Pollination of English Walnuts: Practices and Problems
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Growing Chinese Chestnuts in Missouri by Ken Hunt, Ph.D., Research Scientist, Center for Agroforestry, Blight
AGROFORESTRY IN ACTION University of Missouri Center for Agroforestry AF1007 - 2012 Growing Chinese Chestnuts in Missouri by Ken Hunt, Ph.D., Research Scientist, Center for Agroforestry, blight. In fact, the devastation caused by chestnut blight University of Missouri, Michael Gold, Ph.D., Associate Director, (Cryphonectria parasitica) stem cankers has reduced Center for Agroforestry, University of Missouri, William Reid, American chestnut from a major timber species to a rare Ph.D., Research and Extension Horticulturist, Kansas State Uni- understory tree often found cankered in sprout clumps. versity, & Michele Warmund, Ph.D., Professor of Horticulture, Major efforts are underway to restore the American Division of Plant Sciences, University of Missouri chestnut (see www.acf.org/). The Allegheny and Ozark chinkapins are multi-stem shrubs to small trees that hinese chestnut is an emerging new tree crop produce small tasty nuts and make interesting (but for Missouri and the Midwest. The Chinese blight susceptible) landscape trees that are also useful Cchestnut tree is a spreading, medium-sized tree for wildlife. with glossy dark leaves bearing large crops of nutri- tious nuts. Nuts are borne inside spiny burs that split open when nuts are ripe. Each bur contains one to three shiny, dark-brown nuts. Nuts are "scored" then micro- waved, roasted or boiled to help remove the leathery shell and papery seed coat, revealing a creamy or gold- en-colored meat. Chestnuts are a healthy, low-fat food ingredient that can be incorporated into a wide range of dishes – from soups to poultry stuffing, pancakes, muf- fins and pastries (using chestnut flour). Historically, demand for chestnuts in the United States has been highest in ethnic markets (European and Asian, for example) but as Americans search for novel and healthy food products, chestnuts are becoming more widely accepted. -
Western Plant Diagnostic Network Newsletter
Western Plant Diagnostic Network Newsletter WPDN – First Detector Dear WPDN First Detectors, Two new pest problems Network News have been found in the WPDN region. The first, the fruit- piercing moth, has been found in Hawaii. It is a destructive moth with a broad host range. The second is a The newsletter for the disease called thousand cankers disease of walnut, which WPDN is caused by a fungus vectored by the walnut twig beetle. First Detector Community This disease has been found throughout the western U.S. Read more about these in the following articles. February 2010 Volume 3, Number 1 We now have over 3,750 First Detectors in the WPDN, achieved with several training sessions in Guam, Oregon, Contact us at the WPDN and California. Congratulations to all our WPDN First Regional Center: Detector Educators. Dr. Amanda Hodges, the NPDN Training and Education Chair, informs us that there is a Phone: 530 754 2255 new online Chilli Thrips module on the Online Training Fax: 530 754 7998 site. Chilli Thrips Email: [email protected] To access this new module, log on to the NPDN home page at: http://www.npdn.org/ Websites: https://www.wpdn.org https://www.npdn.org Published by the WPDN Regional Center Department of Plant Pathology University of California, Davis Click on this logo Editor: Richard W. Hoenisch ©Copyright Regents of the University of California All Rights Reserved And begin! A Fruit-Piercing Moth found in Hawaii Lepidoptera: Noctuidae Oraesia excavata Butler Personal Communication from Bernarr Kumashiro, entomologist with HDOA On December 28, 2009, William Haines, University of Hawaii, notified Hawaii Department of Agriculture (HDOA) of a new fruit-piercing moth in Hawaii. -
U.S. EPA, Pesticide Product Label, , 07/22/2003
/40-/US Page 1 of 32 Oevrinol 50-OF Booklet OEV1035 draft revisions 5/23/03 Devrinol® 50-OF Selective Herbicide Dry Flowable For use on certain citrus, nuts, pome fruits, small fruits, stone fruits, vegetables and tobacco Active Ingredient: Napropamide (CAS No. 15299-99-7) ...................................................................................... 50% Other Ingredients: 50% Total: 100% Contains 50 Ibs. of active Ingredient per 100 Ibs. KEEP OUT OF REACH OF CHILDREN. CAUTION See additional precautionary statements and directions for use inside booklet. EPA Reg. No. 100-1035 EPA Est. ACCEPTED 0'- -n) ...... tiLiI; L In EPA Lettl."r Dated Made in U.S.A. JUL 22 2003 Ul)der the Federal Imectitide. fwadicide. IUtd Rtulcndcldle .4.ct WI lIDlendcd. [Dr th... .... U~lde SCP# t"ltW.erf'd und .. r 'ia'A, .•. rit~. ...lett>- 4 pounds Net Weight ( Page 2 of 32 Oevrinol 50-OF Booklet OEV1035 draft revisions 5/23/03 TABLE OF CONTENTS FIRST AID ....................................................................................................................................................... PRECAUTIONARY STATEMENTS ................................................................................................................ Hazards To Humans And Domestic Animals ........................................................................................ .. Personal Protective Equipment. .............................................................................................................. Environmental Hazards .......................................................................................................................... -
Comparative Proteomic Analysis of Walnut (Juglans Regia L.) Pellicle Tissues Reveals the Regulation of Nut Quality Attributes
life Article Comparative Proteomic Analysis of Walnut (Juglans regia L.) Pellicle Tissues Reveals the Regulation of Nut Quality Attributes Paulo A. Zaini 1, Noah G. Feinberg 1, Filipa S. Grilo 2 , Houston J. Saxe 1 , Michelle R. Salemi 3, Brett S. Phinney 3 , Carlos H. Crisosto 1 and Abhaya M. Dandekar 1,* 1 Department of Plant Sciences, University of California, Davis, CA 95616, USA; [email protected] (P.A.Z.); [email protected] (N.G.F.); [email protected] (H.J.S.); [email protected] (C.H.C.) 2 Department of Food Sciences and Technology, University of California, Davis, CA 95616, USA; [email protected] 3 Proteomics Core Facility, University of California, Davis, CA 95616, USA; [email protected] (M.R.S.); [email protected] (B.S.P.) * Correspondence: [email protected] Received: 2 November 2020; Accepted: 25 November 2020; Published: 27 November 2020 Abstract: Walnuts (Juglans regia L.) are a valuable dietary source of polyphenols and lipids, with increasing worldwide consumption. California is a major producer, with ‘Chandler’ and ‘Tulare’ among the cultivars more widely grown. ‘Chandler’ produces kernels with extra light color at a higher frequency than other cultivars, gaining preference by growers and consumers. Here we performed a deep comparative proteome analysis of kernel pellicle tissue from these two valued genotypes at three harvest maturities, detecting a total of 4937 J. regia proteins. Late and early maturity stages were compared for each cultivar, revealing many developmental responses common or specific for each cultivar. Top protein biomarkers for each developmental stage were also selected based on larger fold-change differences and lower variance among replicates, including proteins for biosynthesis of lipids and phenols, defense-related proteins and desiccation stress-related proteins. -
Heterodichogamy.Pdf
Research Update TRENDS in Ecology & Evolution Vol.16 No.11 November 2001 595 How common is heterodichogamy? Susanne S. Renner The sexual systems of plants usually Heterodichogamy differs from normal (Zingiberales). These figures probably depend on the exact spatial distribution of dichogamy, the temporal separation of underestimate the frequency of the gamete-producing structures. Less well male and female function in flowers, in heterodichogamy. First, the phenomenon known is how the exact timing of male and that it involves two genetic morphs that is discovered only if flower behavior is female function might influence plant occur at a 1:1 ratio. The phenomenon was studied in several individuals and in mating. New papers by Li et al. on a group discovered in walnuts and hazelnuts5,6 natural populations. Differential of tropical gingers describe differential (the latter ending a series of Letters to movements and maturation of petals, maturing of male and female structures, the Editor about hazel flowering that styles, stigmas and stamens become such that half the individuals of a began in Nature in 1870), but has gone invisible in dried herbarium material, population are in the female stage when almost unnoticed7. Indeed, its recent and planted populations deriving from the other half is in the male stage. This discovery in Alpinia was greeted as a vegetatively propagated material no new case of heterodichogamy is unique new mechanism, differing ‘from other longer reflect natural morph ratios. The in involving reciprocal movement of the passive outbreeding devices, such as discovery of heterodichogamy thus styles in the two temporal morphs. dichogamy…and heterostyly in that it depends on field observations. -
Analysis of Phylogenetic Relationships in the Walnut Family Based on Internal Transcribed Spacer Sequences and Secondary Structures(ITS2)
Analysis of Phylogenetic Relationships in The Walnut Family Based on Internal Transcribed Spacer Sequences and Secondary Structures(ITS2) Zhongzhong Guo Tarim University Qiang Jin Tarim University Zhenkun Zhao Tarim University Wenjun Yu Tarim University Gen Li Tarim University Yunjiang Cheng Tarim University Cuiyun Wu Tarim University rui Zhang ( [email protected] ) Tarim University https://orcid.org/0000-0002-4360-5179 Research Article Keywords: Base sequence, Evolution, Juglandaceae, Ribosomal spacer, Secondary structure Posted Date: May 13th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-501634/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/23 Abstract This study aims to investigate the phylogenetic relationships within the Juglandaceae family based on the Internal Transcribed Spacer's primary sequence and secondary structures (ITS2). Comparative analysis of 51 Juglandaceae species was performed across most of the dened seven genera. The results showed that the ITS2 secondary structure's folding pattern was highly conserved and congruent with the eukaryote model. Firstly, Neighbor-joining (N.J.) analysis recognized two subfamilies: Platycaryoideae and Engelhardioideae. The Platycaryoideae included the Platycaryeae (Platycarya+ (Carya+ Annamocarya)) and Juglandeae (Juglans-(Cyclocarya + Pterocarya)). The Engelhardioideae composed the (Engelhardia+Oreomunnea+Alfaroa)). The Rhoiptelea genus was generally regarded as an outgroup when inferring the phylogeny of Juglandaceae. However, it is clustered into the Juglandaceae family and showed a close relationship with the Platycaryoideae subfamily. Secondly, the folded 3-helices and 4-helices secondary structure of ITS2 were founded in the Juglandaceae family. Therefore, these ITS2 structures could be used as formal evidence to analyze Juglandaceae's phylogeny relationship. -
Walnut Jardin Botanique´ – Montreal, Quebec
Juglans nigra – Black Walnut Jardin Botanique´ – Montreal, Quebec THE JUGLANDACEAE – WALNUTS AND HICKORIES By Susan McDougall 1 Daddy’s work was physically demanding. He was a builder of houses – “spec” houses, as they were known – meaning he bought land, acquired a bank loan, and built houses one at a time, selling them to repay the loan and provide his family with a modest living. After selling one or sometimes before a sale, he would move on to the next project. It was an uncertain life, for then as now, quality homes had to compete with mass production. And, to keep costs down, Daddy performed nearly all the work himself. Occasionally I would visit the construction site, but the most meaningful memories are of daddy arriving home, parking the car out front (no garage or truck in the early years), and coming into a warm house in winter and a shaded one in summer. He worked the year round in the Pacific Northwest - winter rains and summer heat were no deterrent. After greetings and dinner, I would return to my room and daddy would head for his rocking chair in the corner of the living room, happy to read the newspaper or a book. But as I played or studied, occasionally I would hear another sound besides the occasional slow breathing of a tired man nodding off, or the turning of the newspaper pages. It was a cracking/crunching and comforting, reassuring sound. Daddy was eating walnuts, fresh from the shell. Old nutcracker used by my Dad The walnut shells did not give up the kernel within easily, but they could be broken open along a suture line with the simplest of tools. -
Black Walnuts Matt Ernst1 Introduction the Two Major Varieties of Walnuts Grown for Food in the U.S
Center for Crop Diversification Crop Profile CCD-CP-128 Black Walnuts Matt Ernst1 Introduction The two major varieties of walnuts grown for food in the U.S. are black walnut (Eastern black walnut, Juglans nigra; and California black walnut, Juglans hindsii); and Persian walnut (Juglans regia), also called Carpathian walnut or English walnut. Eastern black walnut is native to North America and is a valuable timber tree, long harvested for veneer lumber. Black walnuts also have a long history as a food ingredient, and Eastern black walnuts are one of the few wild- harvested commercial food crops in the U.S. Persian walnut trees were introduced in California by Spanish missionaries in the 1700s, and California dominates U.S. commercial Persian walnut production. This profile focuses on Eastern black walnut for nut production. Persian walnuts are not recommended for surrounding states for wholesaling to hulling stations. commercial production in Kentucky, where Persian Black walnut nutmeats are used in baking, ice cream, walnut is limited by cold temperatures, winter injury candies and other food preparations. State and federal and late spring frost damage; walnut blight; and food safety, labeling and other food manufacturing squirrels, which eat the nuts when they are immature. regulations, including allergen concerns, may Detailed production information for both Eastern apply when shelling nuts and making food products black walnut and Persian walnut is available in the containing tree nuts. Hulled and cleaned in-shell black University of Kentucky Extension publication ID- walnuts have also been used in some arts and crafts 77, Nut Tree Growing in Kentucky. -
Status and Impact of Walnut Twig Beetle in Urban Forest, Orchard, and Native Forest Ecosystems
J. For. 117(2):152–163 BARK BEETLE SPECIAL SECTION doi: 10.1093/jofore/fvy081 Published by Oxford University Press on behalf of the Society of American Foresters 2019. Tis work is written by (a) US Government employee(s) and is in the public domain in the US. entomology Status and Impact of Walnut Twig Beetle in Urban Forest, Orchard, and Native Forest Ecosystems Steven J. Seybold, William E. Klingeman III, Stacy M. Hishinuma, Tom W. Coleman, and Andrew D. Graves The walnut twig beetle, a native phloem-boring bark beetle originating on Arizona walnut, has invaded urban, is fatal to walnut trees (Figure 2) and was frst orchard, and native forest habitats throughout the USA as well as in Italy. Although the beetle has been associated noted in the late 2000s for its involvement with dead and dying walnut trees indigenous to riparian forests of the Southwest, the primary impact appears to in the gradual deterioration and mortality of have been on the health of landscape black walnut trees in urban and peri-urban sites in western US states, and several species of black walnut in the west- in Pennsylvania, Tennessee, and Virginia. This has been refected in numbers of trees removed and tree removal ern United States (Graves et al. 2009, Flint costs. In addition, trees have been killed in the primary US Juglans germplasm repository in northern California, et al. 2010, Tisserat et al. 2011, Seybold and low, but measureable, tree mortality has occurred in some English walnut orchards in California’s Central Valley. et al. 2013b). -
Whole Genome Based Insights Into the Phylogeny and Evolution of the Juglandaceae
Whole Genome based Insights into the Phylogeny and Evolution of the Juglandaceae Huijuan Zhou Northwest A&F University: Northwest Agriculture and Forestry University Yiheng Hu Northwestern University Aziz Ebrahimi Purdue University Peiliang Liu Northwestern University Keith Woeste Purdue University Shuoxin Zhang Northwest A&F University: Northwest Agriculture and Forestry University Peng Zhao ( [email protected] ) Northwest University https://orcid.org/0000-0003-3033-6982 Research article Keywords: Diversication, Divergence time, Genome, Juglandaceae, Phylogenomics, Plastome Posted Date: May 24th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-495294/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/23 Abstract Background: The walnut family (Juglandaceae) contains commercially important woody trees commonly called walnut, wingnut, pecan and hickory. Phylogenetic relationships in the Juglandaceae are problematic, and their historical diversication has not been claried, in part because of low phylogenetic resolution and/or insucient marker variability. Results: We reconstructed the backbone phylogenetic relationships of Juglandaceae using organelle and nuclear genome data from 27 species. The divergence time of Juglandaceae was estimated to be 78.7 Mya. The major lineages diversied in warm and dry habitats during the mid-Paleocene and early Eocene. The plastid, mitochondrial, and nuclear phylogenetic analyses all revealed three subfamilies, i.e., Juglandoideae, Engelhardioideae, Rhoipteleoideae. Five genera of Juglandoideae were strongly supported. Juglandaceae were estimated to have originated during the late Cretaceous, while Juglandoideae were estimated to have originated during the Paleocene, with evidence for rapid diversication events during several glacial and geological periods. The phylogenetic analyses of organelle sequences and nuclear genome yielded highly supported incongruence positions for J. -
International Union for the Protection of New Varieties of Plants
E TG/JUGLA(proj.5) ORIGINAL: English DATE: 2019-14-06 INTERNATIONAL UNION FOR THE PROTECTION OF NEW VARIETIES OF PLANTS Geneva Inexpert red revisionJune 2019 by Spanish DRAFT * BLACK WALNUT UPOV Code(s): JUGLA_HIN; JUGLA_HRE; JUGLA_MAJ; JUGLA_MRG; JUGLA_NIG; JUGLA_NRE Juglans hindsii (Jeps.) R. E. Sm.; Juglans hindsii × Juglans regia; Juglans major (Torr.) A. Heller; Juglans major x Juglans regia; Juglans nigra L.; Juglans nigra Juglans regia x L. GUIDELINES FOR THE CONDUCT OF TESTS FOR DISTINCTNESS, UNIFORMITY AND STABILITY to be considered by the Technical Working Party for Fruit Crops at its fiftieth session, to be held in Budapest, Hungary, from 2019-06-24 to 2019-06-28 Disclaimer: this document does not represent UPOV policies or guidance * These names were correct at the time of the introduction of these Test Guidelines but may be revised or updated. [Readers are advised to consult the UPOV Code, which can be found on the UPOV Website (www.upov.int), for the latest information.] TG/JUGLA(proj.5) Black Walnut, 2019-06-14 2 Alternative names:* Botanical name English French German Spanish Juglans hindsii (Jeps.) Hinds's black walnut; kalifornische Walnuß R. E. Sm. Hinds's walnut; northern California black walnut; northern California walnut Juglans hindsii × Juglans regia; Juglans ×paradox Burbank Juglans major (Torr.) Arizona walnut A. Heller Juglans major x Juglans regia Juglans nigra L. Black Walnut Noyer noir Schwarznuss Nogal negro Juglans nigra x Juglans regia L.; Juglans ×intermedia Jacques The purpose of these guidelines (“Test Guidelines”) is to elaborate the principles contained in the General Introduction (document TG/1/3), and its associated TGP documents, into detailed practical guidance for the harmonized examination of distinctness, uniformity and stability (DUS) and, in particular, to identify appropriate characteristics for the examination of DUS and production of harmonized variety descriptions. -
English Walnut Rootstocks Help Avoid Blackline Disease, but Produce Less Than ‘Paradox’ Hybrid
RESEARCH ARTICLE ▼ English walnut rootstocks help avoid blackline disease, but produce less than ‘Paradox’ hybrid Joseph A. Grant Gale H. McGranahan ▼ While ‘Paradox’ hybrid seedlings are often the rootstocks of choice for California walnut orchards, there is a resurgence of interest in using English walnut seedlings because walnut blackline disease, which is endemic in many California walnut production districts, does not affect them. We compared the growth and productivity of walnuts on English rootstocks from a variety of sources to those on Paradox rootstock. The growth and productivity of ‘Chandler’ walnut trees were similar among trees on seedling English rootstocks in one trial, but trees on English rootstocks were smaller and had lower production than Paradox John M. Mircetich John M. hybrid–rooted trees in the other. alifornia’s first walnut trees and orchards were planted during the SpanishC mission period (around 1800), using seedlings of early varieties of Persian or English walnut (Juglans regia) chosen for their superior growth and nut quality. Since the 1890s, walnut trees in California have been propagated by grafting or budding desired cultivars onto rootstocks chosen for their adapta- tion to different physical, chemical or biological soil conditions at individual orchard sites. From the early to mid- Blackline-infected trees on, above left, black walnut, and, above right, ‘Paradox’ rootstocks are slowly girdled by the death of rootstock tissue at the graft union. Top, over time, wal- 20th century, seedlings of Northern nut trees with blackline decline in vigor, leading to dieback of branches and, ultimately, California black walnut (Juglans hindsii) death of the tree.