LABORATORY 4 Fractional Distillation Concept Goals: Role of Fractionating Column and When Such a Column Is Necessary, Refraction of Light by Molecules

Total Page:16

File Type:pdf, Size:1020Kb

LABORATORY 4 Fractional Distillation Concept Goals: Role of Fractionating Column and When Such a Column Is Necessary, Refraction of Light by Molecules Organic Chemistry: Techniques and Transformations LABORATORY 4 Fractional Distillation Concept goals: Role of fractionating column and when such a column is necessary, refraction of light by molecules. Operational goal: Develop the skill to perform a distillation effectively, use refractive indices to determine the identity of compounds. Introduction This laboratory provides practice in separating a homogeneous mixture, or solution, into its pure components. This separation uses a technique called fractional distillation. This separation is a physical method, which depends on differences in boiling points of the two or more components. Fractional distillation is a common practice in industry and in the laboratory. On a large scale it is used to refine petroleum into the “fractions” used for gasoline, heating oil, etc. In the laboratory it is employed whenever a mixture of liquids must be separated. By noting the boiling temperature of the collected fractions and other physical properties, fractional distillation can also be used to identify the components in a solution of unknown composition. You will be assigned an unknown solution containing two pure, liquid components whose boiling points differ by at least 20 °C. Be sure to record the name or number of this fractional distillation unknown in both your laboratory notebook and in your final report. After fractionally distilling the unknown mixture, the data you collect will be graphed using a microcomputer with appropriate software, e.g., EXCEL™. You will use the data you collect to plot a graph of Head Temperature in °C vs. Volume of Distillate collected in mL. Head temperature is the boiling point of the liquid that condenses at the top of the fractionating column and enters the side arm of the condenser as a liquid. In a mixture of two components, the low boiling component will rise to the top of the column first and eventually be displaced by the higher boiling component. If the fractionating column provides good separation, the low boiling component will come off the column at a steady, or constant, temperature. Then the head temperature will rise abruptly, producing a “break” in the curve, and the second, higher-boiling component will come off the column at a constant temperature. Each period of steady, constant boiling produces a nearly horizontal “plateau” in the graph. Projecting this plateau to the Head Temperature axis of the graph gives a good approximation of the boiling point of that particular component. Thus, you can identify both the low boiling and high boiling components in your mixture. The position of the “break” between low and high boiling points can tell you the approximate composition (relative amounts of each component) of the original mixture. You will also be asked to determine the refractive indices of the fractions you collect. These data will help you to better identify the components in your unknown mixture. Organic Chemistry: Techniques and Transformations Carefully follow your particular instructor’s requirements for preparing a final report of your work in the laboratory. Ask your instructor if you have any doubt about his/her requirements for the report. Reading and Pre-Lab Assignments Read the following sections in The Organic Chem Lab Survival Manual: A Student’s Guide to Techniques by James W. Zubrick, John Wiley & Sons, Inc. • Jointware and Clamps and Clamping. These chapters will familiarize you with the equipment to be used in this experiment, and its care. We have clear glass joints that do not need to be lubricated. We always use a drop of glycerol on the • rubber part of the thermometer adapter to make it easier and safer to insert and adjust the thermometer. • Simple Distillation. See the apparatus set-up • Fractional Distillation. See the apparatus set-up • Theory of Distillation. This is not easy reading, however, you should be able to understand the figures demonstrating the theory. • Refractometry. You will be determining the refractive index of your collected fractions. Before you come to the laboratory, do the Pre-Lab assignments for this laboratory as assigned by your instructor. Prepare your laboratory notebook as required by your instructor. Procedure Read the reading assignments in the Reading section above. Notice that fractional distillation is just a modification of simple distillation. Read both assignments carefully. Assemble and setup the fractional distillation apparatus as illustrated in the two figures with the following modifications. It will not be necessary to use an ice-water bath or the receiving flask. Instead, replace the receiving flask with a 15-mL graduated centrifuge tube held in place with a clamp. In this way the volume of the distillate can be measured in milliliters and different fractions may be easily obtained by changing collecting tubes. Begin the assembly of your apparatus by clamping the heating mantle to the large ring stand about 5 cm from the bench top. Place the 100 mL round bottomed flask into the well of the heating mantle and clamp it in place. This step is particularly important in any heating operation. If it should be necessary to remove the heating source, the mantle can be dropped away from the flask without the whole apparatus falling apart! Lower the heating mantle and move it to the side. Add 20 ml of the binary liquid unknown assigned to you into the round-bottomed flask. (Now is a perfect time to record the number or letter of your unknown solution in your notebook. If you delay as Organic Chemistry: Techniques and Transformations long as 30 seconds, you may well have forgotten this important information.) Add 10-20 of the small boiling chips to the flask. Place the heating mantle back under the flask. Continue with the assembly by adding the fractionating column and securing it with a clamp. Place the three-way adapter on the top of the fractionating column. All glass components of your apparatus should be in a straight, vertical line, parallel to the ring stand rod. A Keck Clamp is used to hold the west condenser to the side arm of the three way adapter and the condenser is gently clamped in place with a clamp placed about 2/3 of the way down the condenser and attached to the small ring stand. This is the tricky part. Be certain that all joints fit well without leaks or strain on the joints or on the clamps. Use the last clamp on the small ring stand to position one of the 15 ml centrifuge tubes just below the exit opening of the condenser. Attach the rubber condenser tubing to the west condenser so that the water flows in the bottom and out the top. All lockers should now have a screw cap/ O-ring type of thermometer adapter. Place the thermometer adapter on the top of the three-way adapter and adjust the thermometer so that the entire bulb is below the sidearm of the adapter. (If you have one of the older adapters with a neoprene rubber cap with a hole in it, you will need to lubricate the thermometer. Place a small drop of glycerol (glycerine) on the rubber portion of the thermometer adapter and carefully insert the thermometer, keeping your hands as close together as possible. The glycerol provides an excellent glass-rubber lubrication and should enable you to adjust the height of the thermometer safely.) Consult with your instructor about any doubts or confusion you may have. Recheck all joints to insure a tight fit. When you are satisfied that your setup is correct, have it approved by your instructor or teaching assistant before you continue. Plug the powerstat into the outlet. Turn the powerstat on. Adjust the voltage to 45 to 50 volts. Distill the solution at a rate of no more than 5-10 drops of distillate per minute coming over into centrifuge tube. A slow equilibration is essential to a successful fractional distillation. For this reason, keep the voltage low at the beginning and increase it as necessary to maintain a slow, steady distillation. Record the head temperature of the distillate in °C for about every 0.5 mL of distillate. The first material to distill will be the low boiling component of your mixture. You should have a good idea of its identity by noting its distillation temperature. Collect about 4 to 5 mL of this material as your first fraction. Change centrifuge tubes and collect a second 5 mL fraction. During this second fraction you should see the temperature rise somewhat as a mixture of the two components distills. When the entire lower boiling component has distilled, the temperature will rise to the boiling point of the second component. You may need to adjust the voltage to 70 volts or higher in order to provide enough energy to distill the higher boiling material. When the temperature has stabilized at the boiling point of the higher boiling component, change sample tubes and collect a third fraction. This should be mostly the higher boiling component. After you have collected about 15 ml of total distillate, turn the power off, Organic Chemistry: Techniques and Transformations lower the heating mantle away from the flask, and allow the apparatus to cool before taking it apart. Determine the refractive index of the first and third fractions (the lower and higher boiling components of your binary mixture). Record your data directly into your notebook (it is good science to have a “no data on scraps of paper” rule). As a reminder, use only plastic pipettes in applying sample to the easily scratched prism of the refractometer. Clean the refractometer between samples by wiping with a Chem wipe. Use a computer with a program such as Excel™ to generate a fractional distillation curve for your data.
Recommended publications
  • Extraction of Wax from Sorghum Bran •
    i EXTRACTION OF WAX FROM SORGHUM BRAN • 1 HSIEN-WEN HSU <& . ***£/ B. S., National Taiwan University, China, 1951 A THESIS » submitted in partial fulfillment of the requirements for the degree MASTER OF SCIENCE - Department of Chemical Engineering KANSAS STATE COLLEGE OF AGRICULTURE AND APPLIED SCIENCE - 1955 » k Lo i~i ii Q^cu^v^Js TABLE OF CONTENTS INTRODUCTION 1 PREVIOUS WORK 3 MATERIALS 6 GLASS SOXHLET EXTRACTION AND ANALYSIS OF WAX AND OIL IN MISCELLA 7 Procedure of Using Soxhlet Extractor 7 Separation of Wax from Oil by the Acetone Method.. 8 Summary of Results 9 PILOT PLANT EXTRACTION 15 SEPARATION OF WAX AND OIL 16 Effect of Temperature in the Acetone Method 16 Urea Complex Method of Separation. 17 Theory 17 Experimental Procedure 22 Summary of Results 26 COST ESTIMATION OF A WAX RECOVERY PLANT 29 DISCUSSION 30 CONCLUSIONS 35 ACKNOWLEDGMENTS 36 BIBLIOGRAPHY 37 APPENDIX 39 INTRODUCTION i One of the functions of the Agricultural Experiment Station is the never ending search for means of better and fuller utilization of the agri- cultural products that are of particular interest in the state of Kansas. In line with this broad objective, the extraction of economically valuable lipid materials from the sorghum bran has been studied in several theses in the Departments of Chemical Engineering and Chemistry in recent years. Generally the emphasis has b. en placed upon either the chemical and physical properties of these lipides or the equipment design and performance for the solvent ex- traction operation. A brief review of the previous work is presented in the ensuing section.
    [Show full text]
  • The Separation of Three Azeotropes by Extractive Distillation by An-I Yeh A
    The separation of three azeotropes by extractive distillation by An-I Yeh A thesis submitted in partial fulfillment of the requirement for the degree of Master of Science in Chemical Engineering Montana State University © Copyright by An-I Yeh (1983) Abstract: Several different kinds of extractive distillation agents were investigated to affect the separation of three binary liquid mixtures, isopropyl ether - acetone, methyl acetate - methanol, and isopropyl ether - methyl ethyl ketone. Because of the small size of the extractive distillation column, relative volatilities were assumed constant and the Fenske equation was used to calculate the relative volatilities and the number of minimum theoretical plates. Dimethyl sulfoxide was found to be a good extractive distillation agent. Extractive distillation when employing a proper agent not only negated the azeotropes of the above mixtures, but also improved the efficiency of separation. This process could reverse the relative volatility of isopropyl ether and acetone. This reversion was also found in the system of methyl acetate and methanol when nitrobenzene was the agent. However, normal distillation curves were obtained for the system of isopropyl ether and methyl ethyl ketone undergoing extractive distillation. In the system of methyl acetate and methanol, the relative volatility decreased as the agents' carbon number increased when glycols were used as the agents. In addition, the oxygen number and the locations of hydroxyl groups in the glycols used were believed to affect the values of relative volatility. An appreciable amount of agent must be maintained in the column to affect separation. When dimethyl sulfoxide was an agent for the three systems studied, the relative volatility increased as the addition rate increased.
    [Show full text]
  • Distillation 65 Chem 355 Jasperse DISTILLATION
    Distillation 65 Chem 355 Jasperse DISTILLATION Background Distillation is a widely used technique for purifying liquids. The basic distillation process involves heating a liquid such that liquid molecules vaporize. The vapors produced are subsequently passed through a water-cooled condenser. Upon cooling, the vapor returns to it’s liquid phase. The liquid can then be collected. The ability to separate mixtures of liquids depends on differences in volatility (the ability to vaporize). For separation to occur, the vapor that is condensed and collected must be more pure than the original liquid mix. Distillation can be used to remove a volatile solvent from a nonvolatile product; to separate a volatile product from nonvolatile impurities; or to separate two or more volatile products that have sufficiently different boiling points. Vaporization and Boiling When a liquid is placed in a closed container, some of the molecules evaporate into any unoccupied space in the container. Evaporation, which occurs at temperatures below the boiling point of a compound, involves the transition from liquid to vapor of only those molecules at the liquid surface. Evaporation continues until an equilibrium is reached between molecules entering and leaving the liquid and vapor states. The pressure exerted by these gaseous molecules on the walls of the container is the equilibrium vapor pressure. The magnitude of this vapor pressure depends on the physical characteristics of the compound and increases as temperature increases. In an open container, equilibrium is never established, the vapor can simply leave, and the liquid eventually disappears. But whether in an open or closed situation, evaporation occurs only from the surface of the liquid.
    [Show full text]
  • Standard Operating Procedures
    Standard Operating Procedures 1 Standard Operating Procedures OVERVIEW In the following laboratory exercises you will be introduced to some of the glassware and tech- niques used by chemists to isolate components from natural or synthetic mixtures and to purify the individual compounds and characterize them by determining some of their physical proper- ties. While working collaboratively with your group members you will become acquainted with: a) Volumetric glassware b) Liquid-liquid extraction apparatus c) Distillation apparatus OBJECTIVES After finishing these sessions and reporting your results to your mentor, you should be able to: • Prepare solutions of exact concentrations • Separate liquid-liquid mixtures • Purify compounds by recrystallization • Separate mixtures by simple and fractional distillation 2 EXPERIMENT 1 Glassware Calibration, Primary and Secondary Standards, and Manual Titrations PART 1. Volumetric Glassware Calibration Volumetric glassware is used to either contain or deliver liquids at a specified temperature. Glassware manufacturers indicate this by inscribing on the volumetric ware the initials TC (to contain) or TD (to deliver) along with the calibration temperature, which is usually 20°C1. Volumetric glassware must be scrupulously clean before use. The presence of streaks or droplets is an indication of the presence of a grease film. To eliminate grease from glassware, scrub with detergent solution, rinse with tap water, and finally rinse with a small portion of distilled water. Volumetric flasks (TC) A volumetric flask has a large round bottom with only one graduation mark positioned on the long narrow neck. Graduation Mark Stopper The position of the mark facilitates the accurate and precise reading of the meniscus. If the flask is used to prepare a solution starting with a solid compound, add small amounts of sol- vent until the entire solid dissolves.
    [Show full text]
  • Experiment 2 — Distillation and Gas Chromatography
    Chem 21 Fall 2009 Experiment 2 — Distillation and Gas Chromatography _____________________________________________________________________________ Pre-lab preparation (1) Read the supplemental material on distillation theory and techniques from Zubrick, The Organic Chem Lab Survival Manual, and the section on Gas Chromatography from Fessenden, Fessenden, and Feist, Organic Laboratory Techniques, then read this handout carefully. (2) In your notebook, write a short paragraph summarizing what you will be doing in this experiment and what you hope to learn about the efficiencies of the distillation techniques. (3) Sketch the apparatus for the simple and fractional distillations. Your set-up will look much like that shown on p 198 of Zubrick, except that yours will have a simple drip tip in place of the more standard vacuum adaptor. (4) Look up the structures and relevant physical data for the two compounds you will be using. What data are relevant? Read the procedure, think about the data analysis, and decide what you need. (5) Since you have the necessary data, calculate the log of the volatility factor (log α) that you will need for the theoretical plate calculation. Distillation has been used since antiquity to separate the components of mixtures. In one form or another, distillation is used in the manufacture of perfumes, flavorings, liquors, and a variety of other organic chemicals. One of its most important modern applications is in refining crude oil to make fuels, lubricants, and other petrochemicals. The first step in the refining process is separation of crude petroleum into various hydrocarbon fractions by distillation through huge fractionating columns, called distillation towers, that are hundreds of feet high.
    [Show full text]
  • Laboratory Rectifying Stills of Glass 2
    » LABORATORY RECTIFYING STILLS OF GLASS 2 By Johannes H. Bruun 3 and Sylvester T. Schicktanz 3 ABSTRACT A complete description is given of a set of all-glass rectifying stills, suitable for distillation at pressures ranging from atmospheric down to about 50 mm. The stills are provided with efficient bubbling-cap columns containing 30 to 60 plates. Adiabatic conditions around the column are maintained by surrounding it with a jacket provided with a series of independent electrical heating units. Suitable means are provided for adjusting or maintaining the reflux ratio at the top of the column. For the purpose of conveniently obtaining an accurate value of the true boiling points of the distillates a continuous boiling-point apparatus is incor- porated in the receiving system. An efficient still of the packed-column type for distillations under pressures less than 50 mm is also described. Methods of operation and efficiency tests are given for the stills. CONTENTS Page I. Introduction 852 II. General features of the still assembly 852 III. Still pot 853 IV. Filling tube and heater for the still pot 853 V. Rectifying column 856 1. General features 856 2. Large-size column 856 3. Medium-size column 858 4. Small-size column 858 VI. Column jacket 861 VII. Reflux regulator 861 1. With variable reflux ratio 861 2. With constant reflux ratio 863 VIII. The continuous boiling-point apparatus 863 IX. Condensers and receiver 867 X. The mounting of the still 867 XI. Manufacture and transportation of the bubbling-cap still 870 XII. Operation of the bubbling-cap still 870 XIII.
    [Show full text]
  • Fractional Distillation (Ideal) 1-Propanol/2-Propanol at 760 Torr
    Statistical Molecular Thermodynamics Christopher J. Cramer Video 10.7 Azeotropes and Immiscible Phases Fractional Distillation (Ideal) 1-propanol/2-propanol at 760 torr (from Video 10.5) bp as a function of composition x1−propanol(Solution) y1−propanol (Vapor) At 90 °C (between the two pure component boiling points) € the composition of the liquid is 59 mol% 1-propanol (point a) and the vapor is 45 mol% 1-propanol (point b) Fractional distillation: vapor is condensed and revaporized many times a to b to c to d to ... and finally you get to the pure lower boiling component at the top (the coolest point) of a distillation head! Fractional Distillation (Non-Ideal) benzene/ethanol at 760 torr Using Dalton’s/Raoult’s laws: * P2 x2P2 b b y = = a a 2 760 torr lim x2→1 760 torr d c d c and Dalton’s/Henry’s laws: f e e P2 x2kH,2 y2 = = 760 torr lim x2→0 760 torr bp as a function of composition Deviation from ideality permits the vapor phase to be enriched in either component depending on liquid composition. Distillation of benzene-rich mixture Distillation of ethanol-rich mixture Fractional distillation: vapor is condensed and revaporized many times a to b to c to d to e to f, but, irrespective of initial composition, ultimately an azeotropic composition is reached (about 55:45 above) that cannot be further separated by distillation! Self-assessment What purification can be accomplished for a liquid mixture that is not already at the azeotropic composition? Self-assessment Explained If not already at the azeotropic composition, the azeotrope at the top of b b a a the distillation head will be carrying away a greater fraction of one component than d is present in the liquid.
    [Show full text]
  • Crude Oil Distillation
    fact sheet Crude oil distillation Crude oil is a complex mixture of hydrocarbon molecules of all different shapes and lengths. This rich soup is where we get petrol for our cars, bitumen for our roads, and oils for our engines, amongst many other things. To create any of the thousands of useful things made from oil different hydrocarbons have to be separated. methane This is done by separating or refining using a distillation process. Hydrocarbons Hydrocarbons are molecules made from carbon and hydrogen atoms. With a chain of carbon as their ‘backbone’, hydrocarbons differ in their length and can form chains, branches or even rings. This backbone can range from just one carbon atom in length to more than 60 atoms. cyclohexane Methane has a single carbon atom; cyclohexane has six carbon atoms in a ring; and octane has eight carbon atoms in a chain. Even slight differences in length and structure of hydrocarbon molecules can give different chemical and physical properties. The refining process separates molecules according to their different boiling points. Hydrocarbons are jumbled together as thick black crude oil. The most efficient way to separate them into smaller fractions is by a process called fractional distillation. octane Hydrocarbons are found as solids, liquids and gases based on their length Short hydrocarbons (one to A backbone of five or more carbons Once a hydrocarbon gets so four carbons) are gases at room will give you a liquid hydrocarbon. large and cumbersome that it temperatures because they have Shorter liquid hydrocarbons will boil has a backbone of more than 20 such low boiling points.
    [Show full text]
  • Distillation1
    Distillation1 Distillation is a commonly used method for purifying liquids and separating mixtures of liquids into their individual components. Familiar examples include the distillation of crude fermentation broths into alcoholic spirits such as gin and vodka, and the fractionation of crude oil into useful products such as gasoline and heating oil. In the organic lab, distillation is used for purifying solvents and liquid reaction products. In analyzing a distillation, how do we know the real composition of each collected component? In this lab, we will introduce gas chromatography (GC), which will tell us how pure each fraction we collected is. After the distillation of your unknown is complete, you will analyze both components via GC. See page 11 and 12 for a light discussion on GC. To understand distillation, first consider what happens upon heating a liquid. At any temperature, some molecules of a liquid possess enough kinetic energy to escape into the vapor phase (evaporation) and some of the molecules in the vapor phase return to the liquid (condensation). An equilibrium is set up, with molecules going back and forth between liquid and vapor. At higher temperatures, more molecules possess enough kinetic energy to escape, which results in a greater number of molecules being present in the vapor phase. If the liquid is placed into a closed container with a pressure gauge attached, one can obtain a quantitative measure of the degree of vaporization. This pressure is defined as the vapor pressure of the compound, which can be measured at different temperatures. Consider heating cyclohexane, a liquid hydrocarbon, and measuring its vapor pressure at different temperatures.
    [Show full text]
  • CHEM 344 Distillation of Liquid Mixtures
    CHEM 344 Distillation of liquid mixtures 1. Distillation basics The vaporization of a liquid and condensation of the resulting vapor is the basis of distillation. Organic liquids containing small amounts (<15%) of impurities or non-volatile substances are easily purified by simple distillation, as are liquid mixtures where the difference in boiling point of the components is >70 oC. Fractional distillation is more useful for separating mixtures of liquids where the boiling points of the components differ by <70 oC (see later). A typical simple distillation setup is shown in Figure 1. It consists of a flask containing the liquid to be distilled, an adapter to hold a thermometer and to connect the flask to a water-cooled condenser, and a flask to hold the condensed liquid (the distillate). Figure 1: Apparatus for a simple distillation. 1.1 The distillation flask The distillation flask is a round-bottom flask. The liquid to be distilled should fill the distillation flask to ~50-60% of its capacity. To promote even heating of the liquid, a boiling chip or a magnetic stir bar is added before heat is applied to the distillation flask. The irregular chips provide sites for bubbles of vapor to form, or alternatively the liquid is agitated with the magnetic stirrer as it is being heated. Never add a boiling chip or a stir bar to a hot liquid! Doing so can cause a seemingly calm liquid to boil suddenly and violently. 1 1.2 The distilling adapter The adapter connects the distillation flask, the condenser, and the thermometer. This type of adapter is often referred to as a distillation head.
    [Show full text]
  • Fractional Distillation for the Laboratory and Industry
    ll distillations attempt to separate a lower boiling material (A) from a higher boiling material (B). Packed columns are “packed” A with a material that creates a large surface area within the distillation column. Vapors rise through the column, are condensed by the condenser and fall back down the column. This material is called the condensate. The descending condensate “wets” the packing. Ascending vapors rise through the wet packing and are forced into intimate contact with the condensate. This intimate contact causes the vapor to become enriched in the lower boiling material. This process is often called rectification. A A A AA AA A AA A A AA A A A AA A AA A B/R Instrument Corporation B/R Instrument was founded in 1966 by Roger Roark, Sr. and B A A A A A A B B Harry Brown, Jr. Originally a manufacturer of general glass- A A A AA A A B A A AA AA ware, the company began to specialize in the manufacture B B A A A A A AA AA A A A of spinning band distillation systems in 1968 under a DuPont B A B B B B patent. Since then the company has grown steadily in the A A A A distillation and laboratory equipment markets and now A B A B A B A A A AA distributes products to customers throughout the world. A B A A AA A A A B B A AA A Located in Easton, Maryland on the beautiful Eastern B A A A A A A A B A AA B A Shore of the Chesapeake Bay, the B/R facility encompasses A AA © 2004, B/R Instrument Corporation B A B AA A 14,700 square feet (1,370 square meters) and houses manu- B B A B B A B B A A B A A B A A B A A facturing, sales, engineering, service and administrative A A A A A B B A divisions.
    [Show full text]
  • A Large Spinning-Band Fractionating Column for Use with Small Quantities of Liquids
    468 INDUSTRIAL AND ENGINEERING CHEMISTRY VOL. 12, h-0.8 Operation of Viscometer After a viscosity measurement has been made, the liquid The filling operation is effected by means of the filling tube may be removed readily by applying a vacuum to the leveling illustrated in Figure 3. The asphaltic liquid is warmed to a tube. Benzene or carbon tetrachloride may be introduced temperature (60' to 82.22' C., 140" to 180OF.) sufficient to into the left arm, and as it is sucked through the instrument it ymit its being poured into the 100-mesh copper funnel sieve. he liquid passes through the sieve into the receiver arm of the sweeps the viscometer clean of oil. As the vacuum is con- viscometer and catches at point P where the narrow connecting tinued, the cleaning solvent is soon evaporated. The cleaning tube joins the receiver tube reservoir. The flow down through operation is thus effected simply without removal of the the connecting tubing is controlled by means of pressure changes viscometer from the thermostat bath. caused by a roller device (devised by V. Lantz, of these labora- tories, and shown in Figure 2) which squeezes a rubber tubing The viscometer is readily calibrated by the use of oils of connected to the left arm of the viscometer. To control the rate known viscosity (such as the alpha and beta oils of the Ameri- of flow from the filling tube into the viscometer and to adjust can Petroleum Institute) at low enough temperatures to get the flow so that the upper surface of the liquid approaches mark good flow times.
    [Show full text]