ASPECTS of the BIOLOGY and ECOLOGY of the SOUTH AFRICAN ABALONE Hallotls MIDAE LINNAEUS, 1758 (MOLLUSCA: GASTROPODA) ALONG the EASTERN CAPE and CISKEI COAST

Total Page:16

File Type:pdf, Size:1020Kb

ASPECTS of the BIOLOGY and ECOLOGY of the SOUTH AFRICAN ABALONE Hallotls MIDAE LINNAEUS, 1758 (MOLLUSCA: GASTROPODA) ALONG the EASTERN CAPE and CISKEI COAST ASPECTS OF THE BIOLOGY AND ECOLOGY OF THE SOUTH AFRICAN ABALONE HALlOTlS MIDAE LINNAEUS, 1758 (MOLLUSCA: GASTROPODA) ALONG THE EASTERN CAPE AND CISKEI COAST. THESIS Submitted in Fulfilment of the Requirements for the Degree of Master of Science of Rhodes University by AIDAN DAVID WOOD January 1993 Frontispiece: The South African abalone Haliotis midae Linnaeus, 1758. TABLE OF CONTENTS Page ACKNOWLEDGEMENTS 111 ABSTRACT IV CHAPTER 1 GENERAL INTRODUCTION CHAPTER 2 STUDY SITES 6 2.1 Introduction 6 2.2 Study sites 10 2.2.1 Cape Recife 10 2.2.2 Kelly's Beach 12 2.2.3 Great Fish Point 12 2.2.4 Mgwalana 15 CHAPTER 3 POPULATION STRUCTURE & HABITAT REQUIREMENTS 18 3.1 Introduction 18 3.2 Materials and Methods 19 3.2.1 Habitat types 20 3.2.2 Population structure 20 3.3 Results 21 3.3.1 Habitat description 21 3.3.2 Population structure 24 3.4 Discussion 29 CHAPTER 4 AGE AND GROWTH 36 4.1 Introduction 36 4.1.1 Ageing techniques 37 4.2 Materials and Methods 40 4.2.1 Size-at-age determination 40 4.2.2 Mark-recapture study 41 4.2.3 Morphometric relationships 47 4.3 Results 47 4.3.1 Sizes-at -age 47 4.3.2 Tag returns 4R 4.4 Discussion 60 CHAPTER 5 FEEDING 66 5.1 Introduction 66 5.2 Materials and Methods 68 5.2.1 Food availability 68 5.2.2 Stomach content analysis 69 5.3 Results 71 5.3.1 Algal composition 71 5.3.2 Stomach contents 75 5.4 Discussion 79 CHAPTER 6 REPRODUCTION 88 6.1 Introduction 88 6.2 Materials and Methods 89 6.2.1 Gonad Bulk Index (GBI) 90 6.2.2 The reproductive cycle 91 6.2.3 Sex ratios 92 6.2.4 Size at sexual maturity 92 6.2.5 Fecundity 93 6.3 Results 95 6.3.1 Gonad Bulk Index 95 6.3.2 Histology of the reproductive cycle 97 6.3.3 Sex ratios 115 6.3.4 Size at sexual maturity 116 6.3.5 Fecundity 117 6.4 Discussion 124 6.4.1 Gonad Bulk Index 124 6.4.2 Reproductive cycle 125 6.4.3 Sex ratios 132 6.4.4 Sexual maturity 133 6.4.5 Fecundity 134 6.4.6 Factors affecting the reproductive cycle 134 CHAPTER 7 SUMMARY AND MANAGEMENT CONSIDERATIONS 139 REFERENCES 147 11 ACKNOWLEDGEMENTS To my supervisor, Dr. Colin Buxton for his support, encouragement and insight throughout the study, I am deeply indebted. Without the support and cooperation of the many people who helped with the diving work in this study, none of this would have been possible, and I am extremely grateful to Dr. Colin Buxton, Bruce Mann, Angus Paterson, Pete Britz, Tim Andrew, Dr. Rob Tilney, Prof. Tom Hecht, Marc Griffiths, Mark Dixon, Larry Oellerman, Peter Thorpe, Anton Pretorius, Andre Bok, Kevin Heasman and Paul Stevens for their assistance. A special thanks to Prof. Pete Cook, Neville Sweijd, Colleen Parkins and Paul Hanekom from V.C.T. and Angus Mackenzie from Sea Fisheries Research Institute (SFRI) for their help in the tagging operation at Great Fish Point, to Gerry van Niekerk of Atlas Sea Farms in Port Elizabeth for providing transport to and diving assistance at Bird Island, and to Chris Heineken of Atlas Sea Farms in Saldanha Bay for additional assistance at Bird Island. Dr. Sarah Radloff, Larry Oellerman and Kevin Heasman are thanked for their assistance with the statistical analyses, and I am grateful to Linda Coetzee for her patience in helping me get to grips with Word Perfect. I further wish to thank the following people for their input during this project: Rob Tarr at SFRI for his advice on tagging and transecting methods. Angus Mackenzie for supplying the original data from tagged Bird Island animals. Margaret Crampton and Eve Cambray for the continuous and enthusiastic supply of abalone literature. Bill Wesson for revealing his secret caches of perlemoen at the Mgwalana wreck site (among others). Greg Foster for his assistance in histological staining techniques. Dr. Colin Buxton, Angus Paterson, Bruce Mann, Judy Lang, Marc Griffiths~ Dr. Rob Tilney, Neville Sweijd and Craig Clayden for constructive advice on methods and results. The Foundation for Research and Development are thanked for bursaries in 1991 and 1992. The Ciskei Directorate for Agriculture, Forestry and Rural Development are thanked for supplying the incentive and financial backing for this project and for ensuring the supply of abalone and off road vehicle permits. A final special thank-you to Sandy Abreu for her support and her realization and understanding that field trips were necessary, and to my parents for having faith in me and supporting me in the realization of my goals. iii ABSTRACT The South African abalone Haliotis midae Linnaeus, 1758, is an important commercial, recreational and aquaculture mollusc species. It is the largest of the six haliotid species found in South African waters and has the second largest distributional range aside from Haliotis spadicea which is widely exploited by rock and surf anglers as bait. Analysis of population structure at Great Fish Point revealed that H. midae exhibited a high degree of microhabitat specificity, and that while dietary habits played a role in habitat selection, it was ultimately the activities of predators which confined size classes to particular niches and restricted all animals to nocturnal activities. Large (> 100 mm SL) exposed animals relied on shell thickness and adhesion to combat predators, while small (> 45 mm SL) sub-boulder animals and medium sized (50 - 95 mm SL) animals relied on their cryptic microhabitats and the protective spine canopies of co-resident urchins (Parechinus angulosus) for daytime protection. Populations of H. midae were discontinuously distributed along the coast, occupying small isolated reefs which offered a suitable array of microhabitats and a good food supply. They mostly inhabited shallow intertidal and subtidal reefs, but were occasionally encountered on deeper subtidal reefs at 4 - 5 meters. Mean length- and width-at-age were determined from growth rings composed of alternate conchiolin (dark) and aragonite (white) bands in the internal nacreous shell layer. Growth was described by the Special Von Bertalanffy growth equation: Lt(mm) = 176.998918 (1 - e -0.242419It + 0.495494]) Wt(mm) = 159.705689 (1 - e -0.195439It + 0.421164]) The ageing technique used was validated for animals from Great Fish Point and Mgwalana using independent tag-return data. The same data provided evidence that growth rates varied between animals from Great Fish Point and Bird Island. The growth data also showed that H. midae exhibited a high degree of individual variation in growth rate. Males and females exhibited similar growth rates. Exposed large animals showed a preference for red seaweeds, in particular Plocamium corallorhiza and Hypnea spicifera, while small sub-boulder cryptic animals included larger proportions of brown (Ralfsia expansa) and green (VIva spp.) algae in their diets. Exposed individuals also exhibited a higher degree of selectivity towards prey items, but in general, iv stomach contents reflected the most abundant seaweed types. Both drift and attached algal species were utilized by H. midae which was a nocturnal feeder. Pigments from red algae were incorporated into the shell layers giving the shells a pink or brick red colour. Haliotis midae is a dioecious broadcast spawner. Gonad Bulk Indices in combination with detailed histological examination of gonads showed that individuals were iteroparous, asynchronous spawners and that the breeding season extended from March through to October, although the peak spawning activity was between April and June. Males and females can spawn partially, totally or not at all, with atresia of residual gametes occurring after spawning. There is no resting stage, and gametogenesis is initiated directly after spawning. The structure of the ovary and testis and the process of gametogenesis is typical of haliotid species. AI: 1 sex ratio was observed from all populations studied. Sexual maturity was first attained in the 40 - 59 mm SL size class, although evidence for the smallest size at first spawning was recorded at 54.6 mm SL for females and 69 mm SL for males. Sizes at 50 % sexual maturity were 72.5 mm SL (52.8 mm SW) at Great Fish Point, 72.5 mm SL (57.4 mm SW) at Mgwalana, 73.7 mm SL (51.2 mm SW) at Cape Recife, and 73.5 mm SL (53.8 mm SW) at Kelly's Beach. Haliotis midae was typically highly fecund, although a high degree of variation resulting in poor relationships between fecundity/shelllength and gonad weightishelllength. The relationship between fecundity and gonad weight was linear. In the Eastern Cape, H. midae possessed a faster growth rate, smaller size at sexual maturity, smaller maximum size and lower longevity when compared to con specifics in Western Cape waters. A smaller minimum legal size of 93 mm SW is proposed for Eastern Cape animals and it is suggested that the closed season be moved to the peak spawning period between April and June. The benefit of a closed season during the spawning period is questioned, and the feasibility of closed areas as a management option for H. midae in the Eastern Cape is discussed. v CHAPTER 1 GENERAL INTRODUCTION The phylum Mollusca is one of approximately 20 major divisions of the Animal Kingdom (Cox 1962). The molluscs we know as abalone (peric!11oen) are dioecious, prosobranch archaeogastropods belonging to the family Haliotidac, the largest genus being Haliotis (Cotton 1959), comprising over 90 described species worldwide (Sloan & Breen 19HH). The genus has been divided into 15 subgenera with Haliotis midac Linne, 175R being recognized as the type species of the subgenus Eulzaliotis (Cotton up.
Recommended publications
  • Abstracts of Technical Papers, Presented at the 104Th Annual Meeting, National Shellfisheries Association, Seattle, Ashingtw On, March 24–29, 2012
    W&M ScholarWorks VIMS Articles 4-2012 Abstracts of Technical Papers, Presented at the 104th Annual Meeting, National Shellfisheries Association, Seattle, ashingtW on, March 24–29, 2012 National Shellfisheries Association Follow this and additional works at: https://scholarworks.wm.edu/vimsarticles Part of the Aquaculture and Fisheries Commons Recommended Citation National Shellfisheries Association, Abstr" acts of Technical Papers, Presented at the 104th Annual Meeting, National Shellfisheries Association, Seattle, ashingtW on, March 24–29, 2012" (2012). VIMS Articles. 524. https://scholarworks.wm.edu/vimsarticles/524 This Article is brought to you for free and open access by W&M ScholarWorks. It has been accepted for inclusion in VIMS Articles by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. Journal of Shellfish Research, Vol. 31, No. 1, 231, 2012. ABSTRACTS OF TECHNICAL PAPERS Presented at the 104th Annual Meeting NATIONAL SHELLFISHERIES ASSOCIATION Seattle, Washington March 24–29, 2012 231 National Shellfisheries Association, Seattle, Washington Abstracts 104th Annual Meeting, March 24–29, 2012 233 CONTENTS Alisha Aagesen, Chris Langdon, Claudia Hase AN ANALYSIS OF TYPE IV PILI IN VIBRIO PARAHAEMOLYTICUS AND THEIR INVOLVEMENT IN PACIFICOYSTERCOLONIZATION........................................................... 257 Cathryn L. Abbott, Nicolas Corradi, Gary Meyer, Fabien Burki, Stewart C. Johnson, Patrick Keeling MULTIPLE GENE SEGMENTS ISOLATED BY NEXT-GENERATION SEQUENCING
    [Show full text]
  • A Preliminary Study on the Interfacial Strength of Red Abalone
    University of Vermont ScholarWorks @ UVM Graduate College Dissertations and Theses Dissertations and Theses 2016 A Preliminary Study On The nI terfacial Strength Of Red Abalone Saleh Jaman Alghamdi University of Vermont Follow this and additional works at: https://scholarworks.uvm.edu/graddis Part of the Civil Engineering Commons Recommended Citation Alghamdi, Saleh Jaman, "A Preliminary Study On The nI terfacial Strength Of Red Abalone" (2016). Graduate College Dissertations and Theses. 633. https://scholarworks.uvm.edu/graddis/633 This Thesis is brought to you for free and open access by the Dissertations and Theses at ScholarWorks @ UVM. It has been accepted for inclusion in Graduate College Dissertations and Theses by an authorized administrator of ScholarWorks @ UVM. For more information, please contact [email protected]. A PRELIMINARY STUDY ON THE INTERFACIAL STRENGTH OF RED ABALONE A Thesis Presented by Saleh J Alghamdi to The Faculty of the Graduate College of The University of Vermont In Partial Fulfillment of the Requirements for the Degree of Master of Science Specializing in Civil Engineering October, 2016 Defense Date: June 14, 2016 Thesis Examination Committee: Ting Tan, Ph.D, Advisor Jie Yang, Ph.D., Chairperson George Pinder, Ph.D. Cynthia J. Forehand, Ph.D., Dean of the Graduate College Abstract Nacre is a hierarchical material found within the tough shells of red abalone. Despite being composed of calcium carbonate, nacre exhibits remarkable mechanical properties resulting from the nanoscale brick-and-mortar structure made from aragonite polygons. The objective of this research is to elucidate the toughening mechanisms associated with the interfacial resistance of red abalone.
    [Show full text]
  • An Eclectic Overview of the SA Marine Science Community
    A biologists’ personal overview of the SA Marine Science community and its outputs (2001-2006)*1 Mark J Gibbons, Department of Biodiversity and Conservation Biology, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa. Email: [email protected] ABSTRACT I have analysed 1 295 of the outputs published by the South African Marine Science Community (SAMSC) in either peer-reviewed journals or as books/book chapters for the period 2001-2006, with a view to identifying trends in the field, summarizing institutional overlaps and assessing the demographic state-of-play. Although almost 70% of our outputs were published internationally, we published the bulk of our research in strictly marine science journals which suggests, perhaps, that we need to be thinking bigger. More than 22% of all outputs were led by International colleagues, and these were published in journals with a significantly higher Impact Factor than those led by local authors. Women led less than 25%, and persons from previously disadvantaged backgrounds led less than 10%, of all outputs: this needs monitoring, discussion and pro-active response by employers. Thirty-six authors (~95% male, ~97% white) were responsible for more than 50% of all outputs, which suggests that the field is not totally dominated by an ageing cohort. Despite the fact that the bulk of the SAMSC is centred in the SW Cape, our study areas are approximately equally spread around the coastline, though there is an obvious institutional bias to the geographical location of study sites. Globally-orientated studies were generally published in “better” outlets than locally-orientated work, and were more likely to be led by international colleagues.
    [Show full text]
  • Geoducks—A Compendium
    34, NUMBER 1 VOLUME JOURNAL OF SHELLFISH RESEARCH APRIL 2015 JOURNAL OF SHELLFISH RESEARCH Vol. 34, No. 1 APRIL 2015 JOURNAL OF SHELLFISH RESEARCH CONTENTS VOLUME 34, NUMBER 1 APRIL 2015 Geoducks — A compendium ...................................................................... 1 Brent Vadopalas and Jonathan P. Davis .......................................................................................... 3 Paul E. Gribben and Kevin G. Heasman Developing fisheries and aquaculture industries for Panopea zelandica in New Zealand ............................... 5 Ignacio Leyva-Valencia, Pedro Cruz-Hernandez, Sergio T. Alvarez-Castaneda,~ Delia I. Rojas-Posadas, Miguel M. Correa-Ramırez, Brent Vadopalas and Daniel B. Lluch-Cota Phylogeny and phylogeography of the geoduck Panopea (Bivalvia: Hiatellidae) ..................................... 11 J. Jesus Bautista-Romero, Sergio Scarry Gonzalez-Pel aez, Enrique Morales-Bojorquez, Jose Angel Hidalgo-de-la-Toba and Daniel Bernardo Lluch-Cota Sinusoidal function modeling applied to age validation of geoducks Panopea generosa and Panopea globosa ................. 21 Brent Vadopalas, Jonathan P. Davis and Carolyn S. Friedman Maturation, spawning, and fecundity of the farmed Pacific geoduck Panopea generosa in Puget Sound, Washington ............ 31 Bianca Arney, Wenshan Liu, Ian Forster, R. Scott McKinley and Christopher M. Pearce Temperature and food-ration optimization in the hatchery culture of juveniles of the Pacific geoduck Panopea generosa ......... 39 Alejandra Ferreira-Arrieta, Zaul Garcıa-Esquivel, Marco A. Gonzalez-G omez and Enrique Valenzuela-Espinoza Growth, survival, and feeding rates for the geoduck Panopea globosa during larval development ......................... 55 Sandra Tapia-Morales, Zaul Garcıa-Esquivel, Brent Vadopalas and Jonathan Davis Growth and burrowing rates of juvenile geoducks Panopea generosa and Panopea globosa under laboratory conditions .......... 63 Fabiola G. Arcos-Ortega, Santiago J. Sanchez Leon–Hing, Carmen Rodriguez-Jaramillo, Mario A.
    [Show full text]
  • Improving the NEFSC Clam Survey for Atlantic Surfclams and Ocean Quahogs
    Northeast Fisheries Science Center Reference Document 19-06 Improving the NEFSC Clam Survey for Atlantic Surfclams and Ocean Quahogs by Larry Jacobson and Daniel Hennen May 2019 Northeast Fisheries Science Center Reference Document 19-06 Improving the NEFSC Clam Survey for Atlantic Surfclams and Ocean Quahogs by Larry Jacobson and Daniel Hennen NOAA Fisheries, Northeast Fisheries Science Center, 166 Water Street, Woods Hole, MA 02543 U.S. DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Marine Fisheries Service Northeast Fisheries Science Center Woods Hole, Massachusetts May 2019 Northeast Fisheries Science Center Reference Documents This series is a secondary scientific seriesdesigned to assure the long-term documentation and to enable the timely transmission of research results by Center and/or non-Center researchers, where such results bear upon the research mission of the Center (see the outside back cover for the mission statement). These documents receive internal scientific review, and most receive copy editing. The National Marine Fisheries Service does not endorse any proprietary material, process, or product mentioned in these documents. If you do not have Internet access, you may obtain a paper copy of a document by contacting the senior Center author of the desired document. Refer to the title page of the document for the senior Center author’s name and mailing address. If there is no Center author, or if there is corporate (i.e., non-individualized) authorship, then contact the Center’s Woods Hole Labora- tory Library (166 Water St., Woods Hole, MA 02543-1026). Information Quality Act Compliance: In accordance with section 515 of Public Law 106-554, the Northeast Fisheries Science Center completed both technical and policy reviews for this report.
    [Show full text]
  • Shellfish Allergy - an Asia-Pacific Perspective
    Review article Shellfish allergy - an Asia-Pacific perspective 1 1 1 2 Alison Joanne Lee, Irvin Gerez, Lynette Pei-Chi Shek and Bee Wah Lee Summary Conclusion: Shellfish allergy is common in the Background and Objective: Shellfish forms a Asia Pacific. More research including food common food source in the Asia-Pacific and is challenge-proven subjects are required to also growing in the West. This review aims to establish the true prevalence, as well as to summarize the current literature on the understand clinical cross reactivity and epidemiology and research on shellfish allergy variations in clinical features. (Asian Pac J Allergy with particular focus on studies emerging from Immunol 2012;30:3-10) the Asia-Pacific region. Key words: Shellfish allergy, Prawn allergy, Shrimp Data Sources: A PubMed search using search allergy, Food allergy, Anaphylaxis, Tropomyosin, strategies “Shellfish AND Allergy”, “Shellfish Allergy Asia”, and “Shellfish AND anaphylaxis” Allergens, Asia was made. In all, 244 articles written in English were reviewed. Introduction Shellfish, which include crustaceans and Results: Shellfish allergy in the Asia-Pacific molluscs, is one of the most common causes of food ranks among the highest in the world and is the allergy in the world in both adults and children, and most common cause of food-induced anaphylaxis. it has been demonstrated to be one of the top Shellfish are classified into molluscs and ranking causes of food allergy in children in the arthropods. Of the arthropods, the crustaceans Asia-Pacific.1-3 In addition, shellfish allergy usually in particular Penaeid prawns are the most persists, is one of the leading causes of food-induced common cause of allergy and are therefore most anaphylaxis, and has been implicated as the most extensively studied.
    [Show full text]
  • Diversity and Phylogeography of Southern Ocean Sea Stars (Asteroidea)
    Diversity and phylogeography of Southern Ocean sea stars (Asteroidea) Thesis submitted by Camille MOREAU in fulfilment of the requirements of the PhD Degree in science (ULB - “Docteur en Science”) and in life science (UBFC – “Docteur en Science de la vie”) Academic year 2018-2019 Supervisors: Professor Bruno Danis (Université Libre de Bruxelles) Laboratoire de Biologie Marine And Dr. Thomas Saucède (Université Bourgogne Franche-Comté) Biogéosciences 1 Diversity and phylogeography of Southern Ocean sea stars (Asteroidea) Camille MOREAU Thesis committee: Mr. Mardulyn Patrick Professeur, ULB Président Mr. Van De Putte Anton Professeur Associé, IRSNB Rapporteur Mr. Poulin Elie Professeur, Université du Chili Rapporteur Mr. Rigaud Thierry Directeur de Recherche, UBFC Examinateur Mr. Saucède Thomas Maître de Conférences, UBFC Directeur de thèse Mr. Danis Bruno Professeur, ULB Co-directeur de thèse 2 Avant-propos Ce doctorat s’inscrit dans le cadre d’une cotutelle entre les universités de Dijon et Bruxelles et m’aura ainsi permis d’élargir mon réseau au sein de la communauté scientifique tout en étendant mes horizons scientifiques. C’est tout d’abord grâce au programme vERSO (Ecosystem Responses to global change : a multiscale approach in the Southern Ocean) que ce travail a été possible, mais aussi grâce aux collaborations construites avant et pendant ce travail. Cette thèse a aussi été l’occasion de continuer à aller travailler sur le terrain des hautes latitudes à plusieurs reprises pour collecter les échantillons et rencontrer de nouveaux collègues. Par le biais de ces trois missions de recherches et des nombreuses conférences auxquelles j’ai activement participé à travers le monde, j’ai beaucoup appris, tant scientifiquement qu’humainement.
    [Show full text]
  • E Urban Sanctuary Algae and Marine Invertebrates of Ricketts Point Marine Sanctuary
    !e Urban Sanctuary Algae and Marine Invertebrates of Ricketts Point Marine Sanctuary Jessica Reeves & John Buckeridge Published by: Greypath Productions Marine Care Ricketts Point PO Box 7356, Beaumaris 3193 Copyright © 2012 Marine Care Ricketts Point !is work is copyright. Apart from any use permitted under the Copyright Act 1968, no part may be reproduced by any process without prior written permission of the publisher. Photographs remain copyright of the individual photographers listed. ISBN 978-0-9804483-5-1 Designed and typeset by Anthony Bright Edited by Alison Vaughan Printed by Hawker Brownlow Education Cheltenham, Victoria Cover photo: Rocky reef habitat at Ricketts Point Marine Sanctuary, David Reinhard Contents Introduction v Visiting the Sanctuary vii How to use this book viii Warning viii Habitat ix Depth x Distribution x Abundance xi Reference xi A note on nomenclature xii Acknowledgements xii Species descriptions 1 Algal key 116 Marine invertebrate key 116 Glossary 118 Further reading 120 Index 122 iii Figure 1: Ricketts Point Marine Sanctuary. !e intertidal zone rocky shore platform dominated by the brown alga Hormosira banksii. Photograph: John Buckeridge. iv Introduction Most Australians live near the sea – it is part of our national psyche. We exercise in it, explore it, relax by it, "sh in it – some even paint it – but most of us simply enjoy its changing modes and its fascinating beauty. Ricketts Point Marine Sanctuary comprises 115 hectares of protected marine environment, located o# Beaumaris in Melbourne’s southeast ("gs 1–2). !e sanctuary includes the coastal waters from Table Rock Point to Quiet Corner, from the high tide mark to approximately 400 metres o#shore.
    [Show full text]
  • Biological Resources Information
    Appendix E – Biological Resources Information Table E-1. Marine Special Status Species of the Project Region Common Name1,2 Status Habitat Potential to Occur in Marine Study Area Scientific Name Invertebrates Coastal and offshore island intertidal habitats on Not expected to occur – Intertidal habitat within MSA exposed rocky shores to about 18 feet deep lacks kelp food resources and high relief rock reef Black abalone FE where bedrock provides deep, protective refuge habitat. Local populations of black abalone Haliotis cracherodii crevices for shelter. are extremely rare and have been limited to San Diego and Channel Islands. Coastal and offshore island intertidal habitats on Not expected to occur – Intertidal and subtidal Green abalone exposed rocky shores to at least 30 feet deep habitat within MSA lacks kelp food resources and FSC Haliotis fulgens where bedrock provides deep, protective high relief rock reef refuge habitat. crevices for shelter. Coastal and offshore island subtidal habitats from Not expected to occur – Subtidal habitat within MSA Pink abalone 20 to 118 feet deep on submerged rock reefs is outside of species’ depth range and lacks kelp FSC Haliotis corrugate where bedrock provides deep, protective food resources and high relief rock reef refuge crevices for shelter. habitat. Coastal and offshore island kelp beds found on Not expected to occur – Subtidal habitat with MSA is Pinto abalone FSC outer exposed coasts in water depths from 30 to outside of species’ depth range and lacks kelp food Haliotis kamtschatkana 330 feet deep. resources and high relief rock reef refuge habitat. Coastal and offshore island subtidal habitats from Not expected to occur - Subtidal habitat within MSA White abalone 50 to 180 feet deep where bedrock provides is outside of species’ depth range and lacks kelp FE Haliotis sorenseni deep, protective crevices for shelter.
    [Show full text]
  • Tracking Larval, Newly Settled, and Juvenile Red Abalone (Haliotis Rufescens ) Recruitment in Northern California
    Journal of Shellfish Research, Vol. 35, No. 3, 601–609, 2016. TRACKING LARVAL, NEWLY SETTLED, AND JUVENILE RED ABALONE (HALIOTIS RUFESCENS ) RECRUITMENT IN NORTHERN CALIFORNIA LAURA ROGERS-BENNETT,1,2* RICHARD F. DONDANVILLE,1 CYNTHIA A. CATTON,2 CHRISTINA I. JUHASZ,2 TOYOMITSU HORII3 AND MASAMI HAMAGUCHI4 1Bodega Marine Laboratory, University of California Davis, PO Box 247, Bodega Bay, CA 94923; 2California Department of Fish and Wildlife, Bodega Bay, CA 94923; 3Stock Enhancement and Aquaculture Division, Tohoku National Fisheries Research Institute, FRA 3-27-5 Shinhamacho, Shiogama, Miyagi, 985-000, Japan; 4National Research Institute of Fisheries and Environment of Inland Sea, Fisheries Agency of Japan 2-17-5 Maruishi, Hatsukaichi, Hiroshima 739-0452, Japan ABSTRACT Recruitment is a central question in both ecology and fisheries biology. Little is known however about early life history stages, such as the larval and newly settled stages of marine invertebrates. No one has captured wild larval or newly settled red abalone (Haliotis rufescens) in California even though this species supports a recreational fishery. A sampling program has been developed to capture larval (290 mm), newly settled (290–2,000 mm), and juvenile (2–20 mm) red abalone in northern California from 2007 to 2015. Plankton nets were used to capture larval abalone using depth integrated tows in nearshore rocky habitats. Newly settled abalone were collected on cobbles covered in crustose coralline algae. Larval and newly settled abalone were identified to species using shell morphology confirmed with genetic techniques using polymerase chain reaction restriction fragment length polymorphism with two restriction enzymes. Artificial reefs were constructed of cinder blocks and sampled each year for the presence of juvenile red abalone.
    [Show full text]
  • Ageing Research Reviews Revamping the Evolutionary
    Ageing Research Reviews 55 (2019) 100947 Contents lists available at ScienceDirect Ageing Research Reviews journal homepage: www.elsevier.com/locate/arr Review Revamping the evolutionary theories of aging T ⁎ Adiv A. Johnsona, , Maxim N. Shokhirevb, Boris Shoshitaishvilic a Nikon Instruments, Melville, NY, United States b Razavi Newman Integrative Genomics and Bioinformatics Core, The Salk Institute for Biological Studies, La Jolla, CA, United States c Division of Literatures, Cultures, and Languages, Stanford University, Stanford, CA, United States ARTICLE INFO ABSTRACT Keywords: Radical lifespan disparities exist in the animal kingdom. While the ocean quahog can survive for half a mil- Evolution of aging lennium, the mayfly survives for less than 48 h. The evolutionary theories of aging seek to explain whysuchstark Mutation accumulation longevity differences exist and why a deleterious process like aging evolved. The classical mutation accumu- Antagonistic pleiotropy lation, antagonistic pleiotropy, and disposable soma theories predict that increased extrinsic mortality should Disposable soma select for the evolution of shorter lifespans and vice versa. Most experimental and comparative field studies Lifespan conform to this prediction. Indeed, animals with extreme longevity (e.g., Greenland shark, bowhead whale, giant Extrinsic mortality tortoise, vestimentiferan tubeworms) typically experience minimal predation. However, data from guppies, nematodes, and computational models show that increased extrinsic mortality can sometimes lead to longer evolved lifespans. The existence of theoretically immortal animals that experience extrinsic mortality – like planarian flatworms, panther worms, and hydra – further challenges classical assumptions. Octopuses pose another puzzle by exhibiting short lifespans and an uncanny intelligence, the latter of which is often associated with longevity and reduced extrinsic mortality.
    [Show full text]
  • TNP SOK 2011 Internet
    GARDEN ROUTE NATIONAL PARK : THE TSITSIKAMMA SANP ARKS SECTION STATE OF KNOWLEDGE Contributors: N. Hanekom 1, R.M. Randall 1, D. Bower, A. Riley 2 and N. Kruger 1 1 SANParks Scientific Services, Garden Route (Rondevlei Office), PO Box 176, Sedgefield, 6573 2 Knysna National Lakes Area, P.O. Box 314, Knysna, 6570 Most recent update: 10 May 2012 Disclaimer This report has been produced by SANParks to summarise information available on a specific conservation area. Production of the report, in either hard copy or electronic format, does not signify that: the referenced information necessarily reflect the views and policies of SANParks; the referenced information is either correct or accurate; SANParks retains copies of the referenced documents; SANParks will provide second parties with copies of the referenced documents. This standpoint has the premise that (i) reproduction of copywrited material is illegal, (ii) copying of unpublished reports and data produced by an external scientist without the author’s permission is unethical, and (iii) dissemination of unreviewed data or draft documentation is potentially misleading and hence illogical. This report should be cited as: Hanekom N., Randall R.M., Bower, D., Riley, A. & Kruger, N. 2012. Garden Route National Park: The Tsitsikamma Section – State of Knowledge. South African National Parks. TABLE OF CONTENTS 1. INTRODUCTION ...............................................................................................................2 2. ACCOUNT OF AREA........................................................................................................2
    [Show full text]