Improving the NEFSC Clam Survey for Atlantic Surfclams and Ocean Quahogs
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Geoducks—A Compendium
34, NUMBER 1 VOLUME JOURNAL OF SHELLFISH RESEARCH APRIL 2015 JOURNAL OF SHELLFISH RESEARCH Vol. 34, No. 1 APRIL 2015 JOURNAL OF SHELLFISH RESEARCH CONTENTS VOLUME 34, NUMBER 1 APRIL 2015 Geoducks — A compendium ...................................................................... 1 Brent Vadopalas and Jonathan P. Davis .......................................................................................... 3 Paul E. Gribben and Kevin G. Heasman Developing fisheries and aquaculture industries for Panopea zelandica in New Zealand ............................... 5 Ignacio Leyva-Valencia, Pedro Cruz-Hernandez, Sergio T. Alvarez-Castaneda,~ Delia I. Rojas-Posadas, Miguel M. Correa-Ramırez, Brent Vadopalas and Daniel B. Lluch-Cota Phylogeny and phylogeography of the geoduck Panopea (Bivalvia: Hiatellidae) ..................................... 11 J. Jesus Bautista-Romero, Sergio Scarry Gonzalez-Pel aez, Enrique Morales-Bojorquez, Jose Angel Hidalgo-de-la-Toba and Daniel Bernardo Lluch-Cota Sinusoidal function modeling applied to age validation of geoducks Panopea generosa and Panopea globosa ................. 21 Brent Vadopalas, Jonathan P. Davis and Carolyn S. Friedman Maturation, spawning, and fecundity of the farmed Pacific geoduck Panopea generosa in Puget Sound, Washington ............ 31 Bianca Arney, Wenshan Liu, Ian Forster, R. Scott McKinley and Christopher M. Pearce Temperature and food-ration optimization in the hatchery culture of juveniles of the Pacific geoduck Panopea generosa ......... 39 Alejandra Ferreira-Arrieta, Zaul Garcıa-Esquivel, Marco A. Gonzalez-G omez and Enrique Valenzuela-Espinoza Growth, survival, and feeding rates for the geoduck Panopea globosa during larval development ......................... 55 Sandra Tapia-Morales, Zaul Garcıa-Esquivel, Brent Vadopalas and Jonathan Davis Growth and burrowing rates of juvenile geoducks Panopea generosa and Panopea globosa under laboratory conditions .......... 63 Fabiola G. Arcos-Ortega, Santiago J. Sanchez Leon–Hing, Carmen Rodriguez-Jaramillo, Mario A. -
Ageing Research Reviews Revamping the Evolutionary
Ageing Research Reviews 55 (2019) 100947 Contents lists available at ScienceDirect Ageing Research Reviews journal homepage: www.elsevier.com/locate/arr Review Revamping the evolutionary theories of aging T ⁎ Adiv A. Johnsona, , Maxim N. Shokhirevb, Boris Shoshitaishvilic a Nikon Instruments, Melville, NY, United States b Razavi Newman Integrative Genomics and Bioinformatics Core, The Salk Institute for Biological Studies, La Jolla, CA, United States c Division of Literatures, Cultures, and Languages, Stanford University, Stanford, CA, United States ARTICLE INFO ABSTRACT Keywords: Radical lifespan disparities exist in the animal kingdom. While the ocean quahog can survive for half a mil- Evolution of aging lennium, the mayfly survives for less than 48 h. The evolutionary theories of aging seek to explain whysuchstark Mutation accumulation longevity differences exist and why a deleterious process like aging evolved. The classical mutation accumu- Antagonistic pleiotropy lation, antagonistic pleiotropy, and disposable soma theories predict that increased extrinsic mortality should Disposable soma select for the evolution of shorter lifespans and vice versa. Most experimental and comparative field studies Lifespan conform to this prediction. Indeed, animals with extreme longevity (e.g., Greenland shark, bowhead whale, giant Extrinsic mortality tortoise, vestimentiferan tubeworms) typically experience minimal predation. However, data from guppies, nematodes, and computational models show that increased extrinsic mortality can sometimes lead to longer evolved lifespans. The existence of theoretically immortal animals that experience extrinsic mortality – like planarian flatworms, panther worms, and hydra – further challenges classical assumptions. Octopuses pose another puzzle by exhibiting short lifespans and an uncanny intelligence, the latter of which is often associated with longevity and reduced extrinsic mortality. -
The Effects of Environment on Arctica Islandica Shell Formation and Architecture
Biogeosciences, 14, 1577–1591, 2017 www.biogeosciences.net/14/1577/2017/ doi:10.5194/bg-14-1577-2017 © Author(s) 2017. CC Attribution 3.0 License. The effects of environment on Arctica islandica shell formation and architecture Stefania Milano1, Gernot Nehrke2, Alan D. Wanamaker Jr.3, Irene Ballesta-Artero4,5, Thomas Brey2, and Bernd R. Schöne1 1Institute of Geosciences, University of Mainz, Joh.-J.-Becherweg 21, 55128 Mainz, Germany 2Alfred Wegener Institute for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany 3Department of Geological and Atmospheric Sciences, Iowa State University, Ames, Iowa 50011-3212, USA 4Royal Netherlands Institute for Sea Research and Utrecht University, P.O. Box 59, 1790 AB Den Burg, Texel, the Netherlands 5Department of Animal Ecology, VU University Amsterdam, Amsterdam, the Netherlands Correspondence to: Stefania Milano ([email protected]) Received: 27 October 2016 – Discussion started: 7 December 2016 Revised: 1 March 2017 – Accepted: 4 March 2017 – Published: 27 March 2017 Abstract. Mollusks record valuable information in their hard tribution, and (2) scanning electron microscopy (SEM) was parts that reflect ambient environmental conditions. For this used to detect changes in microstructural organization. Our reason, shells can serve as excellent archives to reconstruct results indicate that A. islandica microstructure is not sen- past climate and environmental variability. However, animal sitive to changes in the food source and, likely, shell pig- physiology and biomineralization, which are often poorly un- ment are not altered by diet. However, seawater temperature derstood, can make the decoding of environmental signals had a statistically significant effect on the orientation of the a challenging task. -
MOLLUSCS Species Names – for Consultation 1
MOLLUSCS species names – for consultation English name ‘Standard’ Gaelic name Gen Scientific name Notes Neologisms in italics der MOLLUSC moileasg m MOLLUSCS moileasgan SEASHELL slige mhara f SEASHELLS sligean mara SHELLFISH (singular) maorach m SHELLFISH (plural) maoraich UNIVALVE SHELLFISH aon-mhogalach m (singular) UNIVALVE SHELLFISH aon-mhogalaich (plural) BIVALVE SHELLFISH dà-mhogalach m (singular) BIVALVE SHELLFISH dà-mhogalaich (plural) LIMPET (general) bàirneach f LIMPETS bàirnich common limpet bàirneach chumanta f Patella vulgata ‘common limpet’ slit limpet bàirneach eagach f Emarginula fissura ‘notched limpet’ keyhole limpet bàirneach thollta f Diodora graeca ‘holed limpet’ china limpet bàirneach dhromanach f Patella ulyssiponensis ‘ridged limpet’ blue-rayed limpet copan Moire m Patella pellucida ‘The Virgin Mary’s cup’ tortoiseshell limpet bàirneach riabhach f Testudinalia ‘brindled limpet’ testudinalis white tortoiseshell bàirneach bhàn f Tectura virginea ‘fair limpet’ limpet TOP SHELL brùiteag f TOP SHELLS brùiteagan f painted top brùiteag dhotamain f Calliostoma ‘spinning top shell’ zizyphinum turban top brùiteag thurbain f Gibbula magus ‘turban top shell’ grey top brùiteag liath f Gibbula cineraria ‘grey top shell’ flat top brùiteag thollta f Gibbula umbilicalis ‘holed top shell’ pheasant shell slige easaig f Tricolia pullus ‘pheasant shell’ WINKLE (general) faochag f WINKLES faochagan f banded chink shell faochag chlaiseach bhannach f Lacuna vincta ‘banded grooved winkle’ common winkle faochag chumanta f Littorina littorea ‘common winkle’ rough winkle (group) faochag gharbh f Littorina spp. ‘rough winkle’ small winkle faochag bheag f Melarhaphe neritoides ‘small winkle’ flat winkle (2 species) faochag rèidh f Littorina mariae & L. ‘flat winkle’ 1 MOLLUSCS species names – for consultation littoralis mudsnail (group) seilcheag làthaich f Fam. -
Shelled Molluscs
Encyclopedia of Life Support Systems (EOLSS) Archimer http://www.ifremer.fr/docelec/ ©UNESCO-EOLSS Archive Institutionnelle de l’Ifremer Shelled Molluscs Berthou P.1, Poutiers J.M.2, Goulletquer P.1, Dao J.C.1 1 : Institut Français de Recherche pour l'Exploitation de la Mer, Plouzané, France 2 : Muséum National d’Histoire Naturelle, Paris, France Abstract: Shelled molluscs are comprised of bivalves and gastropods. They are settled mainly on the continental shelf as benthic and sedentary animals due to their heavy protective shell. They can stand a wide range of environmental conditions. They are found in the whole trophic chain and are particle feeders, herbivorous, carnivorous, and predators. Exploited mollusc species are numerous. The main groups of gastropods are the whelks, conchs, abalones, tops, and turbans; and those of bivalve species are oysters, mussels, scallops, and clams. They are mainly used for food, but also for ornamental purposes, in shellcraft industries and jewelery. Consumed species are produced by fisheries and aquaculture, the latter representing 75% of the total 11.4 millions metric tons landed worldwide in 1996. Aquaculture, which mainly concerns bivalves (oysters, scallops, and mussels) relies on the simple techniques of producing juveniles, natural spat collection, and hatchery, and the fact that many species are planktivores. Keywords: bivalves, gastropods, fisheries, aquaculture, biology, fishing gears, management To cite this chapter Berthou P., Poutiers J.M., Goulletquer P., Dao J.C., SHELLED MOLLUSCS, in FISHERIES AND AQUACULTURE, from Encyclopedia of Life Support Systems (EOLSS), Developed under the Auspices of the UNESCO, Eolss Publishers, Oxford ,UK, [http://www.eolss.net] 1 1. -
Growth Increment Periodicity in the Shell of the Razor Clam Ensis
EGU Journal Logos (RGB) Open Access Open Access Open Access Advances in Annales Nonlinear Processes Geosciences Geophysicae in Geophysics Open Access Open Access Natural Hazards Natural Hazards and Earth System and Earth System Sciences Sciences Discussions Open Access Open Access Atmospheric Atmospheric Chemistry Chemistry and Physics and Physics Discussions Open Access Open Access Atmospheric Atmospheric Measurement Measurement Techniques Techniques Discussions Open Access Biogeosciences, 10, 4741–4750, 2013 Open Access www.biogeosciences.net/10/4741/2013/ Biogeosciences doi:10.5194/bg-10-4741-2013 Biogeosciences Discussions © Author(s) 2013. CC Attribution 3.0 License. Open Access Open Access Climate Climate of the Past of the Past Discussions Growth increment periodicity in the shell of the razor clam Ensis Open Access Open Access directus using stable isotopes as a method to validateEarth age System Earth System Dynamics 1,2 1 1 1 Dynamics2,3 J. F. M. F. Cardoso , G. Nieuwland , R. Witbaard , H. W. van der Veer , and J. P. Machado Discussions 1NIOZ – Royal Netherlands Institute for Sea Research, PO Box 59, 1790 AB Den Burg Texel, the Netherlands 2CIIMAR/CIMAR – Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua dos Open Access Open Access Bragas 289, 4050-123 Porto, Portugal Geoscientific Geoscientific 3ICBAS – Instituto de Cienciasˆ Biomedicas´ Abel Salazar, Laboratorio de Fisiologia Aplicada,Instrumentation Universidade do Porto, Instrumentation Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal Methods and Methods and Correspondence to: J. F. M. F. Cardoso ([email protected]) Data Systems Data Systems Discussions Open Access Received: 18 February 2013 – Published in Biogeosciences Discuss.: 6 March 2013 Open Access Geoscientific Revised: 31 May 2013 – Accepted: 8 June 2013 – Published: 15 July 2013 Geoscientific Model Development Model Development Discussions Abstract. -
Assessment of Density and Biomass of Ocean Quahog, Arctica Islandica, Using a Hydraulic Dredge and Underwater Photography
ICES CM 2001/P:24 Assessment of density and biomass of ocean quahog, Arctica islandica, using a hydraulic dredge and underwater photography Gudrun G. Thorarinsdóttir Stefan Áki Ragnarsson The stock of Arctica islandica in Iceland has been assessed using a commercial hydraulic dredge and underwater photography. Abundance estimates based on count of siphons from underwater photographs were much higher than from analysis of the dredge catches. Furthermore the efficiency of the two hydraulic dredges was investigated in tow locations giving different results. The movement of the clams down into the sediment can affect the dredge efficiency and also cause underestimation of stock size based on underwater photographic survey. Keywords: Arctica islandica, stock assessments, dredge efficiency, sea-bottom photograpy Introduction The ocean quahog is distributed all around Iceland and the stock has been assessed at 5-50 m depth in west, north and east Iceland (Eiríksson 1988, Thorarinsdóttir and Einarsson 1996) but the fraction of the resource inhabiting deeper water is unknown. Study of a population off north-west Iceland demonstrated a lifespan of up to 201 year (Steingrímsson and Thorarinsdóttir 1995). Fishery of ocean quahogs for human consumption in Iceland began in 1995 and annual landings have since been 1500 to 8000 tones. A harvesting strategy of 2.5% of the estimated stock is used. The assessments of ocean quahog resources in Icelandic waters have been carried out using a hydraulic dredge. In such study it is very important to know as accurately as possible the efficiency of the dredge used. However, very few adequate direct measurements are available (Medcof and Caddy 1971, Anon., 1998). -
The Evolution of Extreme Longevity in Modern and Fossil Bivalves
Syracuse University SURFACE Dissertations - ALL SURFACE August 2016 The evolution of extreme longevity in modern and fossil bivalves David Kelton Moss Syracuse University Follow this and additional works at: https://surface.syr.edu/etd Part of the Physical Sciences and Mathematics Commons Recommended Citation Moss, David Kelton, "The evolution of extreme longevity in modern and fossil bivalves" (2016). Dissertations - ALL. 662. https://surface.syr.edu/etd/662 This Dissertation is brought to you for free and open access by the SURFACE at SURFACE. It has been accepted for inclusion in Dissertations - ALL by an authorized administrator of SURFACE. For more information, please contact [email protected]. Abstract: The factors involved in promoting long life are extremely intriguing from a human perspective. In part by confronting our own mortality, we have a desire to understand why some organisms live for centuries and others only a matter of days or weeks. What are the factors involved in promoting long life? Not only are questions of lifespan significant from a human perspective, but they are also important from a paleontological one. Most studies of evolution in the fossil record examine changes in the size and the shape of organisms through time. Size and shape are in part a function of life history parameters like lifespan and growth rate, but so far little work has been done on either in the fossil record. The shells of bivavled mollusks may provide an avenue to do just that. Bivalves, much like trees, record their size at each year of life in their shells. In other words, bivalve shells record not only lifespan, but also growth rate. -
Population Dynamics of the Argentinean Surf Clams Donax Hanleyanus and Mesodesma Mactroides from Open-Atlantic Beaches Off Argentina
Population dynamics of the Argentinean surf clams Donax hanleyanus and Mesodesma mactroides from open-Atlantic beaches off Argentina Populationsdynamik der Argentinischen Brandungsmuscheln Donax hanleyanus und Mesodesma mactroides offener Atlantikstrände vor Argentinien Marko Herrmann Dedicated to my family Marko Herrmann Alfred Wegener Institute for Polar and Marine Research (AWI) Section of Marine Animal Ecology P.O. Box 120161 D-27515 Bremerhaven (Germany) [email protected] Submitted for the degree Dr. rer. nat. of the Faculty 2 of Biology and Chemistry University of Bremen (Germany), October 2008 Reviewer and principal supervisor: Prof. Dr. Wolf E. Arntz 1 Reviewer and co-supervisor: Dr. Jürgen Laudien 1 External Reviewer: Dr. Pablo E. Penchaszadeh 2 1 Alfred Wegener Institute for Polar and Marine Research (AWI) Section of Marine Animal Ecology P.O. Box 120161 D-27515 Bremerhaven (Germany) 2 Director of the Ecology Section at the Museo Argentino de Ciencias Naturales (MACN) - Bernardino Rivadavia Av. Angel Gallardo 470, 3° piso lab. 80 C1405DJR Buenos Aires (Argentina) Contents 1 Summary .................................................................................................... 5 1.1 English Version ........................................................................................... 5 1.2 Deutsche Version ........................................................................................ 9 1.3 Versión Español ........................................................................................ 13 2 Introduction -
Geochemical Properties of Shells of Arctica Islandica (Bivalvia) – Implications for Environmental and Climatic Change
Geochemical properties of shells of Arctica islandica (Bivalvia) – implications for environmental and climatic change Dissertation Zur Erlangung des Doktorgrades der Naturwissenschaften Vorgelegt beim Fachbereich Geowissenschaften/Geographie der Goethe-Universität in Frankfurt am Main von Zengjie Zhang aus Shandong, China Frankurt 2009 (D30) vom Fachbereich 11 Geowissenschaften / Geographie der Goethe-Universität in Frankfurt am Main als Dissertation angenommen. Dekan: Prof. Dr. Robert Pütz Gutachter: Prof. Dr. Bernd R. Schöne / Prof. Dr. Wolfgang Oschmann Datum der Disputation: II To DAAD and CSC! for the purpose of harmony relationship among people of all countries in the world by the way of cooperation and mutual understanding III IV Abstract Trace elemental concentrations of bivalve shells content a wealthy of environmental and climatic information of the past, and therefore the studies of trace elemental distributions in bivalve shells gained increasing interest lately. However, after more than half century of research, most of the trace elemental variations are still not well understood and trace elemental proxies are far from being routinely applicable. This dissertation focuses on a better understanding of the trace elemental chemistry of Arctica islandica shells from Iceland, and paving the way for the application of the trace elemental proxies to reconstruct the environmental and climatic changes. Traits of trace elemental concentrations on A. islandica shells were explored and evaluated. Then based the geochemical traits of -
Telomere-Independent Ageing in the Longest-Lived Non-Colonial Animal, Arctica Islandica
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Electronic Publication Information Center Experimental Gerontology 51 (2014) 38–45 Contents lists available at ScienceDirect Experimental Gerontology journal homepage: www.elsevier.com/locate/expgero Telomere-independent ageing in the longest-lived non-colonial animal, Arctica islandica Heike Gruber a,b,⁎, Ralf Schaible b, Iain D. Ridgway b,c, Tracy T. Chow d,ChristophHelde, Eva E.R. Philipp a a Institute of Clinical Molecular Biology, Christian-Albrechts-University Kiel, Germany b Max Planck Institute for Demographic Research, Rostock, Germany c School of Ocean Sciences, College of Natural Sciences, Bangor University, Menai Bridge, Anglesey, LL59 5AB, Wales, United Kingdom d Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA e Alfred Wegener Institute for Polar and Marine Research, Functional Ecology, Bremerhaven, Germany article info abstract Article history: The shortening of telomeres as a causative factor in ageing is a widely discussed hypothesis in ageing research. Received 18 September 2013 The study of telomere length and its regenerating enzyme telomerase in the longest-lived non-colonial animal Received in revised form 19 December 2013 on earth, Arctica islandica, should inform whether the maintenance of telomere length plays a role in reaching Accepted 25 December 2013 the extreme maximum lifespan (MLSP) of N500 years in this species. Since longitudinal measurements on living Available online 3 January 2014 animals cannot be achieved, a cross-sectional analysis of a short-lived (MLSP 40 years from the Baltic Sea) and a Section Editor: T.E. Johnson long-lived population (MLSP 226 years Northeast of Iceland) and in different tissues of young and old animals from the Irish Sea was performed. -
Marine Biotoxins FOOD and NUTRITION PAPER
FAO Marine biotoxins FOOD AND NUTRITION PAPER FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Rome, 2004 The views expressed in this publication are those of the author(s) and do not necessarily reflect the views of the Food and Agriculture Organization of the United Nations. The designations and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization (FAO) of the United Nations concerning the legal status of any country, territory, city or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. All rights reserved. Reproduction and dissemination of material in this document for educational or other non-commercial purposes are authorised without any prior written permission from copyright holders provided the source is fully acknowledged. Reproduction of material in this document for resale or other commercial purposes is prohibited without the written permission of FAO. Application for such permission should be addressed to the Chief, Publishing and Multimedia Service, Information Division, FAO, Viale delle Terme di Caracalla, 00100 Rome, Italy, or by e-mail to [email protected] © FAO 2004 Contents 1. Introduction ....................................................................................................................... 1 2. Paralytic Shellfish Poisoning (PSP) ..................................................................................5 2.1 Chemical structures and properties