtown Boise for the broadest segment of the community. Among the alternatives proposed in ACHD’s solicitation, the Board of Directors of BBP recommends that the ACHD pursue the second alternative – Bike Lanes Protected by Parking on Main Street and Idaho Street. We also recommend that there be no motor vehicle parking near intersections to improve visibility and limit the risk of the motor vehicles turning into bicyclists in the protected lane. The space freed up near intersections could be used to provide bicycle parking facilities between the bike lane and the travel lane, which would help achieve the goal of reducing sidewalk congestion without compromising safety. In other communities where protected bike lanes have been implemented, this alternative – bike lanes protected by parking – has proven to provide the level of comfort necessary to allow bicycling in downtown areas by families and others who would not ride in traffic.
    [Show full text]
  • A Behavior-Based Framework for Assessing Barrier Effects to Wildlife from Vehicle Traffic Volume 1 Sandra L
    CONCEPTS & THEORY A behavior-based framework for assessing barrier effects to wildlife from vehicle traffic volume 1 Sandra L. Jacobson,1,† Leslie L. Bliss-Ketchum,2 Catherine E. de Rivera,2 and Winston P. Smith3,4 1 1USDA Forest Service, Pacific Southwest Research Station, Davis, California 95618 USA 1 2Department of Environmental Science & Management, School of the Environment, 1 Portland State University, Portland, Oregon 97207-0751 USA 1 3USDA Forest Service, Pacific Northwest Research Station, La Grande, Oregon 97850 USA 1 Citation: Jacobson, S. L., L. L. Bliss-Ketchum, C. E. de Rivera, and W. P. Smith. 2016. A behavior-based framework for assessing barrier effects to wildlife from vehicle traffic volume. Ecosphere 7(4):e01345. 10.1002/ecs2.1345 Abstract. Roads, while central to the function of human society, create barriers to animal movement through collisions and habitat fragmentation. Barriers to animal movement affect the evolution and tra- jectory of populations. Investigators have attempted to use traffic volume, the number of vehicles passing a point on a road segment, to predict effects to wildlife populations approximately linearly and along taxonomic lines; however, taxonomic groupings cannot provide sound predictions because closely related species often respond differently. We assess the role of wildlife behavioral responses to traffic volume as a tool to predict barrier effects from vehicle-caused mortality and avoidance, to provide an early warning system that recognizes traffic volume as a trigger for mitigation, and to better interpret roadkill data. We propose four categories of behavioral response based on the perceived danger to traffic: Nonresponders, Pausers, Speeders, and Avoiders.
    [Show full text]
  • Module 6. Hov Treatments
    Manual TABLE OF CONTENTS Module 6. TABLE OF CONTENTS MODULE 6. HOV TREATMENTS TABLE OF CONTENTS 6.1 INTRODUCTION ............................................ 6-5 TREATMENTS ..................................................... 6-6 MODULE OBJECTIVES ............................................. 6-6 MODULE SCOPE ................................................... 6-7 6.2 DESIGN PROCESS .......................................... 6-7 IDENTIFY PROBLEMS/NEEDS ....................................... 6-7 IDENTIFICATION OF PARTNERS .................................... 6-8 CONSENSUS BUILDING ........................................... 6-10 ESTABLISH GOALS AND OBJECTIVES ............................... 6-10 ESTABLISH PERFORMANCE CRITERIA / MOES ....................... 6-10 DEFINE FUNCTIONAL REQUIREMENTS ............................. 6-11 IDENTIFY AND SCREEN TECHNOLOGY ............................. 6-11 System Planning ................................................. 6-13 IMPLEMENTATION ............................................... 6-15 EVALUATION .................................................... 6-16 6.3 TECHNIQUES AND TECHNOLOGIES .................. 6-18 HOV FACILITIES ................................................. 6-18 Operational Considerations ......................................... 6-18 HOV Roadway Operations ...................................... 6-20 Operating Efficiency .......................................... 6-20 Considerations for 2+ Versus 3+ Occupancy Requirement ............. 6-20 Hours of Operations ..........................................
    [Show full text]
  • Exploring Changes to Cycle Infrastructure to Improve the Experience of Cycling for Families
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by UWE Bristol Research Repository Exploring changes to cycle infrastructure to improve the experience of cycling for families Dr William Clayton1 Dr Charles Musselwhite Centre for transport and Society Centre for Innovative Ageing Faculty of Environment and Technology School of Human and Health Sciences University of the West of England Swansea University Bristol, UK Swansea, UK BS16 1QY SA2 8PP Tel: +44 (0)1792 518696 Tel: +44 (0) 117 32 82316 Web: www.drcharliemuss.com Email: [email protected] Twitter: @charliemuss Website: www.uwe.ac.uk/et/research/cts Email: [email protected] KEYWORDS: Cycling, infrastructure, motivation, families, behaviour change. Abstract: Positive changes to the immediate cycling environment can improve the cycling experience through increasing levels of safety, but little is known about how the intrinsic benefits of cycling might be enhanced beyond this. This paper presents research which has studied the potential benefits of changing the infrastructure within a cycle network – here the National Cycle Network (NCN) in the United Kingdom (UK) – to enhance the intrinsic rewards of cycling. The rationale in this approach is that this could be a motivating factor in encouraging greater use of the cycle network, and consequently help in promoting cycling and active travel more generally amongst family groups. The project involved in-depth research with 64 participants, which included family interviews, self-documented family cycle rides, and school focus groups. The findings suggest that improvements to the cycling environment can help maintain ongoing motivation for experienced cycling families by enhancing novel aspects of a routine journey, creating enjoyable activities and facilitating other incidental experiences along the course of a route, and improving the kinaesthetic experience of cycling.
    [Show full text]
  • D2.2: Current State of Urban Mobility
    Project ID: 814910 LC-MG-1-3-2018 - Harnessing and understanding the impacts of changes in urban mobility on policy making by city-led innovation for sustainable urban mobility Sustainable Policy RespOnse to Urban mobility Transition D2.2: Current state of urban mobility Work package: WP 2 - Understanding transition in urban mobility Geert te Boveldt, Imre Keseru, Sara Tori, Cathy Macharis, Authors: (VUB), Beatriz Royo, Teresa de la Cruz (ZLC) City of Almada, City of Arad, BKK Centre for Budapest Transport, City of Gothenburg, City of ‘s Hertogenbosch, City of Ioannina, City of Mechelen, City of Minneapolis, Contributors: City of Padova, City of Tel Aviv, City of Valencia, Region of Ile-de-France, Municipality of Kalisz, West Midlands Combined Authority, Aristos Halatsis (CERTH) Status: Final version Date: Jan 30, 2020 Version: 1.0 Classification: PU - public Disclaimer: The SPROUT project is co-funded by the European Commission under the Horizon 2020 Framework Programme. This document reflects only authors’ views. EC is not liable for any use that may be done of the information contained therein. D2.2: Current state of urban mobility SPROUT Project Profile Project ID: 814910; H2020- LC-MG-1-3-2018 Acronym: SPROUT Title: Sustainable Policy RespOnse to Urban mobility Transition URL: Start Date: 01/09/2019 Duration: 36 Months 3 D2.2: Current state of urban mobility Table of Contents 1 Executive Summary ......................................................................... 10 2 Introduction .....................................................................................
    [Show full text]
  • Pedestrian and Bicycle Friendly Policies, Practices, and Ordinances
    Pedestrian and Bicycle Friendly Policies, Practices, and Ordinances November 2011 i iv . Pedestrian and Bicycle Friendly Policies, Practices, and Ordinances November 2011 i The Delaware Valley Regional Planning The symbol in our logo is Commission is dedicated to uniting the adapted from region’s elected officials, planning the official professionals, and the public with a DVRPC seal and is designed as a common vision of making a great region stylized image of the Delaware Valley. even greater. Shaping the way we live, The outer ring symbolizes the region as a whole while the diagonal bar signifies the work, and play, DVRPC builds Delaware River. The two adjoining consensus on improving transportation, crescents represent the Commonwealth promoting smart growth, protecting the of Pennsylvania and the State of environment, and enhancing the New Jersey. economy. We serve a diverse region of DVRPC is funded by a variety of funding nine counties: Bucks, Chester, Delaware, sources including federal grants from the Montgomery, and Philadelphia in U.S. Department of Transportation’s Pennsylvania; and Burlington, Camden, Federal Highway Administration (FHWA) Gloucester, and Mercer in New Jersey. and Federal Transit Administration (FTA), the Pennsylvania and New Jersey DVRPC is the federally designated departments of transportation, as well Metropolitan Planning Organization for as by DVRPC’s state and local member the Greater Philadelphia Region — governments. The authors, however, are leading the way to a better future. solely responsible for the findings and conclusions herein, which may not represent the official views or policies of the funding agencies. DVRPC fully complies with Title VI of the Civil Rights Act of 1964 and related statutes and regulations in all programs and activities.
    [Show full text]
  • Impact on Transit Patronage of Cessation Or Inauguration of Rail Service
    TRANSPORTATION RESEARCH RECORD 1221 59 Impact on Transit Patronage of Cessation or Inauguration of Rail Service EDSON L. TENNYSON ilar bus service to calibrate models accurately for suburban Many theorists believe that transit service mode has little influ­ ence on consumer choice between automobile and transit travel. transit use ( 4). Others believe that they have noted a modal effect in which Earlier, the Delaware Valley Regional Planning Commis­ rail transit attracts higher ridership than does bus when other sion found that regional models calibrated for 99 percent con­ factors are about equal. Given environmental concerns and fidence level grossly overstated local bus ridership and equally the large investment needed for guided transit, a better under­ understated commuter rail ridership to obtain correct regional standing of this issue is essential, especially for congested areas. totals (5). There is thus considerable anecdotal evidence that A consideration of the history of automobile and transit travel transit submode choice can make a substantial difference in in the United States can be helpful in comprehending the nature the actual attraction of motorists to transit, with widespread of the problem. After World War II, availability of vehicles, attendant benefits. fuel, and tires spurred growth of both private automobile use It is true that travel time, fare, frequency of service, pop­ and use of buses for transit. Analyses of the effects of both this growth and the improvements in rail systems that were added ulation, density, and distance are all prime determinants of during the same period reveal that transit mode does indeed travel and transit use, but automobile ownership and personal make a significant difference in the level of use of a transit income may not be consistent factors for estimating rail transit facility.
    [Show full text]
  • Sustainable Transportation Blue Dot Municipal Toolkit Building a Low-Carbon Future Blue Dot Municipal Toolkit
    Guide 9 Sustainable transportation Blue Dot Municipal Toolkit Building a Low-Carbon Future Blue Dot Municipal Toolkit People in Canada take pride in this country’s natural landscapes, rich ecosystems and wildlife. But Canada’s Constitution doesn’t mention environmental rights and responsibilities. Municipalities across the country are recognizing and supporting their residents’ right to a healthy environment. By adopting the Blue Dot declaration, more than 150 municipal governments now support the right to clean air and water, safe food, a stable climate and a say in decisions that affect our health and well-being. For some municipalities, adopting the Blue Dot declaration is a clear statement about environmental initiatives already underway. For others, it’s a significant first step. Either way, after passing a declaration, many ask “What happens next?” This toolkit provides practical ideas for next steps. Its introduction and 13 downloadable guides cover topics related to human health, green communities and a low-carbon future. Written for policy-makers, each guide shares examples of policies and projects undertaken in communities in Canada and around the world. The goal is to inform, inspire and share good ideas and great practices that will lead to healthier, more sustainable communities now and in the future. The following guides are available: Introduction to the Blue Dot Municipal Toolkit Protecting Human Health Guide 1: Air quality Guide 2: Clean water Guide 3: Non-toxic environment Guide 4: Healthy food Creating Green Communities Guide 5: Access to green space Guide 6: Protecting and restoring biodiversity Guide 7: Zero waste Building a Low Carbon Future Guide 8: Transitioning to 100% renewable energy Guide 9: Green buildings Guide 10: Sustainable transportation Guide 11: Green economy Guide 12: Climate change adaptation Guide 13: Ecological footprint and land use planning To read more about municipal actions for environmental rights, and to access all the Blue Dot toolkit guides, visit www.____.org.
    [Show full text]
  • Highway 17 and 69 Controlled Access Highway Response
    Sudbury Cyclists Union March 28, 2014 Re: Route Planning Study, Highway 17 from Sudbury to Markstay and Highway 69 from the Estaire Road Interchange to Highway 17 The Sudbury Cyclists Union (SCU) has serious concerns about how the implementation of controlled access highways have affected cyclists in the Sudbury region. We also have some specific concerns about the implementation of this project as it relates to the safety of cyclists. The intent of all provincial roadwork is to improve the safety of its users. Traditionally, the focus has been on the safety of motorized traffic. The safety of pedestrians and cyclists has been long neglected on our highways. On page 2.1 of your “Study Design Report”, you note that to “promote a multimodal transportation network” is a key provincial responsibility” as is to “be a leader in road safety”. The sole intent of implementing controlled access highways is to facilitate the safe movement of motorized traffic. While implementing such highways draws dangerous traffic away from more local routes that are used by cyclists, alternative safe and convenient routes for cyclists are often an afterthought and are not an integral part of the planning process. An example is the Highway 69 corridor leading south from the City of Greater Sudbury that has been built without guaranteeing an alternative right of way for cyclists wishing to travel south. This controlled access highway has closed off access for non-motorized users to several towns and tourist areas, including the town of Killarney and the iconic Killarney Provincial Park. In other provinces, in particular in Western Canada, major motor routes similar to our controlled highways have paved shoulders that are used by cyclists.
    [Show full text]
  • Transportation of U.S. Grains Modal Share 1978-2016 Update
    1 Agricultural Marketing Service Updated April 2019 Transportation of U.S. Grains A Modal Share Analysis 1978-2016 Update 1 Preferred Citation Chang, Kuo-Liang “Matt”, Peter Caffarelli, Jesse Gastelle, and Adam Sparger. Transportation of U.S. Grains: A Modal Share Analysis, April 2019. U.S. Dept. of Agriculture, Agricultural Marketing Service. Web. <http://dx.doi.org/10.9752/TS049.04-2019> Photo credits: USDA USDA is an equal opportunity provider, employer, and lender. Transportation of U.S. Grains A Modal Share Analysis 1978-2016 Update USDA Economists Kuo-Liang “Matt” Chang Peter Caffarelli Jesse Gastelle Adam Sparger Transportation Services Division USDA Agricultural Marketing Service i Abstract This report provides a breakout by mode of corn, wheat, soybeans, sorghum, and barley movements to either domestic markets or U.S. ports for export between 1978 and 2016. It is the eleventh update of an initial modal share study completed in 1992. The purpose of this series of reports is to provide the latest information about changes and trends in the relative competitiveness and efficiency among the different transportation modes in moving grain. Estimates of the tonnages (and shares) of grain railed, barged, and trucked are developed from a variety of secondary sources. This data can be used to identify trends and implications on transportation from factors, such as changes in production volumes and commodity mix, as well as changes in the relative demand for U.S. grain for domestic purposes versus export. ii Contents Abstract .......................................................................................................................ii
    [Show full text]
  • FHWA Bikeway Selection Guide
    BIKEWAY SELECTION GUIDE FEBRUARY 2019 1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED February 2019 Final Report 4. TITLE AND SUBTITLE 5a. FUNDING NUMBERS Bikeway Selection Guide NA 6. AUTHORS 5b. CONTRACT NUMBER Schultheiss, Bill; Goodman, Dan; Blackburn, Lauren; DTFH61-16-D-00005 Wood, Adam; Reed, Dan; Elbech, Mary 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION VHB, 940 Main Campus Drive, Suite 500 REPORT NUMBER Raleigh, NC 27606 NA Toole Design Group, 8484 Georgia Avenue, Suite 800 Silver Spring, MD 20910 Mobycon - North America, Durham, NC 9. SPONSORING/MONITORING AGENCY NAME(S) 10. SPONSORING/MONITORING AND ADDRESS(ES) AGENCY REPORT NUMBER Tamara Redmon FHWA-SA-18-077 Project Manager, Office of Safety Federal Highway Administration 1200 New Jersey Avenue SE Washington DC 20590 11. SUPPLEMENTARY NOTES 12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE This document is available to the public on the FHWA website at: NA https://safety.fhwa.dot.gov/ped_bike 13. ABSTRACT This document is a resource to help transportation practitioners consider and make informed decisions about trade- offs relating to the selection of bikeway types. This report highlights linkages between the bikeway selection process and the transportation planning process. This guide presents these factors and considerations in a practical process- oriented way. It draws on research where available and emphasizes engineering judgment, design flexibility, documentation, and experimentation. 14. SUBJECT TERMS 15. NUMBER OF PAGES Bike, bicycle, bikeway, multimodal, networks, 52 active transportation, low stress networks 16. PRICE CODE NA 17. SECURITY 18. SECURITY 19. SECURITY 20.
    [Show full text]