NASA's Efforts to Mitigate the Risks Posed by Orbital Debris
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Commercial Space Launch Amendments Act of 2004, H.R
Harvard Journal of Law & Technology Volume 17, Number 2 Spring 2004 Commercialization of Space Commercial Space Launch Amendments Act of 2004 On March 4, 2004, the Commercial Space Launch Amendments Act of 20041 (“CSLAA”) was passed by the House of Representatives by a vote of 402 to one.2 The bill is “designed to promote the devel- opment of the emerging commercial human space flight industry,” and is sponsored by Space and Aeronautics Subcommittee Chairman Representative Dana Rohrabacher (R-CA).3 If enacted, the CSLAA will establish a regulatory regime tailored to the needs and dangers of the commercial space launch business, thereby freeing the industry from the tangle of ill-suited regulations with which it has been forced to contend, and consequently allowing the private sector to challenge the hegemony of the National Aeronautics and Space Administration (“NASA”) in space.4 This Note will begin by briefly discussing the potential for valuable commercial development in space. Next, it will explore the key reasons why NASA has failed to tap this potential and why existing regulatory frameworks have prevented private enterprise from doing so. It will then describe how the CSLAA would advance the emerging suborbital human space flight industry by explicitly de- fining the industry to be regulated, by vesting control in a single regu- lator, and by limiting the regulatory obstacles standing in the way of commercial development. Finally, the Note will frame the CSLAA as one piece of a potentially much broader trend in the promotion of pri- vate space entrepreneurship by gover nment. Though its future prospects are far from certain,5 commercial human space flight is one of a number of industries whose activities in space could create substantial value on Earth.6 Proposed business 1. -
In-Depth Review of Satellite Imagery / Earth Observation Technology in Official Statistics Prepared by Canada and Mexico
In-depth review of satellite imagery / earth observation technology in official statistics Prepared by Canada and Mexico Julio A. Santaella Conference of European Statisticians 67th plenary session Paris, France June 28, 2019 Earth observation (EO) EO is the gathering of information about planet Earth’s physical, chemical and biological systems. It involves monitoring and assessing the status of, and changes in, the natural and man-made environment Measurements taken by a thermometer, wind gauge, ocean buoy, altimeter or seismograph Photographs and satellite imagery Radar and sonar images Analyses of water or soil samples EO examples EO Processed information such as maps or forecasts Source: Group on Earth Observations (GEO) In-depth review of satellite imagery / earth observation technology in official statistics 2 Introduction Satellite imagery uses have expanded over time Satellite imagery provide generalized data for large areas at relatively low cost: Aligned with NSOs needs to produce more information at lower costs NSOs are starting to consider EO technology as a data collection instrument for purposes beyond agricultural statistics In-depth review of satellite imagery / earth observation technology in official statistics 3 Scope and definition of the review To survey how various types of satellite data and the techniques used to process or analyze them support the GSBPM To improve coordination of statistical activities in the UNECE region, identify gaps or duplication of work, and address emerging issues In-depth review of satellite imagery / earth observation technology in official statistics 4 Overview of recent activities • EO technology has developed progressively, encouraging the identification of new applications of this infrastructure data. -
A Systematic Review of Landsat Data for Change Detection Applications: 50 Years of Monitoring the Earth
remote sensing Review A Systematic Review of Landsat Data for Change Detection Applications: 50 Years of Monitoring the Earth MohammadAli Hemati 1 , Mahdi Hasanlou 1 , Masoud Mahdianpari 2,3,* and Fariba Mohammadimanesh 2 1 School of Surveying and Geospatial Engineering, College of Engineering, University of Tehran, Tehran 14174-66191, Iran; [email protected] (M.H.); [email protected] (M.H.) 2 C-CORE, 1 Morrissey Road, St. John’s, NL A1B 3X5, Canada; [email protected] 3 Department of Electrical and Computer Engineering, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada * Correspondence: [email protected] Abstract: With uninterrupted space-based data collection since 1972, Landsat plays a key role in systematic monitoring of the Earth’s surface, enabled by an extensive and free, radiometrically consistent, global archive of imagery. Governments and international organizations rely on Landsat time series for monitoring and deriving a systematic understanding of the dynamics of the Earth’s surface at a spatial scale relevant to management, scientific inquiry, and policy development. In this study, we identify trends in Landsat-informed change detection studies by surveying 50 years of published applications, processing, and change detection methods. Specifically, a representative database was created resulting in 490 relevant journal articles derived from the Web of Science and Scopus. From these articles, we provide a review of recent developments, opportunities, and trends in Landsat change detection studies. The impact of the Landsat free and open data policy in 2008 is evident in the literature as a turning point in the number and nature of change detection Citation: Hemati, M.; Hasanlou, M.; studies. -
Fy15 Table of Contents Fy16 Table of Contents
FY15FY16 TABLE OF CONTENTS DOT&E Activity and Oversight FY16 Activity Summary 1 Program Oversight 7 Problem Discovery Affecting OT&E 13 DOD Programs Major Automated Information System (MAIS) Best Practices 23 Defense Agencies Initiative (DAI) 29 Defensive Medical Information Exchange (DMIX) 33 Defense Readiness Reporting System – Strategic (DRRS-S) 37 Department of Defense (DOD) Teleport 41 DOD Healthcare Management System Modernization (DHMSM) 43 F-35 Joint Strike Fighter 47 Global Command and Control System – Joint (GCCS-J) 107 Joint Information Environment (JIE) 111 Joint Warning and Reporting Network (JWARN) 115 Key Management Infrastructure (KMI) Increment 2 117 Next Generation Diagnostic System (NGDS) Increment 1 121 Public Key Infrastructure (PKI) Increment 2 123 Theater Medical Information Program – Joint (TMIP-J) 127 Army Programs Army Network Modernization 131 Network Integration Evaluation (NIE) 135 Abrams M1A2 System Enhancement Program (SEP) Main Battle Tank (MBT) 139 AH-64E Apache 141 Army Integrated Air & Missile Defense (IAMD) 143 Chemical Demilitarization Program – Assembled Chemical Weapons Alternatives (CHEM DEMIL-ACWA) 145 Command Web 147 Distributed Common Ground System – Army (DCGS-A) 149 HELLFIRE Romeo and Longbow 151 Javelin Close Combat Missile System – Medium 153 Joint Light Tactical Vehicle (JLTV) Family of Vehicles (FoV) 155 Joint Tactical Networks (JTN) Joint Enterprise Network Manager (JENM) 157 Logistics Modernization Program (LMP) 161 M109A7 Family of Vehicles (FoV) Paladin Integrated Management (PIM) 165 -
NOAA TM GLERL-33. Categorization of Northern Green Bay Ice Cover
NOAA Technical Memorandum ERL GLERL-33 CATEGORIZATION OF NORTHERN GREEN BAY ICE COVER USING LANDSAT 1 DIGITAL DATA - A CASE STUDY George A. Leshkevich Great Lakes Environmental Research Laboratory Ann Arbor, Michigan January 1981 UNITED STATES NATIONAL OCEANIC AND Environmental Research DEPARTMENT OF COMMERCE AlMOSPHERlC ADMINISTRATION Laboratofks Philip M. Klutznick, Sacratary Richard A Frank, Administrator Joseph 0. Fletcher, Acting Director NOTICE The NOAA Environmental Research Laboratories do not approve, recommend, or endorse any proprietary product or proprietary material mentioned in this publication. No reference shall be made to the NOAA Environmental Research Laboratories, or to this publication furnished by the NOAA Environmental Research Laboratories, in any advertising or sales promotion which would indicate or imply that the NOAA Environmental Research Laboratories approve, recommend, or endorse any proprietary product or proprietary material men- tioned herein, or which has as its purpose an intent to cause directly or indirectly the advertized product to be used or purchased because of this NOAA Environmental Research Laboratories publication. ii TABLE OF CONTENTS Page Abstract 1. INTRODUCTION 2. DATA SOURCE AND DESCRIPTION OF STUDY AREA 2.1 Data Source 2.2 Description of Study Area 3. DATA ANALYSIS 3.1 Equipment 3.2 Approach 5 4. RESULTS 8 5. CONCLUSIONS AND RECOMMENDATIONS 15 6. ACKNOWLEDGEMENTS 17 7. REFERENCES 17 8. SELECTED BIBLIOGRAPHY 19 iii FIGURES Page 1. Area covered by LANDSAT 1 scene, February 13, 1975. 3 2. LANDSAT 1 false-color image, February 13, 1975, and trainin:: set locations (by group number). 4 3. Transformed variables (1 and 2) for snow covered land (group 13) plotted arouwl the group means for snow- covered ice (group 15). -
Kessler Syndrome
Kessler Syndrome March 20, 2021 What is Kessler Syndrome? The Kessler syndrome, also called the Kessler effect, collisional cascading or ablation cascade, is a scenario in which the density of objects in Low Earth Orbit (LEO) is high enough that collisions between objects could cause a cascade where each collision generates space debris that increases the likelihood of further collisions. Who proposed it? It is a theory proposed by NASA scientist Donald J. Kessler in 1978, used to describe a self-sustaining cascading collision of space debris in LEO. In an article published on June 1, 1978 in the American Journal of Geophysical Research, the authors Donald J. Kessler and Burton G. Cour-Palais, two NASA experts, identified the risk of an exponential increase in the number of space debris or orbital debris under the effect of mutual collisions. The two authors believed that a belt formed by these objects or fragments of objects around the Earth would soon form. Eventually threatening space activities, this phenomenon will be popularized a few years later under the name of Kessler syndrome Implications One implication is that the distribution of debris in orbit could render space activities and the use of satellites in specific orbital ranges impractical for many generations. The Kessler syndrome is troublesome because of the domino effect and feedback runaway wherein impacts between objects of sizable mass spall off debris from the force of the collision Every satellite, space probe, and manned mission has the potential to produce space debris. A cascading Kessler syndrome becomes more likely as satellites in orbit increase in number. -
Detecting, Tracking and Imaging Space Debris
r bulletin 109 — february 2002 Detecting, Tracking and Imaging Space Debris D. Mehrholz, L. Leushacke FGAN Research Institute for High-Frequency Physics and Radar Techniques, Wachtberg, Germany W. Flury, R. Jehn, H. Klinkrad, M. Landgraf European Space Operations Centre (ESOC), Darmstadt, Germany Earth’s space-debris environment tracked, with estimates for the number of Today’s man-made space-debris environment objects larger than 1 cm ranging from 100 000 has been created by the space activities to 200 000. that have taken place since Sputnik’s launch in 1957. There have been more than 4000 The sources of this debris are normal launch rocket launches since then, as well as many operations (Fig. 2), certain operations in space, other related debris-generating occurrences fragmentations as a result of explosions and such as more than 150 in-orbit fragmentation collisions in space, firings of satellite solid- events. rocket motors, material ageing effects, and leaking thermal-control systems. Solid-rocket Among the more than 8700 objects larger than 10 cm in Earth orbits, motors use aluminium as a catalyst (about 15% only about 6% are operational satellites and the remainder is space by mass) and when burning they emit debris. Europe currently has no operational space surveillance aluminium-oxide particles typically 1 to 10 system, but a powerful radar facility for the detection and tracking of microns in size. In addition, centimetre-sized space debris and the imaging of space objects is available in the form objects are formed by metallic aluminium melts, of the 34 m dish radar at the Research Establishment for Applied called ‘slag’. -
Solving the Space Debris Crisis Paul B
Journal of Air Law and Commerce Volume 83 | Issue 3 Article 2 2018 Solving the Space Debris Crisis Paul B. Larsen Georgetown University Law Center, [email protected] Follow this and additional works at: https://scholar.smu.edu/jalc Part of the Air and Space Law Commons Recommended Citation Paul B. Larsen, Solving the Space Debris Crisis, 83 J. Air L. & Com. 475 (2018) https://scholar.smu.edu/jalc/vol83/iss3/2 This Article is brought to you for free and open access by the Law Journals at SMU Scholar. It has been accepted for inclusion in Journal of Air Law and Commerce by an authorized administrator of SMU Scholar. For more information, please visit http://digitalrepository.smu.edu. SOLVING THE SPACE DEBRIS CRISIS PAUL B. LARSEN* ABSTRACT Space debris is a growing public safety problem. As described by the Kessler Syndrome,1 the increasing accumulation of debris will soon hinder and eventually preclude access to outer space unless the trend is swiftly reversed. The Inter-Agency Space Deb- ris Coordination Committee’s (IADC) Space Debris Mitigation Guidelines, as adopted by the United Nations (UN) Committee for the Peaceful Uses of Outer Space (COPUOS), are voluntary but are enforced as mandatory regulations by major space pow- ers; however, the guidelines only apply to new debris. The Euro- pean Space Agency’s (ESA) 2017 Space Debris Conference concluded that existing space debris guidelines are inadequate and must be further strengthened in order to successfully con- trol space debris.2 * The author taught air and space law for more than forty years respectively at Southern Methodist University and at Georgetown University. -
Landsat 9 Micrometeoroid and Orbital Debris Mission Success Approach
First Int'l. Orbital Debris Conf. 2019 (LPI Contrib. No. 2109) 6058.pdf Landsat 9 Micrometeoroid and Orbital Debris Mission Success Approach Michael S. Pryzby(1), Scott M. Hull(2), Angela M. Russo(2), Glenn T. Iona(2), Daniel Helfrich(2), and Evan H. Webb(2) (1) ATA Aerospace, 7474 Greenway Center Dr, Suite 500, Greenbelt, MD 20770, USA (2) NASA Goddard Space Flight Center, 8800 Greenbelt Rd, Greenbelt, MD 20771, USA ABSTRACT Landsat 9* (L9) is the successor mission to Landsat 8 (L8) previously known as Landsat Data Continuity Mission (LDCM). Both missions are large unmanned remote sensing satellites operating in sun- synchronous polar orbits. As opposed to L8/LDCM, systems engineers for L9 incorporated Micrometeoroid/Orbital Debris (MMOD) protection for small object collisions as part of the L9’s mission success criteria. In other words, the NASA Process for Limiting Orbital Debris (NASA-STD-8719.14A) only calls for analyses of the protection of disposal-critical hardware, but L9 opted to also assess and provide small particle penetration protections for all observatory components including instruments that are not part of the spacecraft components needed for controlled reentry. Systems engineers at Goddard developed a design process to protect against MMOD during the life of Low Earth Orbit (LEO) observatories, and in particular the Landsat 9 Mission. Simply stated, this design process enhanced the effectiveness of existing Multi-Layer Insulation (MLI) to provide the needed protection. The end goal of the design process was to establish a necessary blanket areal density for a given electronics box or instrument wall thickness and a separation between the outer MLI blanket and the structure underneath. -
Hurricane Response Annex Overview Introduction
TABLE OF CONTENTS SECTION I – HURICANE RESPONSE ANNEX OVERVIEW ............................................................... 2 INTRODUCTION .................................................................................................................................................. 3 PLANNING ASSUMPTIONS ................................................................................................................................... 4 COMMUNITY IMPACTS ........................................................................................................................................ 4 SECTION II – CONCEPT OF OPERATIONS ........................................................................................ 5 DEFINING THE HAZARD ...................................................................................................................................... 5 Tropical Cyclones ..................................................................................................................................................... 5 TIMELINES ........................................................................................................................................................... 6 HURRICANE SEASON ...................................................................................................................................... 6 RESPONDER REENTRY HOUR ......................................................................................................................... 7 SECTION III – ROLES & RESPONSIBILITIES -
The Space Elevator NIAC Phase II Final Report March 1, 2003
The Space Elevator NIAC Phase II Final Report March 1, 2003 Bradley C. Edwards, Ph.D. Eureka Scientific [email protected] The Space Elevator NIAC Phase II Final Report Executive Summary This document in combination with the book The Space Elevator (Edwards and Westling, 2003) summarizes the work done under a NASA Institute for Advanced Concepts Phase II grant to develop the space elevator. The effort was led by Bradley C. Edwards, Ph.D. and involved more than 20 institutions and 50 participants at some level. The objective of this program was to produce an initial design for a space elevator using current or near-term technology and evaluate the effort yet required prior to construction of the first space elevator. Prior to our effort little quantitative analysis had been completed on the space elevator concept. Our effort examined all aspects of the design, construction, deployment and operation of a space elevator. The studies were quantitative and detailed, highlighting problems and establishing solutions throughout. It was found that the space elevator could be constructed using existing technology with the exception of the high-strength material required. Our study has also found that the high-strength material required is currently under development and expected to be available in 2 years. Accepted estimates were that the space elevator could not be built for at least 300 years. Colleagues have stated that based on our effort an elevator could be operational in 30 to 50 years. Our estimate is that the space elevator could be operational in 15 years for $10B. In any case, our effort has enabled researchers and engineers to debate the possibility of a space elevator operating in 15 to 50 years rather than 300. -
Marine Litter Legislation: a Toolkit for Policymakers
Marine Litter Legislation: A Toolkit for Policymakers The views expressed in this publication are those of the authors and do not necessarily reflect the views of the United Nations Environment Programme. No use of this publication may be made for resale or any other commercial purpose whatsoever without prior permission in writing from the United Nations Environment Programme. Applications for such permission, with a statement of the purpose and extent of the reproduction, should be addressed to the Director, DCPI, UNEP, P.O. Box 30552, Nairobi, Kenya. Acknowledgments This report was developed by the Environmental Law Institute (ELI) for the United Nations Environment Programme (UNEP). It was researched, drafted, and produced by Carl Bruch, Kathryn Mengerink, Elana Harrison, Davonne Flanagan, Isabel Carey, Thomas Casey, Meggan Davis, Elizabeth Hessami, Joyce Lombardi, Norka Michel- en, Colin Parts, Lucas Rhodes, Nikita West, and Sofia Yazykova. Within UNEP, Heidi Savelli, Arnold Kreilhuber, and Petter Malvik oversaw the development of the report. The authors express their appreciation to the peer reviewers, including Catherine Ayres, Patricia Beneke, Angela Howe, Ileana Lopez, Lara Ognibene, David Vander Zwaag, and Judith Wehrli. Cover photo: Plastics floating in the ocean The views expressed in this report do not necessarily reflect those of the United Nations Environment Programme. © 2016. United Nations Environment Programme. Marine Litter Legislation: A Toolkit for Policymakers Contents Foreword ..................................................................................................