An Analysis of the Space Junk Problem and Potential Solutions

Total Page:16

File Type:pdf, Size:1020Kb

An Analysis of the Space Junk Problem and Potential Solutions Environmentalism in the Space Age: An Analysis of the Space Junk Problem and Potential Solutions edited by Paulina Lucio Maymon Source: European Space AgencyApril Greene Apking, in the Journal of International Environmental Law and Policy, writes, “[w]e must ensure that our presence [in space] does not defile what remains one of the few accessible pristine areas.” Considering the endless territorial canvas of space, it seems simultaneously idealistic and unrealistic to assume the responsibility of space maintenance and preservation. But the question remains: has humanity overstayed its welcome in space? Our interest in space started after the Soviet Union successfully launched Sputnik I more than 50 years ago, marking the beginning of our use of space for political, military, technological, and scientific endeavors. We have come far since then, having launched hundreds of satellites, space probes, telescopes, moon missions, and planetary landers. Could space provide us with a sustainable future not possible with the resources available exclusively on Earth? Understanding environmentalism, which focuses on the preservation, restoration, and improvement of the natural environment within the present framework, is critical to answering this question. According to Ryder W. Miller, space environmentalism’s goals include the declaration of “celestial bodies [as] pristine wildernesses that need to be protected rather than frontiers to conquer,” prohibition of “terraforming of celestial bodies,” and “safeguarding against the introduction of non-terrestrial life to and from celestial bodies.” My goal in this paper is to explore the severity of the space environmentalism problem and suggest solutions to help clean up and preserve the increasingly cluttered final frontier. Why Space Junk is a Problem NASA has been studying debris hazards to (and caused by) spacecraft for over a decade, and there is a host of international organizations involved with the dense thicket of regulations governing environmental issues in outer space. Of particular concern is debris (more colloquially known as “space junk”): not only meteorites and space dust, but also fragments of satellites that break up in orbit, leaving smaller but vastly more shards of what amounts to orbiting shrapnel. The Scope of the Space Junk Dilemma Venturing into space is inherently risky, and orbital debris is just one of many hazards that a space traveler faces. But the debris hazard is unique in being a product of our environmental negligence. After just forty years in space, we have already seriously polluted the final frontier. Valuable orbits are peppered with debris that threatens the operation of | 1 Environmentalism in the Space Age: An Analysis of the Space Junk Problem and Potential Solutions satellites and the lives of astronauts alike. There is now so much debris in orbit as a result of space activity such as explosions in fuel tanks and batteries, and from the high-velocity impacts between objects, that the aptly coined “space junk” problem is one that has become critical and needs to be addressed immediately. In fact, even tiny paint flecks can damage a spacecraft when traveling at these velocities—a large number of space shuttle windows have been replaced because of damage caused by material that was analyzed and shown to be paint flecks. NASA’s chief scientist for orbital debris, Nicholas Johnson, concluded from this that “the greatest risk to space missions comes from non-trackable debris”. This threat also extends out to the International Space Station (ISS), which has seen its fair share of close calls in recent years. In March of 2012, a chunk of a defunct military communications satellite narrowly missed the ISS by about 7.5 miles. The danger of that collision was so imminent that the crew on board had already prepared to evacuate the Station upon impact. This is a problem that is occurring more frequently, since any debris larger than a baseball poses a potentially catastrophic threat to the ISS; with hundreds of thousands of pieces of small debris flying around in space near the Space Station, the probability of an accident occurring remains terrifyingly high. Even though the ISS has dodged many close shaves thus far, many other space establishments have not been so lucky. As far back as the ’90s, space debris has been causing billions of dollars of damages. In 1996, a French satellite was hit and damaged by debris from a French rocket that had exploded a decade earlier. On February 10, 2009, a defunct Russian communications satellite called Cosmos 2251 collided with and destroyed a functioning U.S. Iridium communications satellite some 500 miles above the Earth. However, the danger of the collision did not stop with the impact. The Cosmos 2251 collision added more than 2,000 pieces of trackable debris to the inventory of space junk. In 2007, China exacerbated the problem when it conducted an anti-satellite weapon test that destroyed a decommissioned weather satellite and created 150,000 additional pieces of orbital debris, many of which were larger than 1 cm across. The longer-term effects of space debris collisions are staggering. Since the beginning of the Space Age, thousands of satellites have been placed in Earth’s orbit by various nations. Because many of these satellites are in orbits that cross one another, there is a finite probability of collisions between them. Satellite collisions produce several fragments, some of which may be capable of fragmenting another satellite upon collision, creating even more fragments. The result over time will be an exponential increase in the number of orbiting objects, creating a belt of debris around the Earth. This snowballing effect is known as the “Kessler Syndrome.” Eventually, these never-ending collisions stand to create a no-go zone for spacecraft within Earth’s low orbit. | 2 Environmentalism in the Space Age: An Analysis of the Space Junk Problem and Potential Solutions What systems have already been put in place to monitor and potentially come up with a solution to the space junk problem? While NASA, for example, has been diligent in its efforts to track debris in space, surveillance is not sufficient for protecting the environmental gains we have made in outer space. How We Can Save the Last Frontier The answer lies in “remediation”: removing just five large objects per year, for example, could prevent a chain reaction. If governments attempt to clean up this mess themselves, the cost could run into the trillions. Intergovernmental organizations and space agencies alike are discussing the merits of active removal, which would see new spacecraft launched specifically to take other, redundant satellites out of orbit. Other options being discussed include the use of nets, harpoons, tethers, ion thrusters and lasers, all of which would be costly to build and tedious to implement. Even so, the international community needs to sort through the myriad legal issues that would currently frustrate attempts to clean up space. At the moment, international law permits only the launching nation or agency to come into contact with a specific object in orbit, something that would prevent, for example, commercial debris-removal activities. The framework for this international law began with the Outer Space Treaty, which was established in 1967. The treaty involves 96 state parties that are working to “limit activities on the Moon and other celestial bodies exclusively to those for peaceful purposes and forbids the development of military bases, installations, fortifications or weapons testing of any kind on any celestial body.” Therefore, it would be beneficial for a large international agency such as the United Nations to create an international space union that could coordinate all of the debris-removal activity and create a framework for equitable use of orbits among all countries engaged in space exploration. Another critical weakness in the international law on space debris lies in the fact that existing space law is related to the use of space and not to debris regulation itself. The rules within the Outer Space Treaty are helpful in facilitating boundaries in space use, but they do not directly apply to the space debris issue. Until the legal issues are sorted out, all proposed solutions will remain hypothetical, or at best, limited to a small number of debris pieces. In the meantime, the threat continues to grow. Government regulations covering orbital debris are still rudimentary. For now, the federal agencies that have authority over commercial launches are waiting to see if the private sector can deal with the problem on its own. Another obstacle involves locating and tracking the debris. Better tracking data would be required to maximize the effectiveness of debris removal. Since much of that data is classified, only a trusted intermediary could get American and Russian defense officials, for | 3 Environmentalism in the Space Age: An Analysis of the Space Junk Problem and Potential Solutions example, to work together. Here, too, the largest obstacle is legal. While maritime law encourages the cleanup of abandoned vessels as hazards to navigation, space law discourages debris remediation by failing to recognize debris as abandoned property, and making it difficult to transfer ownership of, and liability for, objects in space–even junk. By adapting maritime precedents, space law could make orbital debris removal feasible, once the right economic incentives are in place. The first commitment to going beyond evaluating theoretical approaches has come from the Swiss research institute École Polytechnique Fédérale de Lausanne. In 2012, its scientists came up with the idea for something called CleanSpace One, a one-off spacecraft with grabbing capabilities that they intend to test by guiding it to recover one of the institute’s own satellites. The design is inspired by the way sea anemones wrap their tentacles around their prey; it will have a folding conical net that will grab onto and gulp in space garbage.
Recommended publications
  • Kessler Syndrome
    Kessler Syndrome March 20, 2021 What is Kessler Syndrome? The Kessler syndrome, also called the Kessler effect, collisional cascading or ablation cascade, is a scenario in which the density of objects in Low Earth Orbit (LEO) is high enough that collisions between objects could cause a cascade where each collision generates space debris that increases the likelihood of further collisions. Who proposed it? It is a theory proposed by NASA scientist Donald J. Kessler in 1978, used to describe a self-sustaining cascading collision of space debris in LEO. In an article published on June 1, 1978 in the American Journal of Geophysical Research, the authors Donald J. Kessler and Burton G. Cour-Palais, two NASA experts, identified the risk of an exponential increase in the number of space debris or orbital debris under the effect of mutual collisions. The two authors believed that a belt formed by these objects or fragments of objects around the Earth would soon form. Eventually threatening space activities, this phenomenon will be popularized a few years later under the name of Kessler syndrome Implications One implication is that the distribution of debris in orbit could render space activities and the use of satellites in specific orbital ranges impractical for many generations. The Kessler syndrome is troublesome because of the domino effect and feedback runaway wherein impacts between objects of sizable mass spall off debris from the force of the collision Every satellite, space probe, and manned mission has the potential to produce space debris. A cascading Kessler syndrome becomes more likely as satellites in orbit increase in number.
    [Show full text]
  • Solving the Space Debris Crisis Paul B
    Journal of Air Law and Commerce Volume 83 | Issue 3 Article 2 2018 Solving the Space Debris Crisis Paul B. Larsen Georgetown University Law Center, [email protected] Follow this and additional works at: https://scholar.smu.edu/jalc Part of the Air and Space Law Commons Recommended Citation Paul B. Larsen, Solving the Space Debris Crisis, 83 J. Air L. & Com. 475 (2018) https://scholar.smu.edu/jalc/vol83/iss3/2 This Article is brought to you for free and open access by the Law Journals at SMU Scholar. It has been accepted for inclusion in Journal of Air Law and Commerce by an authorized administrator of SMU Scholar. For more information, please visit http://digitalrepository.smu.edu. SOLVING THE SPACE DEBRIS CRISIS PAUL B. LARSEN* ABSTRACT Space debris is a growing public safety problem. As described by the Kessler Syndrome,1 the increasing accumulation of debris will soon hinder and eventually preclude access to outer space unless the trend is swiftly reversed. The Inter-Agency Space Deb- ris Coordination Committee’s (IADC) Space Debris Mitigation Guidelines, as adopted by the United Nations (UN) Committee for the Peaceful Uses of Outer Space (COPUOS), are voluntary but are enforced as mandatory regulations by major space pow- ers; however, the guidelines only apply to new debris. The Euro- pean Space Agency’s (ESA) 2017 Space Debris Conference concluded that existing space debris guidelines are inadequate and must be further strengthened in order to successfully con- trol space debris.2 * The author taught air and space law for more than forty years respectively at Southern Methodist University and at Georgetown University.
    [Show full text]
  • Small Satellites and Space Debris Mitigation
    chapter 11 Small Satellites and Space Debris Mitigation Cordula Steinkogler* i Introduction Almost six decades of spaceflight have left a large quantity of debris in outer space. Due to the continuous increase in space activities, the amount of space debris is constantly growing. While in 2005 the total mass of catalogued objects in Earth orbit was an estimated 5,000 tons, this number had risen to approxi- mately 6,000 tons by 2010 and amounts to over 6,600 tons today.1 At present, approximately 17,000 space objects with sizes ranging from a few centimetres to several meters are officially catalogued.2 Of these, however, only approximately * The author would like to thank Prof Otto Koudelka (Graz University of Technology), Dr Manuel Metz (German Aerospace Center), Attila Matas (ITU) and Vladimir Agapov (Russian Academy of Sciences) for the valuable advice and useful material they provided on technical matters. 1 National Aeronautics and Space Administration, ‘Monthly Effective Mass of Objects in Earth Orbit by Region’ (Orbital Debris Quarterly News, January 2015) <http://orbitaldebris.jsc.nasa .gov/newsletter/newsletter.html>. 2 National Aeronautics and Space Administration, ‘Satellite Box Score’ (Orbital Debris Quarterly News, January 2015) <http://orbitaldebris.jsc.nasa.gov/newsletter/newsletter.html>. See also United States Strategic Command, ‘Satellite Situation Report’ <https://www.space-track.org> (as of 6 June 2015). Note that according to the esa space debris risk assessment model esa MASTER 2009 the current number of space objects larger than 10 cm is approximately 29,000. See Institute of Aerospace Systems – Technische Universität Braunschweig, Maintenance of the esa MASTER Model – Final Report (European Space Agency 2011) 336.
    [Show full text]
  • AAS Paper Kessler Syndromefinalfinal
    (Preprint) AAS 10-016 THE KESSLER SYNDROME: IMPLICATIONS TO FUTURE SPACE OPERATIONS Donald J. Kessler,* Nicholas L. Johnson,† and J.-C. Liou,‡ and Mark Matney ☺ The term “Kessler Syndrome” is an orbital debris term that has become popular outside the professional orbital debris community without ever having a strict definition. The intended definition grew out of a 1978 JGR paper predicting that fragments from random collisions between catalogued objects in low Earth orbit would become an important source of small debris beginning in about the year 2000, and that afterwards, “…the debris flux will increase exponentially with time, even though a zero net input may be maintained”. The purpose of this pa- per is to clarify the intended definition of the term, to put the implications into perspective after 30 years of research by the international scientific community, and to discuss what this research may mean to future space operations. The conclusion is reached that while popular use of the term may have exaggerated and distorted the conclusions of the 1978 paper, the result of all research to date confirms that we are now entering a time when the orbital debris environment will increasingly be controlled by random collisions. Without adequate collision avoidance capabilities, control of the future environment requires that we fully implement current mitigation guidelines by not leaving future payloads and rocket bodies in orbit after their useful life. In addition, we will likely be re- quired to return some objects already in orbit. INTRODUCTION Since the beginning of the space program through the 1970’s, it was generally believed that NORAD was tracking all man-made objects in Earth orbit and that the catalogued objects repre- sented the major collision threat to other operational spacecraft.
    [Show full text]
  • The Existence and Dangers of the Accumulation of Space Debris in Low Earth Orbit and How Analogies Can Be Used to Better Explain Complexities in New Technologies
    The Existence and Dangers of the Accumulation of Space Debris in Low Earth Orbit and How Analogies Can Be Used to Better Explain Complexities in New Technologies A Research Paper submitted to the Department of Engineering and Society Presented to the Faculty of the School of Engineering and Applied Science University of Virginia • Charlottesville, Virginia In Partial Fulfillment of the Requirements for the Degree Bachelor of Science, School of Engineering Colin Purcell Spring 2021 On my honor as a University Student, I have neither given nor received unauthorized aid on this assignment as defined by the Honor Guidelines for Thesis-Related Assignments Advisor Kathryn A. Neeley, Associate Professor of STS, Department of Engineering and Society Overcrowding of Low Earth Orbit Governments, civilians and especially private companies are launching rockets and satellites at unprecedented rates (Stephen Clark, 2021, n.p). This rise is shown in Figure 1 and is predominantly caused by the increase in spacecraft launched by private companies. These satellites serve many purposes such as communication, imagery and even global wifi in the near future. While these spacecraft provide many benefits, some trouble will arise in the future if more attention is not paid to the potential for overcrowding space. Of the 2,666 satellites in orbit around the Earth, 1,918 or 72% are in Low Earth Orbit (LEO) (Datta, 2020). This congestion has the potential to lead to collisions between spacecraft causing damage and even destroying operational satellites. Figure 1: Number of spacecraft launched per year by different groups (Lafleur, 2017) This image shows the progression of how many spacecraft were launched each year from the beginning of space exploration to 2017.
    [Show full text]
  • Outer Space: How Shall the World's Governments Establish Order Among Competing Interests?
    Washington International Law Journal Volume 29 Number 1 12-23-2019 Outer Space: How Shall the World's Governments Establish Order Among Competing Interests? Paul B. Larsen Follow this and additional works at: https://digitalcommons.law.uw.edu/wilj Part of the Air and Space Law Commons Recommended Citation Paul B. Larsen, Outer Space: How Shall the World's Governments Establish Order Among Competing Interests?, 29 Wash. L. Rev. 1 (2019). Available at: https://digitalcommons.law.uw.edu/wilj/vol29/iss1/3 This Article is brought to you for free and open access by the Law Reviews and Journals at UW Law Digital Commons. It has been accepted for inclusion in Washington International Law Journal by an authorized editor of UW Law Digital Commons. For more information, please contact [email protected]. Copyright © 2019 Washington International Law Journal Association OUTER SPACE: HOW SHALL THE WORLD’S GOVERNMENTS ESTABLISH ORDER AMONG COMPETING INTERESTS? Paul B. Larsen† Abstract: We are in a period of transition in outer space; it is becoming increasingly congested. As one example, small satellites are beginning to interfere with astronomical observations. The objective of this article is to examine and evaluate how the various outer space interests interact, coordinate or conflict with each other. This article examines legal order options and the consequences of choosing among those options. Cite as: Paul B. Larsen, Outer Space: How Shall the World’s Governments Establish Order Among Competing Interests?, 29 WASH. INT’L L.J. 1 (2019). I. INTRODUCTION: WHY ORDER IN OUTER SPACE? Outer space seems unlimited; at least it so appeared in 1957 when Sputnik was launched.
    [Show full text]
  • Space Junk: K-12 Educator's Guide
    K-12 Educator’s Guide K-12 Educator’s Guide Table of Contents: Satellite History..................... 4 Try This: Astrolabe................. .13 Careers in Science................ 7 Puzzle: Crossword...................14 Try This: Clean-Up................ 10 Puzzle: Word Search...............15 Try This: Orbital Fun............. 11 Resources for Teachers..........16 Try This: Satellite Tracking.......12 Science Standards..................18 This K-12 Educator’s Guide includes supplemental information and activities to help extend the learning experience associated with watching Space Junk. The film tells the story of a growing ring of orbiting debris located 22,000 miles above Earth—a troubling legacy of 50 years of launching our dreams into space. That debris field casts a shadow over the future of space exploration. This Educator’s Guide presents a historical timeline of satellite launches and the background science to help learners understand the physics of space junk. Space Junk also challenges students to imagine solutions to the problems we now face in space. While the film’s message is a cautionary tale, it also seeks to inspire a new age of innovation. Today’s K-12 students are tomorrow’s scientists and engineers who will forge the future of space exploration and discovery. This Guide also includes hands-on activities and a complete presentation of how the film can be used to support classroom learning in context with the National Science Education Standards. Learning Goals for K-12 Students: • The basic physical principles of orbital mechanics have enabled a half-century of rapid innovation in satellite technology, impacting our daily lives. • Actions have consequences. The benefits of satellite technology have been great, but the orbital debris field has grown to become a new and pressing challenge.
    [Show full text]
  • Building Small-Satellites to Live Through the Kessler Effect
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/335617312 Building Small-Satellites to Live Through the Kessler Effect Preprint · September 2019 CITATIONS READS 0 43 4 authors: Steven Morad Himangshu Kalita Toshiba Research Europe Limited The University of Arizona 11 PUBLICATIONS 27 CITATIONS 53 PUBLICATIONS 164 CITATIONS SEE PROFILE SEE PROFILE Ravi Teja Nallapu Jekan Thangavelautham The University of Arizona The University of Arizona 45 PUBLICATIONS 160 CITATIONS 205 PUBLICATIONS 828 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Automated Design of CubeSats and Small Spacecrafts View project Evolutionary Algorithms View project All content following this page was uploaded by Steven Morad on 02 April 2020. The user has requested enhancement of the downloaded file. Building Small-Satellites to Live Through the Kessler Effect Steven Morad, Himangshu Kalita, Ravi teja Nallapu, and Jekan Thangavelautham Space and Terrestrial Robotic Exploration (SpaceTREx) Laboratory, University of Arizona ABSTRACT The rapid advancement and miniaturization of spacecraft electronics, sensors, actuators, and power systems have resulted in grow- ing proliferation of small-spacecraft. Coupled with this is the growing number of rocket launches, with left-over debris marking their trail. The space debris problem has also been compounded by test of several satellite killer missiles that have left large remnant debris fields. In this paper, we assume a future in which the Kessler Effect has taken hold and analyze the implications on the design of small-satellites and CubeSats. We use a multiprong approach of surveying the latest technologies, including the ability to sense space debris in orbit, perform obstacle avoidance, have sufficient shielding to take on small impacts and other techniques to mitigate the problem.
    [Show full text]
  • Long-Term Effects of Satellite Megaconstellations on the Debris Environment in Low Earth Orbit
    LONG-TERM EFFECTS OF SATELLITE MEGACONSTELLATIONS ON THE DEBRIS ENVIRONMENT IN LOW EARTH ORBIT BY BRIAN PATRICK HARDY THESIS Submitted in partial fulfillment of the requirements for the degree of Master of Science in Aerospace Engineering in the Graduate College of the University of Illinois at Urbana-Champaign, 2020 Urbana, Illinois Adviser: Adjunct Assistant Professor Koki Ho ABSTRACT This thesis examines the potential long-term impacts of satellite megaconstellations in Low Earth Orbit, with a focus on how post-mission disposal rates for megaconstellations will affect their contributions to orbital debris over the next 150 years. A new, medium-fidelity simulation for modeling orbital debris is developed and described, and several test cases are run with SpaceX’s Starlink megaconstellation and varying success rates for post-mission disposal. In cases where Starlink’s post-mission disposal rate is insufficient to prevent debris growth, varying amounts of active debris removal are explored as a potential mitigation measure. It is shown that LEO debris levels will grow at almost double their baseline rate if Starlink meets only the minimum regulatory requirements for post-mission disposal, and even relatively high rates of active debris removal cannot always return the LEO environment to its non-megaconstellation baseline. Still, the potential exists to minimize the debris-generating effects of large megaconstellations like Starlink if post-mission disposal rates of 95% or better can be achieved. ii ACKNOWLEDGMENTS This thesis is the product of many hours of my own research and writing, but above all it is a product of the education, mentorship, and support that I have been fortunate enough to receive from many individuals over the past twenty-four years.
    [Show full text]
  • Quarterly News Volume 13, Issue 2 April 2009
    National Aeronautics and Space Administration Orbital Debris Quarterly News Volume 13, Issue 2 April 2009 Inside... Satellite Collision Leaves Significant Debris Clouds ISS Crew Seeks The first accidental hypervelocity collision debris created in a collision of this type is dependent Safe Haven During of two intact spacecraft occurred on 10 February, upon the masses of the vehicles involved and the Debris Flyby 3 leaving two distinct debris clouds extending through manner in which they struck one another. The two much of low Earth orbit (LEO). The first indication complex spacecraft (Figure 2) were of moderate dry Minor March of the impact was the immediate cessation of signals continued on page 2 Satellite from one of the satellites. Shortly thereafter, the Break-Up 3 U.S. Space Surveillance Network (SSN) began detecting numerous new objects in the paths of the STS-126 Shuttle two spacecraft. By the end of March, 823 of the Endeavour Window larger debris had been identified and cataloged by the SSN with additional debris being tracked, but not Impact Damage 3 yet cataloged. Special ground-based observations confirmed that a much greater number of smaller Abstracts from the debris was also generated in the unprecedented NASA OD Program event. Office 5 Iridium 33, a U.S. operational communications satellite (International Designator 1997-051C, U.S. Upcoming Satellite Number 24946), and Cosmos 2251, a Meeting 9 Russian decommissioned communications satellite Figure 1. The orbital planes of Iridium 33 and Cosmos 2251 (International Designator 1993-036A, U.S. Satellite were at nearly right angles at the time of the collision.
    [Show full text]
  • Assessing and Minimizing Collisions in Satellite Mega-Constellations
    Assessing and Minimizing Collisions in Satellite Mega-Constellations Nathan Reiland∗, Aaron J. Rosengren Aerospace and Mechanical Engineering, The University of Arizona, Tucson, AZ 85721, USA Renu Malhotra Lunar and Planetary Laboratory, The University of Arizona, Tucson, AZ 85721, USA Claudio Bombardelli Space Dynamics Group, Technical University of Madrid, 2040 Madrid, Spain Abstract We aim to provide satellite operators and researchers with an efficient means for eval- uating and mitigating collision risk during the design process of mega-constellations. We first establish a baseline for evaluating various techniques for close-encounter prediction and collision-probability calculation (Hoots et al. 1984, Gronchi 2005, JeongAhn and Malhotra 2015) by carrying out brute-force numerical simulations and using a sequence of filters to greatly reduce the computational expense of the algorithm. Next, we estimate conjunction events in the orbital environment following the anticipated deployments of the OneWeb LEO and SpaceX Starlink mega-constellations. As a final step, we investigate Minimum Space Oc- cupancy (MiSO) orbits (Bombardelli et al. 2018), a generalization of the well-known frozen orbits that account for the perturbed-Keplerian dynamics of the Earth- Moon-Sun-satellite system. We evaluate the ability of MiSO configurations of the proposed mega-constellations, as suggested by Bombardelli et al. 2018, to reduce the risk of endogenous (intra-constellation) collisions. The results indicate that the adoption of the MiSO orbital configuration can signif- icantly reduce risk with nearly indistinguishable adjustments to the nominal orbital elements of the constellation satellites. Keywords: Mega-Constellations; Satellite conjunction; Space debris; Frozen orbits; Dynamical evolution and stability arXiv:2002.00430v1 [astro-ph.EP] 2 Feb 2020 ∗Corresponding author Email addresses: [email protected] (Nathan Reiland), [email protected] (Aaron J.
    [Show full text]
  • The Future of Warfare and Russian Engagement in Space
    SQUADRON OFFICER SCHOOL AIR UNIVERSITY ADVANCED RESEARCH The Future of Warfare and Russian Engagement in Space by Kate E. Lee, Capt, USAF Advisor: John J. IsaCCo, Lt CoL, USAF MarCh 2021 "Opinions, conclusions, and recommendations expressed or implied within are solely those of the author and do not necessarily represent the views of the Air University, the United States Air Force, the Department of Defense, or any other US government agency." Abstract As teChnoLogy and warfare have evoLved, space-based capabiLities and the architecture that enables them have become exponentialLy more important to national security. AcCordingLy, space warfare wiLL beCome a key Component of future confLicts. However, Current United States (U.S.) and North AtLantiC Treaty Organization (NATO) spaCe arChiteCture suffers from poor cybersecurity. Left unaddressed, this wiLL become an unprecedented weakness that adversaries such as Russia can exploit if given the opportunity. Over the next decade, spaCe warfare is likely to be conduCted predominantLy in the cyber and electronic realms. The biggest threat to U.S. and NATO space architecture wiLL not be from kinetic weapons, but from cyber operators on the other side of the worLd. This is espeCiaLLy true of the U.S.’s primary chalLenger in space, Russia. Given Russia’s approach to modern warfare, which involves extensive use of non-traditionaL means, Cyberattacks are Likely to become Russia’s preferred method of warfare in the spaCe domain. The U.S. and NATO therefore need to invest in reinforcing the cybersecurity of their spaCe architeCture and develop mandatory CyberseCurity standards for implementation in future teChnologies and assets.
    [Show full text]