Cactus Quarterly

Total Page:16

File Type:pdf, Size:1020Kb

Cactus Quarterly CACTUS QUARTERLY NSW, North West Region Winter 2020 Latest news In This Issue Minister Adam Marshall checks out Hudson pear Latest News Once again the biocontrol Dactylopius • Minister Adam Marshall checks out Hudson tomentosus (‘californica var. par- pear keri’) commonly known as cochineal for • Identification of unknown cacti in the NW re- Hudson pear, Cylindropuntia pal- gion • Tiger pear cladode swap lida was in the spotlight, as Lightning • Biocontrol of Hudson pear using cochineal Ridge had a visit from Minister Adam Marshall on July 7, 2020. Common prickly pear - O. stricta In collaboration with Department of Pri- Photo: Minister Adam Marshall Prickly Pear History mary Industries Senior Researcher An- and Andrew McConnachie, DPI. Tourism drew McConnachie, Walgett Shire Council Weed Officers Mat Sav- • Help prevent the spread of cacti! age and Andrea Fletcher, North West Local Land Service Regional • Caravanning Australia - Spring 2020 Weed Officer Pete Dawson and Northern Slopes Land- NEW Cacti Resources care NW Cacti Control Coor- Events dinator Jo Skewes, they Networks were given the opportunity to show case their hard work in Know your local Weeds Officer developing a program that Further Information delivers an effective on Photo (left to right): J. Skewes, M. Savage, P. Funded through the NW Cacti Coordinator Program Dawson, A. Fletcher and A. McConnachie. ground biocontrol whilst working with the community Email: [email protected] Phone: 0402 014 769 and creating partnerships with local and state departments and or- ganisations. A program that can be utilised as a benchmark for future projects. To read more about the Ministers visit check out The Lands article, ‘Hudson pear is cactus’ at https://www.northernslopeslandcare.co m.au/cacti/cactus-news.html “Releasing the Hounds on Hudson pear” – a Community biological control management program. A collaboration between NSW Department of Primary Indus- tries, North West Local Land Services, Northern Slopes Landcare Association and Castlereagh Macquarie Weeds County Council is funded through the NSW Governments Office for Environment and Heritage. Identification of unknown cacti in the NW region Recently an unidentified cactus species was recorded from both the Gwydir Shire and Walgett Shire areas. It was initially thought to be Opuntia leucotricha, with this being confirmed by Dr. Bob Chinnock (a retired State Herbarium Botanist). Previously, Opuntia leucotricha was not known to be in the NW region. The cactus found in the Gwydir Shire was originally thought to have been planted as part of the previous owners cactus garden. Fortunately, the current owners identi- fied the cactus garden as a potential risk and have been working towards removing it from the property. The specimen from the Walgett Shire seemed to have been planted along a fence line (and was spreading from the parent plant). Local weed officers will be treating the population in the near future. If you have cacti of concern in your garden or on your property, contact your local weed officer (see page 7) or call the Biosecurity Help Line on 1800 680 244 for assistance on identification and how to best control it. 1 How invasive is YOUR cactus? Page 1 Tiger Pear Cladode Swap Do you have tiger pear (Cylindropuntia aurantiaca)? Tiger pear is extremely hardy, thriving in a range of habitats. This includes the slopes and nearby plains, where large localised infestations still thrive. Segments break from established plants easily and are transported by water, stock and car tyres. Tiger pear is a spreading or climbing cactus rarely more than 40 cm high. The plant consists of numerous segments up to 20cm long. Each segment has large spines up to 5 cm long. Flowers are yellow. Fruits are egg-shaped with a depressed top. They are 2.5–3.5 cm long and are red to purple when ripe. Plants form seeds, however, the species is a sterile hybrid and only spreads vegetatively by segments or fruit which root where they contact the ground. How do I control it? If you have an infestation of Tiger pear contact your local weed officer on how to best control it. If you live in the Narrabri Shire or the Gwydir Shires, you can partake in a cladode swap. What is a cladode? Opuntia spp. have succulent, jointed cladodes, which are also known as pads or stem segments. Cladodes are generally flat, cylindrical or occasionally fan shaped and green in colour. What is a cladode swap? Photo: Tiger pear with cochineal, Les Tanner. A cladode swap is when you bring in clean (no soil or ants) fresh (recently collected), undamaged (cleanly broken off) cladodes (segments) and the weed officer will swap you for cladodes infected with Dactylopius austrinus, a cochineal species that specifically targets tiger pear. You can then release these infected cladodes in tiger pear plants that are up wind of your core infestation. As a result, the wind will then disperse the crawlers (juvenile cochineal) onto the surrounding plants. Make sure you securely place the cladodes in the plants by using a pair of long handled tongs. Who should I contact? Narrabri Shire Council area Weed Officer Clare Felton-Taylor on 0427 294 771 or Chris Watkins on 0429 202 205 Gwydir Shire Council area Weed Officer Scott McLachlan on 0428 305 364 or Adrian Wood 0448 181 321 Biocontrol of Hudson pear (Cylindropuntia pallida) using cochineal Dactylopius tomentosus (californica var. parkeri) Further releases of the biocontrol agent for Cylindropuntia pallida also known as Hudson pear have been made. The Dactylopius tomentosus (californica var. par- keri) commonly known as the Hudson pear cochineal is one of six lineages which are being used to control the eight species of invasive Cylindropuntia in Australia. An inter-agency collaboration between Department of Primary Industries, Walgett Shire Council, North West Local Land Services and Northern Slopes Landcare, has seen the creation of a program that delivers an effective on-ground biocontrol solution. Another tool in the toolbox to help control the core infestations of Hudson pear. To find out more about how you can get your hands on the Hudson pear cochi- Photo: The mass-rearing facility at Light- neal contact Walgett Shire Weed Officer Mat Savage on 0427 253 463 or NW ning Ridge, Andrea Fletcher. Cacti Control Coordinator Jo Skewes on 0402 014 769. “Releasing the Hounds on Hudson pear” – a Community biological control management program. A collaboration between NSW Department of Primary Industries, North West Local Land Services, Northern Slopes Landcare Association and Castlereagh Macquarie Weeds County Council is funded through the NSW Govern- ments Office for Environment and Heritage. 2 How invasive is YOUR cactus? Page 2 Common prickly pear • Fertile seeds Source: Field Identification Guide 2nd Edition Opuntia stricta How does it spread? Where did it come from and where is it now? Like most cactus species the cladodes can be dispersed through human and animal movement, as well as vehi- cles and other machinery. The fruit is consumed by both native wild life and pest animals which then help disperse the seeds. It has the ability to form impenetrable clumps and reduce stock carrying capacity. Segments easily break off and can spread to new sites via flood waters. Source: NSW WeedWise and Field Identification Guide 2nd Edition General Biosecurity Duty All plants are regulated with a general biosecurity duty to prevent, eliminate or minimise any biosecurity risk they may pose. Any person who deals with any plant, who knows (or ought to know) of any biosecurity risk, has a duty to ensure the risk is prevented, eliminated or mini- mised, so far as is reasonably practicable. All of NSW Prohibition on dealings Figure: O. stricta distribution, Atlas of Living Australia 2020. Must not be imported into the State or sold North West Common pest pear is native to the south eastern USA, Biosecurity Act requirements & Strategic Response east coast of Mexico, northern South America, Cuba, Ba- in the region hamas and Bermuda. After introduction to Australia, the Mandatory Measure (Division 8, Clause 33, Biosecurity plant invaded large areas of northern NSW and central Regulation 2017): A person must not import into the State Queensland in the early 1900s. At the peak of its invasion or sell. Source: North West Regional Strategic Weed Management Plan it occupied some 25,000,000 hectares. Executive Summary Source: NSW WeedWise, 2020 What does it look like? How do you control it? Sprawling/erect shrub, up to 2 m tall. Biocontrol Forms thickets. During the 1920s and 1930s various biological control Cladodes agents were released for its control. Now common pest • Green to grey green pear is largely controlled by cactoblastis, Cactoblastis • Eliptic to obovate cactorum. In areas where cactoblastis cannot complete 2 • 10-25 cm long generations per year, it can be controlled by the cochi- Spines neal, Dactylopius opuntiae. O. stricta var. stricta Cochineal Cactoblastis • Spineless Dactylopius opuntiae Cactoblastis cactorum O. stricta var. dillenii Order: Hemiptera Order: Lepidoptera • Up to 11 per areole Family: Dactylopiidae Family: Pyralidae • 1.5-4 cm long Genus: Dactylopius Genus: Cactoblastis Flowers Species: opuntiae Species: cactorum • Yellow Photo: C. • 6 cm diameter cactorum, Fruit R. Burr Figure: O. stricta, NSW • Fleshy, globular to pear shaped (TRC). WeedWise & NW Weeds • 6 cm long • Purplish red 3 How invasive is YOUR cactus? Page 3 Chemical Control - Common prickly pear WARNING —Always read the label Source: NSW Weed Control Handbook – A guide to weed control in non-crop, aquatic and bushland situation Control Calendar Source: NW Regional Weeds Officer Best Practises Guides For information on how to control Opuntia stricta please search APVMA https://portal.apvma.gov.au/home to find the correct permit and instructions for use. Alternatively, please contact your local Weeds Officer for further advise on identification and control (see page 7 for contact details).
Recommended publications
  • Cactus (Opuntia Spp.) As Forage 169
    Cactus (Opuntia spp.) as forage 169 Food •••A.gricultv,.. Org•nU.taon or United -N••lon• FAO Cactus (Opuntiaspp.) PLANT PRODUCTION as forage AND PROTECTlON PAPER 169 Ed~ed by Candelario Mondragon-Jacobo lnstituto Nacional de Investigaciones Forestales y Agropecuarias (INIFAP) Mexico and Salvador Perez-Gonzalez Universidad Aut6noma de Queretaro Mexico Coordinated for FAD by Enrique Arias Horticultural Crops Group Stephen G. Reynolds Grassland and Pasture Crops Group FAO Plant Production and Protection Division and Manuel D. sanchez Feed Resources Group FAO Animal Production and HeaHh Division Produced within the frameworl< of the FAO International Technical Cooperation Networl< ot on Cactus Pear ••u nttttd• NaUon• Rome,2001 Reprinted 2002 The designations “developed” and “developing” economies are intended for statistical convenience and do not necessarily express a judgement about the stage reached by a particular country, country territory or area in the development process. The views expressed herein are those of the authors and do not necessarily represent those of the Food and Agriculture Organization of the United Nations or of their affiliated organization(s). The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. ISBN 92-5-104705-7 All rights reserved. Reproduction and dissemination of material in this information product for educational or other non-commercial purposes are authorized without any prior written permission from the copyright holders provided the source is fully acknowledged.
    [Show full text]
  • Plethora of Plants - Collections of the Botanical Garden, Faculty of Science, University of Zagreb (2): Glasshouse Succulents
    NAT. CROAT. VOL. 27 No 2 407-420* ZAGREB December 31, 2018 professional paper/stručni članak – museum collections/muzejske zbirke DOI 10.20302/NC.2018.27.28 PLETHORA OF PLANTS - COLLECTIONS OF THE BOTANICAL GARDEN, FACULTY OF SCIENCE, UNIVERSITY OF ZAGREB (2): GLASSHOUSE SUCCULENTS Dubravka Sandev, Darko Mihelj & Sanja Kovačić Botanical Garden, Department of Biology, Faculty of Science, University of Zagreb, Marulićev trg 9a, HR-10000 Zagreb, Croatia (e-mail: [email protected]) Sandev, D., Mihelj, D. & Kovačić, S.: Plethora of plants – collections of the Botanical Garden, Faculty of Science, University of Zagreb (2): Glasshouse succulents. Nat. Croat. Vol. 27, No. 2, 407- 420*, 2018, Zagreb. In this paper, the plant lists of glasshouse succulents grown in the Botanical Garden from 1895 to 2017 are studied. Synonymy, nomenclature and origin of plant material were sorted. The lists of species grown in the last 122 years are constructed in such a way as to show that throughout that period at least 1423 taxa of succulent plants from 254 genera and 17 families inhabited the Garden’s cold glass- house collection. Key words: Zagreb Botanical Garden, Faculty of Science, historic plant collections, succulent col- lection Sandev, D., Mihelj, D. & Kovačić, S.: Obilje bilja – zbirke Botaničkoga vrta Prirodoslovno- matematičkog fakulteta Sveučilišta u Zagrebu (2): Stakleničke mesnatice. Nat. Croat. Vol. 27, No. 2, 407-420*, 2018, Zagreb. U ovom članku sastavljeni su popisi stakleničkih mesnatica uzgajanih u Botaničkom vrtu zagrebačkog Prirodoslovno-matematičkog fakulteta između 1895. i 2017. Uređena je sinonimka i no- menklatura te istraženo podrijetlo biljnog materijala. Rezultati pokazuju kako je tijekom 122 godine kroz zbirku mesnatica hladnog staklenika prošlo najmanje 1423 svojti iz 254 rodova i 17 porodica.
    [Show full text]
  • Flórula Vascular De La Sierra De Catorce Y Territorios Adyacentes, San Luis Potosi, México
    Acta Botanica Mexicana 78: 1-38 (2007) FLÓRULA VASCULAR DE LA SIERRA DE CATORCE Y TERRITORIOS ADYACENTES, SAN LUIS POTOSI, MÉXICO ONÉSIMO GONZÁLEZ COSTILLA1,2, JOAQUÍN GIMÉNEZ DE AZCÁRATE3, JOSÉ GARCÍA PÉREZ1 Y JUAN RogELIO AGUIRRE RIVERA1 1Universidad Autónoma de San Luis Potosí, Instituto de Investigación de Zonas Desérticas, Altair 200, Fraccionamiento El Llano, Apdo. postal 504, 78377 San Luis Potosí, México. 2Universidad Complutense de Madrid, Departamento de Biología Vegetal II, Facultad de Farmacia, Madrid, España. [email protected] 3Universidad de Santiago de Compostela, Departamento de Botánica, Escuela Politécnica Superior, 27002 Lugo, España. RESUMEN La Sierra de Catorce, localizada en el norte del estado de San Luis Potosí, reúne algunas de las principales cimas del Desierto Chihuahuense cuyas cotas superan los 3000 metros. Ello ha favorecido que la Sierra sea una importante área de diversificación de la flora y las fitocenosis de dicha ecorregión. A partir del estudio fitosociológico de la vegetación del territorio, que se está realizando desde 1999, se ha obtenido un catálogo preliminar de su flora. Hasta el momento la lista de plantas vasculares está conformada por 526 especies y cuatro taxa infraespecíficos, agrupados en 293 géneros y 88 familias. Las familias y géneros mejor representados son Asteraceae, Poaceae, Cactaceae, Fabaceae, Fagaceae y Lamiaceae, así como Quercus, Opuntia, Muhlenbergia, Salvia, Agave, Bouteloua y Dyssodia, respectivamente. Asimismo se señalan los tipos de vegetación representativos del área que albergan los diferentes taxa. Por último, con base en diferentes listas de flora amenazada, se identificaron las especies incluidas en alguna de las categorías reconocidas. Palabras clave: Desierto Chihuahuense, estudio fitosociológico, flora, flora ame- nazada, México, San Luis Potosí, Sierra de Catorce.
    [Show full text]
  • Mission to the Caribbean-Final Report
    THE STATUS OF CACTOBLASTIS CACTORUM (LEPIDOPTERA: PYRALIDAE) IN THE CARIBBEAN AND THE LIKELIHOOD OF ITS SPREAD TO MEXICO Report* to the International Atomic Energy Agency (IAEA), Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture and the Plant Health General Directorate, Mexico (DGSVB/SAGARPA) as part of the TC Project MEX/5/029 Helmuth G. Zimmermann¹, Mayra Pérez Sandi y Cuen² and Arturo Bello Rivera³ ¹Helmuth Zimmermann & Associates, Pretoria, South Africa. ² Consultant to SAGARPA, Mexico D.F. ³SAGARPA, Plant Health, Mexico D.F. © IAEA 2005 The islands surveyed during this mission included: Puerto Rico, Dominican Republic, Antigua, Montserrat, St. Kitts, Jamaica and Grand Cayman (funded by the IAEA). *This report also includes information and conclusions by the second author (Mayra Perez Sandi) who visited and surveyed the following islands in the Lesser Antilles: Guadeloupe, Dominique, Trinidad and Tobago, Chacachacare, Grenada, St. Vicent, Bequia, Barbados, St. Lucia, Martinique and Chevalier. This part of the survey was funded by PRONATURA NORESTE, FMCN Y USAID. 1 EXECUTIVE SUMMARY The cactus moth, Cactoblastis cactorum (Berg) , which has become the textbook example of successful biological weed control of invasive Opuntia species in many countries, including some Caribbean islands, is now threatening not only the lucrative cactus pear industry in Mexico, but also the rich diversity of all Opuntia species in most of the North American mainland. Already threatened species in Mexico could go extinct. The moth is now present on most Caribbean islands as a consequence of mostly deliberate or accidental introductions by man, or through natural spread. Although there is convincing evidence that Cactoblastis reached Florida inadvertently conveyed by the nursery trade, there also exists the slight possibility of natural spread and by means of cyclonic weather events.
    [Show full text]
  • Genome Sizes and Ploidy Levels in Mexican Cactus Pear Species Opuntia (Tourn.) Mill
    Genet Resour Crop Evol (2007) 54:1033–1041 DOI 10.1007/s10722-006-9196-z RESEARCH ARTICLE Genome sizes and ploidy levels in Mexican cactus pear species Opuntia (Tourn.) Mill. series Streptacanthae Britton et Rose, Leucotrichae DC., Heliabravoanae Scheinvar and Robustae Britton et Rose S. Segura Æ L. Scheinvar Æ G. Olalde Æ O. Leblanc Æ S. Filardo Æ A. Muratalla Æ C. Gallegos Æ C. Flores Received: 12 August 2004 /Accepted: 19 May 2006 / Published online: 6 February 2007 Ó Springer Science + Business Media B.V. 2007 Abstract The ploidy levels and amounts of DNA among these Opuntia species. Opuntia helia- of 23 Opuntia species from Mexico were deter- bravoana Scheinvar was the sole diploid species. mined by flow cytometry. Four different ploidy Opuntia leucotricha DC. (2C = 5.71 pg), Opuntia levels (2n = 2x, 2n = 4x, 2n = 6x, 2n = 8x) with spinulifera Salm-Dyck (2C = 5.51 pg), Opuntia 2C-DNA amount ranging from 4.17 pg (Opuntia robusta Wendl. ex Pfeiff. var. larreyi (F. A. C. incarnadilla Griffiths) to 6.53 pg (Opuntia helia- Weber) Bravo (2C = 4.98 pg), and Opuntia eliz- bravoana Scheinvar) were determined among the ondoana E. Sa´nchez et Villasenor~ (2C = 5.29 pg) samples analyzed. Polyploidy is widespread (93%) were tetraploids. Opuntia oligacantha C.F. Fo¨ rst. (2C = 5.33 pg), Opuntia incarnadilla Griffiths and Opuntia matudae Scheinvar (2C = 5.25 pg) were S. Segura hexaploids. Opuntia zamundioi Scheinvar CRUCO-UACH, CP 5800 Morelia, Me´xico (2C = 4.35 pg), Opuntia lasiacantha Pfeiff. (2C = 4.88 pg), Opuntia hyptiacantha F.A.C.
    [Show full text]
  • Cacti, Biology and Uses
    CACTI CACTI BIOLOGY AND USES Edited by Park S. Nobel UNIVERSITY OF CALIFORNIA PRESS Berkeley Los Angeles London University of California Press Berkeley and Los Angeles, California University of California Press, Ltd. London, England © 2002 by the Regents of the University of California Library of Congress Cataloging-in-Publication Data Cacti: biology and uses / Park S. Nobel, editor. p. cm. Includes bibliographical references (p. ). ISBN 0-520-23157-0 (cloth : alk. paper) 1. Cactus. 2. Cactus—Utilization. I. Nobel, Park S. qk495.c11 c185 2002 583'.56—dc21 2001005014 Manufactured in the United States of America 10 09 08 07 06 05 04 03 02 01 10 987654 321 The paper used in this publication meets the minimum requirements of ANSI/NISO Z39.48–1992 (R 1997) (Permanence of Paper). CONTENTS List of Contributors . vii Preface . ix 1. Evolution and Systematics Robert S. Wallace and Arthur C. Gibson . 1 2. Shoot Anatomy and Morphology Teresa Terrazas Salgado and James D. Mauseth . 23 3. Root Structure and Function Joseph G. Dubrovsky and Gretchen B. North . 41 4. Environmental Biology Park S. Nobel and Edward G. Bobich . 57 5. Reproductive Biology Eulogio Pimienta-Barrios and Rafael F. del Castillo . 75 6. Population and Community Ecology Alfonso Valiente-Banuet and Héctor Godínez-Alvarez . 91 7. Consumption of Platyopuntias by Wild Vertebrates Eric Mellink and Mónica E. Riojas-López . 109 8. Biodiversity and Conservation Thomas H. Boyle and Edward F. Anderson . 125 9. Mesoamerican Domestication and Diffusion Alejandro Casas and Giuseppe Barbera . 143 10. Cactus Pear Fruit Production Paolo Inglese, Filadelfio Basile, and Mario Schirra .
    [Show full text]
  • Thermal and Microstructural Properties of Cuticle Hydrophobic
    Scientific article http://dx.doi.org/10.5154/r.rchsza.2019.09.020 Thermal and microstructural properties of cuticle hydrophobic compounds from four species of Opuntia Propiedades térmicas y microestructurales de compuestos hidrofóbicos presentes en la cutícula de cuatro especies de Opuntia Karla P. López-Avila1; Juan A. Rendón-Huerta1; Jaime D. Pérez-Martínez2; Juan A. Morales-Rueda1* 1Universidad Autónoma de San Luis Potosí, Coordinación Académica Región Altiplano Oeste. Carretera Salinas-Santo Domingo 200. C. P. 78600. Salinas, S.L.P. México. 2Universidad Autónoma de San Luis Potosí. Facultad de Ciencias Químicas. Dr. Manuel Nava núm. 6, Zona Universitaria. C. P. 78210. S.L.P. México. *Corresponding author: [email protected] Abstract he vegetable waxes are widely used in the agri-food, cosmetic and pharmaceutical industries. Epicuticular wax of Opuntia spp could be a new alternative able to satisfy T industrial needs. The objective of this research is to characterize the thermal and structural properties of cuticle hydrophobic compounds from four species of Opuntia [O. robusta Wendl, O. leucotricha DC., O. streptacantha Lem. and O. ficus-indica (L.) Mill]. The content of hydrophobic compounds was determined by Soxhlet. The melting and crystallization profiles of the extracts were obtained by differential scanning calorimetry (DSC). The microstructure of the cuticle surface was observed by Scanning Electron Microscopy and the crystalline characteristics of the extracts were observed using Polarized Light Microscopy. Results showed that O. streptacantha Keywords: Epicuticular contains both the highest concentration of hydrophobic compounds (3.97 %) and the melting waxes, Scanning Electron temperature (78.25 °C). In addition, O. Streptacantha showed the highest quantity of hydrophobic Microscopy, Differential compounds on the surface of the cladode with small crystals of colloidal dimensions and irregular Scanning Calorimetry, plate-like form.
    [Show full text]
  • Checklist of the Vascular Plants of San Diego County 5Th Edition
    cHeckliSt of tHe vaScUlaR PlaNtS of SaN DieGo coUNty 5th edition Pinus torreyana subsp. torreyana Downingia concolor var. brevior Thermopsis californica var. semota Pogogyne abramsii Hulsea californica Cylindropuntia fosbergii Dudleya brevifolia Chorizanthe orcuttiana Astragalus deanei by Jon P. Rebman and Michael G. Simpson San Diego Natural History Museum and San Diego State University examples of checklist taxa: SPecieS SPecieS iNfRaSPecieS iNfRaSPecieS NaMe aUtHoR RaNk & NaMe aUtHoR Eriodictyon trichocalyx A. Heller var. lanatum (Brand) Jepson {SD 135251} [E. t. subsp. l. (Brand) Munz] Hairy yerba Santa SyNoNyM SyMBol foR NoN-NATIVE, NATURaliZeD PlaNt *Erodium cicutarium (L.) Aiton {SD 122398} red-Stem Filaree/StorkSbill HeRBaRiUM SPeciMeN coMMoN DocUMeNTATION NaMe SyMBol foR PlaNt Not liSteD iN THE JEPSON MANUAL †Rhus aromatica Aiton var. simplicifolia (Greene) Conquist {SD 118139} Single-leaF SkunkbruSH SyMBol foR StRict eNDeMic TO SaN DieGo coUNty §§Dudleya brevifolia (Moran) Moran {SD 130030} SHort-leaF dudleya [D. blochmaniae (Eastw.) Moran subsp. brevifolia Moran] 1B.1 S1.1 G2t1 ce SyMBol foR NeaR eNDeMic TO SaN DieGo coUNty §Nolina interrata Gentry {SD 79876} deHeSa nolina 1B.1 S2 G2 ce eNviRoNMeNTAL liStiNG SyMBol foR MiSiDeNtifieD PlaNt, Not occURRiNG iN coUNty (Note: this symbol used in appendix 1 only.) ?Cirsium brevistylum Cronq. indian tHiStle i checklist of the vascular plants of san Diego county 5th edition by Jon p. rebman and Michael g. simpson san Diego natural history Museum and san Diego state university publication of: san Diego natural history Museum san Diego, california ii Copyright © 2014 by Jon P. Rebman and Michael G. Simpson Fifth edition 2014. isBn 0-918969-08-5 Copyright © 2006 by Jon P.
    [Show full text]
  • Reproductive Biology of Opuntia: a Review
    ARTICLE IN PRESS Journal of Arid Environments Journal of Arid Environments 64 (2006) 549–585 www.elsevier.com/locate/jnlabr/yjare Review Reproductive biology of Opuntia: A review J.A. Reyes-Agu¨eroa,Ã, J.R. Aguirre R.a, A. Valiente-Banuetb aInstituto de Investigacio´n de Zonas Dese´rticas, Universidad Auto´noma de San Luis Potosı´. Altair Nu´m. 200 Fracc. del Llano. C.P. 78377, San Luis Potosı´,Me´xico bDepartamento de Ecologı´a de la Biodiversidad, Instituto de Ecologı´a, Universidad Nacional Auto´noma de Me´xico, Apartado Postal 70-275, C.P. 04510, Me´xico, D.F. Received 31 July 2003; received in revised form 16 April 2005; accepted 16 June 2005 Available online 1 August 2005 Abstract A review of the reproductive biology of fleshy-fruited species of Opuntia sensu stricto was conducted. Among Cactaceae, Opuntia is the most diverse and widely distributed genus in the Americas. The genus is strongly associated with bee pollination and coevolution with at least two bee genera is suggested. Fruits and vegetative parts, such as spiny cladodes, are closely linked with seed dispersal and highly efficient vegetative dissemination by animals. Vegetative multiplication appears to be more efficient than sexual reproduction for plant recruitment. Both sexual reproduction and plant multiplication seem to have contributed to the ecological and evolutionary success of the genus, but empirical evidence is lacking. r 2005 Elsevier Ltd. All rights reserved. Keywords: Cactaceae; Anthesis; Germination; Pollination; Multiplication; Seedling Contents 1. Introduction . 550 2. Floral biology . 551 2.1. Floral bud growth . 551 2.2. Floral morphology .
    [Show full text]
  • 2574 Nutritional and Medicinal Use of Cactus Pear (Opuntia Spp.) Clad
    [Frontiers in Bioscience 11, 2574-2589, September 1, 2006] Nutritional and medicinal use of Cactus pear (Opuntia spp.) cladodes and fruits Jean Magloire Feugang 1, Patricia Konarski 1, Daming Zou 1, Florian Conrad Stintzing 2 and Changping Zou 1 1 Department of Obstetrics and Gynecology, University of Arizona, Tucson, USA, 2 Institute of Food Technology, Plant Foodstuff Technology, Hohenheim University, 70599 Stuttgart, Germany TABLE OF CONTENTS 1. Abstract 2. Introduction 3. Botanical Aspects, geographical distribution and production 3.1. Botanical Aspects 3.2. Distribution 3.3. Production 4. Cactus constituents 4.1. Amino acids, vitamins, and carotenes 4.2. Minerals and organic acids 4.3. Sugars and lipids 4.4. Phenolic compounds 4.5. Betalains 5. Cactus utilization as food, medicine and industrial purposes 5.1. Nutritional use 5.2. Medicinal use 5.2.1. Anticancer effect 5.2.2. Anti-oxidant properties 5.2.3. Anti-viral effect 5.2.4. Anti-inflammatory effect 5.2.5. Anti-diabetic (type II) effect 5.2.6. Anti-hyperlididemic and -hypercholesterolemic effects 5.2.7. Further positive health effects 5.3. Further uses 6. Conclusions and perspectives 7. Acknowledgements 8. References 1. ABSTRACT 2. INTRODUCTION Natural products and health foods have recently The growing demand for nutraceuticals is received a lot of attention both by health professionals and paralleled by an increased effort in developing natural the common population for improving overall well-being, products for the prevention or treatment of human diseases. as well as in the prevention of diseases including cancer. In According to several studies demonstrating both cactus this line, all types of fruits and vegetables have been re- fruit and cladode yielding high values of important evaluated and recognized as valuable sources of nutrients, such as betalains, amino compounds including nutraceuticals.
    [Show full text]
  • Análisis De La Cobertura Vegetal En El Gradiente Topográfico Del Cráter La Joya Honda San Luis Potosí
    Núm. 46: 119-137 Julio 2018 ISSN electrónico: 2395-9525 Polibotánica ISSN electrónico: 2395-9525 [email protected] Instituto Politécnico Nacional México http:www.polibotanica.mx ANÁLISIS DE LA COBERTURA VEGETAL EN EL GRADIENTE TOPOGRÁFICO DEL CRÁTER LA JOYA HONDA SAN LUIS POTOSÍ ANALYSIS OF THE VEGETATION COVER IN THE TOPOGRAPHIC GRADIENT OF THE CRATER LA JOYA HONDA, SAN LUIS POTOSÍ López-Palacios, L.M.; J. Fortanelli Martínez, J.L. Flores-Flores, y J. García-Pérez. ANÁLISIS DE LA COBERTURA VEGETAL EN EL GRADIENTE TOPOGRÁFICO DEL CRÁTER LA JOYA HONDA SAN LUIS POTOSÍ. ANALYSIS OF THE VEGETATION COVER IN THE TOPOGRAPHIC GRADIENT OF THE CRATER LA JOYA HONDA SAN LUIS POTOSÍ. Núm. 46: 119-137 México. Julio 2018 Instituto Politécnico Nacional DOI: 10.18387/polibotanica.46.6 119 Núm. 46: 119-137 Julio 2018 ISSN electrónico: 2395-9525 ANÁLISIS DE LA COBERTURA VEGETAL EN EL GRADIENTE TOPOGRÁFICO DEL CRÁTER LA JOYA HONDA SAN LUIS POTOSÍ. ANALYSIS OF THE VEGETATION COVER IN THE TOPOGRAPHIC GRADIENT OF THE CRATER LA JOYA HONDA SAN LUIS POTOSÍ. L.M. López-Palacios López-Palacios, L.M.; Facultad de Ciencias Sociales y Humanidades J. Fortanelli Martínez, Universidad Autónoma de San Luis Potosí J.L. Flores-Flores, San Luis Potosí, México y J. García-Pérez J. Fortanelli-Martínez/ [email protected] ANÁLISIS DE LA J.L. Flores-Flores COBERTURA VEGETAL EN J. García-Pérez EL GRADIENTE TOPOGRÁFICO DEL Instituto de Investigación de Zonas Desérticas CRÁTER LA JOYA HONDA Universidad Autónoma de San Luis Potosí SAN LUIS POTOSÍ. San Luis Potosí, México ANALYSIS OF THE RESUMEN: Se analiza la distribución de la cobertura vegetal en el gradiente topográfico VEGETATION COVER IN del cráter Joya Honda, en el municipio de Soledad de Graciano Sánchez, San Luis Potosí, THE TOPOGRAPHIC México.
    [Show full text]
  • University of Florida Thesis Or Dissertation Formatting
    THE EVOLUTION AND SYSTEMATICS OF THE Opuntia humifusa COMPLEX By LUCAS C. MAJURE A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2012 1 © 2012 Lucas C. Majure 2 To my amazing and ever-supportive parents, Terrence and Diana Majure, my incredible wife Mariela Pajuelo, and beautiful son Gabriel 3 ACKNOWLEDGMENTS I thank my advisors, Drs. Douglas E. and Pam S. Soltis, and Walter S. Judd for their utmost support, enthusiasm, critical guidance, and encouragement throughout my PhD program. I thank my committee member Marc Branham for his help and ideas with my project. I also thank current and former members of the Soltis Lab (Monica Arakaki, Samuel Brockington, Charlotte Germain-Aubrey, Maribeth Latvis, Nicolas Miles, Michael J. Moore, Stein Servick, Victor Suarez), the herbarium FLAS (Richard Abbott, Paul Corogin, Lorena Endara, Mark Whitten, Kurt Neubig, Kent Perkins, Norris Williams), and the Department of Biology for their support and help throughout my degree. I thank my collaborators, Raul Puente, M. Patrick Griffith, and Donald J. Pinkava for their expertise. I also thank those institutions and people who provided me with specimens for use in this work and/or aided with fieldwork: Desert Botanical Garden (DBG), Eastern Kentucky University herbarium (EKY), Huntington Botanical Garden (HBG), Illinois Natural History Survey (ILLS), Louisiana State University herbarium (LSU), Miami University Herbarium (MU), Missouri Botanical Garden (MO), New York Botanical Garden (NY), Rancho Santa Ana Botanical Garden, Smithsonian Institution (US), Troy University herbarium (TROY), University of Alabama (UNA), University of Miami herbarium (MU), University of Michigan herbarium (MICH), University of North Carolina (UNC), University of Tennessee herbarium (TENN), University of Wisconsin (WIS).
    [Show full text]