Field Identification Guide Austrocylindropuntia, Cylindropuntia and Opuntia Species
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
What Did the First Cacti Look Like
What Did the First Cactus Look like? An Attempt to Reconcile the Morphological and Molecular Evidence Author(s): M. Patrick Griffith Source: Taxon, Vol. 53, No. 2 (May, 2004), pp. 493-499 Published by: International Association for Plant Taxonomy (IAPT) Stable URL: http://www.jstor.org/stable/4135628 . Accessed: 03/12/2014 10:33 Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp . JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. International Association for Plant Taxonomy (IAPT) is collaborating with JSTOR to digitize, preserve and extend access to Taxon. http://www.jstor.org This content downloaded from 192.135.179.249 on Wed, 3 Dec 2014 10:33:44 AM All use subject to JSTOR Terms and Conditions TAXON 53 (2) ' May 2004: 493-499 Griffith * The first cactus What did the first cactus look like? An attempt to reconcile the morpholog- ical and molecular evidence M. Patrick Griffith Rancho Santa Ana Botanic Garden, 1500 N. College Avenue, Claremont, California 91711, U.S.A. michael.patrick. [email protected] THE EXTANT DIVERSITYOF CAC- EARLYHYPOTHESES ON CACTUS TUS FORM EVOLUTION Cacti have fascinated students of naturalhistory for To estimate evolutionaryrelationships many authors many millennia. Evidence exists for use of cacti as food, determinewhich morphological features are primitive or medicine, and ornamentalplants by peoples of the New ancestral versus advanced or derived. -
El Mokni & Al. Cactaceae New to Tunisian Flora, Bradleya 2020
Bradleya 38/2020 pages 35–50 New records of cacti (Opuntioideae & Cactoideae, Cactaceae) from Tunisia Ridha El Mokni 1,2,3 , Filip Verloove 4, Alessandro Guiggi 5 & Mohamed Hédi El Aouni 1 1. University of Carthage, Laboratory of Botany and Plant Ecology (SNA-214), Department of Life Sciences, Faculty of Sciences of Bizerta, Jarzouna, 7021, Bizerte, Tunisia. (email: riridah@hot - mail.com) 2. University of Jendouba, Laboratory of Silvo-Pastoral Resources, Silvo-Pastoral Institute of Tabarka, BP. 345, 8110-Tabarka, Tunisia. 3. University of Monastir, Laboratory of Botany, Cryptogamy and Plant Biology, Department of Pharmaceutical Sciences “A”, Faculty of Pharmacy of Monastir, Avenue Avicenna, 5000-Monastir, Tunisia. 4. Botanic Garden of Meise, Nieuwelaan 38, B-1860 Meise, Belgium. (email: [email protected]) 5. DISTAV, Polo Botanico, Università degli Studi di Genova, International Cactaceae Research Cen - ter (ICRC), Corso Dogali, 1M - 16136 Genova, Italy. (email: [email protected]) Photographs: Ridha El Mokni. Summary : Botanical surveys undertaken in Cen - Beschreibungen gegeben, Kommentare zu ihrem tral and Northern Tunisia (North Africa), mostly aktueller Status werden angegeben und Fotos wer - between 2012 and 2018, have revealed first records den bereitgestellt. and/or new distributional records for non-native succulents (sensu lato) belonging to the Cactaceae Introduction family. Some can be considered naturalised or even Succulents are found across the globe in nearly potentially invasive [e.g. Opuntia dillenii (Ker all types of habitat, but most often in arid or semi- Gawl.) Haw.], whereas others are here reported for arid parts of the world. They are specially adapted the first time for North Africa, either as recently to deal with dry, desert-like conditions, and able to naturalised or casual, e.g.: Echinopsis eyriesii store water in one or more of their organs; their (Turpin) Zuccarini, Opuntia dejecta Salm-Dyck, O. -
Pima County Plant List (2020) Common Name Exotic? Source
Pima County Plant List (2020) Common Name Exotic? Source McLaughlin, S. (1992); Van Abies concolor var. concolor White fir Devender, T. R. (2005) McLaughlin, S. (1992); Van Abies lasiocarpa var. arizonica Corkbark fir Devender, T. R. (2005) Abronia villosa Hariy sand verbena McLaughlin, S. (1992) McLaughlin, S. (1992); Van Abutilon abutiloides Shrubby Indian mallow Devender, T. R. (2005) Abutilon berlandieri Berlandier Indian mallow McLaughlin, S. (1992) Abutilon incanum Indian mallow McLaughlin, S. (1992) McLaughlin, S. (1992); Van Abutilon malacum Yellow Indian mallow Devender, T. R. (2005) Abutilon mollicomum Sonoran Indian mallow McLaughlin, S. (1992) Abutilon palmeri Palmer Indian mallow McLaughlin, S. (1992) Abutilon parishii Pima Indian mallow McLaughlin, S. (1992) McLaughlin, S. (1992); UA Abutilon parvulum Dwarf Indian mallow Herbarium; ASU Vascular Plant Herbarium Abutilon pringlei McLaughlin, S. (1992) McLaughlin, S. (1992); UA Abutilon reventum Yellow flower Indian mallow Herbarium; ASU Vascular Plant Herbarium McLaughlin, S. (1992); Van Acacia angustissima Whiteball acacia Devender, T. R. (2005); DBGH McLaughlin, S. (1992); Van Acacia constricta Whitethorn acacia Devender, T. R. (2005) McLaughlin, S. (1992); Van Acacia greggii Catclaw acacia Devender, T. R. (2005) Acacia millefolia Santa Rita acacia McLaughlin, S. (1992) McLaughlin, S. (1992); Van Acacia neovernicosa Chihuahuan whitethorn acacia Devender, T. R. (2005) McLaughlin, S. (1992); UA Acalypha lindheimeri Shrubby copperleaf Herbarium Acalypha neomexicana New Mexico copperleaf McLaughlin, S. (1992); DBGH Acalypha ostryaefolia McLaughlin, S. (1992) Acalypha pringlei McLaughlin, S. (1992) Acamptopappus McLaughlin, S. (1992); UA Rayless goldenhead sphaerocephalus Herbarium Acer glabrum Douglas maple McLaughlin, S. (1992); DBGH Acer grandidentatum Sugar maple McLaughlin, S. (1992); DBGH Acer negundo Ashleaf maple McLaughlin, S. -
Environmental Assessment (EA) Is Tiered to Other Environmental Documents That Are Available for Review at the Lake George Ranger District Office
United States Department of Environmental Agriculture Forest Assessment Service March, 2011 Hog Valley Scrub PALS No. 25932 Lake George Ranger District, Ocala National Forest Marion and Putnam Counties, Florida For Information Contact: Mike Herrin, District Ranger 17147 E. Hwy 40 Silver Springs, FL 34488 352-625-2520 [email protected] The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, gender, religion. age, disability, political beliefs, sexual orientation, or marital or family status. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write USDA, Director, Office of Civil Rights, Room 326-W, Whitten Building, 14th and Independence Avenue, SW, Washington, DC 20250-9410 or call (202) 720-5964 (voice and TDD). USDA is an equal opportunity provider and employer. Table of Contents Page INTRODUCTION …………………………………………………………………………. 2 Background ………………………………………………………………………………... 2 Purpose and Need for Action …………………………………………………………….... 2 Proposed Action ………………………………………………………………………….... 3 Decision Framework ………………………………………………………………………. 4 Public Involvement ………………………………………………………………………... 4 Issues ………………………………………………………………………………………. 4 ALTERNATIVES ………………………………………………………………………….. 4 Alternatives ……………………………………………………………………………….. -
2006. Proceedings of the 9Th Western Black Bear Workshop, New Mexico
Proceedings of the 9th Western Black Bear Workshop April 19-22, 2006 NRA Whittington Center, Raton, New Mexico Frederic (Rick) S. Winslow and Larisa L. Harding Editors www.beartrust.org SPONSORS: New Mexico Department of Game and Fish Philmont Scout Ranch Sandia Mountain Bear Watch United States Forest Service, Southwest Region Bear Trust 2 Suggested Citation: Author’s name(s). 2007. Paper title. Western Black Bear Workshop 9:____-____. New Mexico Department of Game and Fish Wildlife Management Division #1 Wildlife Way Santa Fe, New Mexico, 87504 Information of how to order additional copies of this volume or other volumes in this series, as well as volumes of Ursus, the official publication of the International Association for Bear Research and Management, may be obtained from the IBA web site: www.bearbiology.com, from the IBA newsletter International Bear News, or from Terry D. White, University of Tennesee, Department of Forestry, Wildlife and Fisheries, P. O. Box 1071, Knoxville, TN 37901-1071, USA. 3 TABLE OF CONTENTS Note: The Table of Contents has been formatted to reflect the chronology of the Workshop program. Preface………………………………………………………………… # ORAL PRESENTATIONS Welcome: Joe Apache, Mayor, City of Raton; Bruce Thompson, Director, New Mexico Department of Game and Fish; Joanna Prukop, Cabinet Secretary for Energy, Minerals and Natural Resources for New Mexico; Don DeLorenzo, Director, Wildlife, Fish and Rare Plants, Southwestern Region, United States Forest Service. Panel Discussion: Black Bear Management in a Human Dominated Landscape. Panel Members; Bob Holder, Colorado Division of Wildlife Resources; Gerry Perry, Arizona Department of Game and Fish, Marv Jenson, Turner Enterprises;; Jan Hayes, Sandia Mountain Bear Watch. -
Australia Lacks Stem Succulents but Is It Depauperate in Plants With
Available online at www.sciencedirect.com ScienceDirect Australia lacks stem succulents but is it depauperate in plants with crassulacean acid metabolism (CAM)? 1,2 3 3 Joseph AM Holtum , Lillian P Hancock , Erika J Edwards , 4 5 6 Michael D Crisp , Darren M Crayn , Rowan Sage and 2 Klaus Winter In the flora of Australia, the driest vegetated continent, [1,2,3]. Crassulacean acid metabolism (CAM), a water- crassulacean acid metabolism (CAM), the most water-use use efficient form of photosynthesis typically associated efficient form of photosynthesis, is documented in only 0.6% of with leaf and stem succulence, also appears poorly repre- native species. Most are epiphytes and only seven terrestrial. sented in Australia. If 6% of vascular plants worldwide However, much of Australia is unsurveyed, and carbon isotope exhibit CAM [4], Australia should host 1300 CAM signature, commonly used to assess photosynthetic pathway species [5]. At present CAM has been documented in diversity, does not distinguish between plants with low-levels of only 120 named species (Table 1). Most are epiphytes, a CAM and C3 plants. We provide the first census of CAM for the mere seven are terrestrial. Australian flora and suggest that the real frequency of CAM in the flora is double that currently known, with the number of Ellenberg [2] suggested that rainfall in arid Australia is too terrestrial CAM species probably 10-fold greater. Still unpredictable to support the massive water-storing suc- unresolved is the question why the large stem-succulent life — culent life-form found amongst cacti, agaves and form is absent from the native Australian flora even though euphorbs. -
Cactus (Opuntia Spp.) As Forage 169
Cactus (Opuntia spp.) as forage 169 Food •••A.gricultv,.. Org•nU.taon or United -N••lon• FAO Cactus (Opuntiaspp.) PLANT PRODUCTION as forage AND PROTECTlON PAPER 169 Ed~ed by Candelario Mondragon-Jacobo lnstituto Nacional de Investigaciones Forestales y Agropecuarias (INIFAP) Mexico and Salvador Perez-Gonzalez Universidad Aut6noma de Queretaro Mexico Coordinated for FAD by Enrique Arias Horticultural Crops Group Stephen G. Reynolds Grassland and Pasture Crops Group FAO Plant Production and Protection Division and Manuel D. sanchez Feed Resources Group FAO Animal Production and HeaHh Division Produced within the frameworl< of the FAO International Technical Cooperation Networl< ot on Cactus Pear ••u nttttd• NaUon• Rome,2001 Reprinted 2002 The designations “developed” and “developing” economies are intended for statistical convenience and do not necessarily express a judgement about the stage reached by a particular country, country territory or area in the development process. The views expressed herein are those of the authors and do not necessarily represent those of the Food and Agriculture Organization of the United Nations or of their affiliated organization(s). The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. ISBN 92-5-104705-7 All rights reserved. Reproduction and dissemination of material in this information product for educational or other non-commercial purposes are authorized without any prior written permission from the copyright holders provided the source is fully acknowledged. -
The Natural World That I Seek out in the Desert Regions of Baja California
The natural world that I seek out in the desert regions of Baja California and southern California provides me with scientific adventure, excitement towards botany, respect for nature, and overall feelings of peace and purpose. Jon P. Rebman, Ph.D. has been the Mary and Dallas Clark Endowed Chair/Curator of Botany at the San Diego Natural History Museum (SDNHM) since 1996. He has a Ph.D. in Botany (plant taxonomy), M.S. in Biology (floristics) and B.S. in Biology. Dr. Rebman is a plant taxonomist and conducts extensive floristic research in Baja California and in San Diego and Imperial Counties. He has over 15 years of experience in the floristics of San Diego and Imperial Counties and 21 years experience studying the plants of the Baja California peninsula. He leads various field classes and botanical expeditions each year and is actively naming new plant species from our region. His primary research interests have centered on the systematics of the Cactus family in Baja California, especially the genera Cylindropuntia (chollas) and Opuntia (prickly-pears). However, Dr. Rebman also does a lot of general floristic research and he co- published the most recent edition of the Checklist of the Vascular Plants of San Diego County. He has over 22 years of field experience with surveying and documenting plants including rare and endangered species. As a field botanist, he is a very active collector of scientific specimens with his personal collections numbering over 22,500. Since 1996, he has been providing plant specimen identification/verification for various biological consulting companies on contracts dealing with plant inventory projects and environmental assessments throughout southern California. -
University of Florida Thesis Or Dissertation Formatting
SYSTEMATICS OF TRIBE TRICHOCEREEAE AND POPULATION GENETICS OF Haageocereus (CACTACEAE) By MÓNICA ARAKAKI MAKISHI A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2008 1 © 2008 Mónica Arakaki Makishi 2 To my parents, Bunzo and Cristina, and to my sisters and brother. 3 ACKNOWLEDGMENTS I want to express my deepest appreciation to my advisors, Douglas Soltis and Pamela Soltis, for their consistent support, encouragement and generosity of time. I would also like to thank Norris Williams and Michael Miyamoto, members of my committee, for their guidance, good disposition and positive feedback. Special thanks go to Carlos Ostolaza and Fátima Cáceres, for sharing their knowledge on Peruvian Cactaceae, and for providing essential plant material, confirmation of identifications, and their detailed observations of cacti in the field. I am indebted to the many individuals that have directly or indirectly supported me during the fieldwork: Carlos Ostolaza, Fátima Cáceres, Asunción Cano, Blanca León, José Roque, María La Torre, Richard Aguilar, Nestor Cieza, Olivier Klopfenstein, Martha Vargas, Natalia Calderón, Freddy Peláez, Yammil Ramírez, Eric Rodríguez, Percy Sandoval, and Kenneth Young (Peru); Stephan Beck, Noemí Quispe, Lorena Rey, Rosa Meneses, Alejandro Apaza, Esther Valenzuela, Mónica Zeballos, Freddy Centeno, Alfredo Fuentes, and Ramiro Lopez (Bolivia); María E. Ramírez, Mélica Muñoz, and Raquel Pinto (Chile). I thank the curators and staff of the herbaria B, F, FLAS, LPB, MO, USM, U, TEX, UNSA and ZSS, who kindly loaned specimens or made information available through electronic means. Thanks to Carlos Ostolaza for providing seeds of Haageocereus tenuis, to Graham Charles for seeds of Blossfeldia sucrensis and Acanthocalycium spiniflorum, to Donald Henne for specimens of Haageocereus lanugispinus; and to Bernard Hauser and Kent Vliet for aid with microscopy. -
Native Range Size and Growth Form in Cactaceae Predict Invasiveness
A peer-reviewed open-access journal NeoBiota 30: 75–90Native (2016) range size and growth form in Cactaceae predict invasiveness and impact 75 doi: 10.3897/neobiota.30.7253 RESEARCH ARTICLE NeoBiota http://neobiota.pensoft.net Advancing research on alien species and biological invasions Native range size and growth form in Cactaceae predict invasiveness and impact Ana Novoa1,2, Sabrina Kumschick1,2, David M. Richardson1, Mathieu Rouget3, John R. U. Wilson1,2 1 Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Matieland, South Africa 2 Invasive Species Programme, South African National Biodiversity Institute, Kirstenbosch Research Centre, Claremont, South Africa 3 Centre for Invasion Biology, School of Agricultural, Earth and Environmen- tal Sciences, University of KwaZulu-Natal, Scottsville, South Africa Corresponding author: Ana Novoa ([email protected]) Academic editor: C. Daehler | Received 20 November 2015 | Accepted 31 March 2016 | Published 23 June 2016 Citation: Novoa A, Kumschick S, Richardson DM, Rouget M, Wilson JRU (2016) Native range size and growth form in Cactaceae predict invasiveness and impact. In: Daehler CC, van Kleunen M, Pyšek P, Richardson DM (Eds) Proceedings of 13th International EMAPi conference, Waikoloa, Hawaii. NeoBiota 30: 75–90. doi: 10.3897/neobiota.30.7253 Abstract Many recent studies in invasion science have identified species traits that determine either invasiveness or impact. Such analyses underpin risk assessments and attempts to prioritise management actions. However, the factors that mediate the capacity of an introduced species to establish and spread (i.e. its invasiveness) can differ from those that affect the nature and severity of impacts. Here we compare those traits correlated with invasiveness with those correlated with impact for Cactaceae (“cacti”) in South Africa. -
Sauromalus Hispidus
ARTÍCULOS CIENTÍFICOS Cerdá-Ardura & Langarica-Andonegui 2018 - Sauromalus hispidus in Rasa Island- p 17-28 ON THE PRESENCE OF THE SPINY CHUCKWALLA SAUROMALUS HISPIDUS (STEJNEGER, 1891) IN RASA ISLAND, MEXICO PRESENCIA DEL CHACHORÓN ESPINOSO SAUROMALUS HISPIDUS (STEJNEGER, 1891) EN LA ISLA DE RASA, MÉXICO Adrián Cerdá-Ardura1* and Esther Langarica-Andonegui2 1Lindblad Expeditions/National Geographic. 2Facultad de Ciencias, Uiversidad Nacional Autónoma de México, CDMX, México. *Correspondence author: [email protected] Abstract.— In 2006 and 2013 two different individuals of the Spiny Chuckwalla (Sauromalus hispidus) were found on the small, flat, volcanic and isolated Rasa Island, located in the Midriff Region of the Gulf of California, Mexico. This species had never been recorded from Rasa Island prior to 2006. A new field study in 2014 revealed the presence of a single female chuckwalla inhabiting the Tapete Verde Valley, in the south-central part of the island, occupying a territory no bigger than 10000 m2. A scat analysis shows that the only food consumed by the animal is the Alkali Weed (Cressa truxilliensis) that forms patches of carpets in its habitat. The individual is in precarious condition, as it seems to starve on a seasonal basis, especially during El Niño cycles; also, it is missing fingers and toes, which appear to be intentional markings by amputation. We conclude that the two individuals were introduced to the island intentionally by humans. Keywords.— Chuckwalla, Gulf of California, Rasa Island. Resumen.— En 2006 y 2013 se encontraron dos individuos diferentes del cachorón de roca o chuckwalla espinoso (Sauromalus hispidus) en la pequeña, plana, volcánica y aislada isla Rasa, localizada en la Región de las Grandes Islas, en el Golfo de California, México. -
Biolphilately Vol-64 No-3
Vol. 66 (2) Biophilately June 2017 99 STAMP STORIES Jack R. Congrove, BU1424 On the cover is a quote from the 1934 movie, The Old Fashioned Way, starring W.C. Fields. The picture was produced by Paramount Pictures and based on a story written by Fields himself. In the film, Fields plays the manager of a traveling theater troupe one step ahead of its creditors. He ends up working as a “snake oil” saleman peddling “The Juice of the Cacti,” supposedly a great medicinal cure for hoarseness. Of course, his magic elixer was 98 percent alcohol and certainly nowhere in the remaining two percent was there any trace of cactus juice. Ironically, if his bottles had actually contained cactus juice, they would have provided the buyers with some genuine health benefits. Few people know the advantages of consuming cactus juice. Some nutritionists recommend that it be part of everyone’s diet because of its anti-inflammatory and nutritional properties. There are about 127 genera of cacti, all in the family Cactacea, with some 1,760 known species. The most prevalent culinary cactus species belong to the Opuntia genus and are commonly called “prickly pears.” Like all true cactus species, prickly pears are native only to the Americas, but they have been introduced to other parts of the world. Prickly pear species are abundant in Mexico, Opuntia sp. especially in the central and western regions, and also in the West Indies. Bernera Local, 1981 In the United States, prickly pears are native to many arid areas of the western United States, including the lower elevations of the Rocky Mountains, where species such as Opuntia phaeacantha and Opuntia polyacantha are dominant, and to the desert southwest, where several types are endemic.