Reptilia, Squamata, Gymnophthalmidae, Potamites Erythrocularis Chávez & Catenazzi, 2014: Distribution Extension

Total Page:16

File Type:pdf, Size:1020Kb

Reptilia, Squamata, Gymnophthalmidae, Potamites Erythrocularis Chávez & Catenazzi, 2014: Distribution Extension Herpetology Notes, volume 8: 625-628 (2015) (published online on 20 December 2015) Reptilia, Squamata, Gymnophthalmidae, Potamites erythrocularis Chávez & Catenazzi, 2014: Distribution extension Juan C. Chávez-Arribasplata1,*, Vilma Duran2, and Germán Chávez3 The neotropical family Gymnophthalmidae Merrem, individuals of Potamites erythrocularis were recorded, 1820 comprises 36 genera that occur from Mexico representing the first record outside of the localities to Argentina (Goicoechea et al., 2012). This highly where the type series was collected. diversified family includes the semi-aquatic lizard A young female of Potamites erythrocularis (CORBIDI genus Potamites Doan & Castoe, 2005, which currently 13548) was found at El Parador, Inambari, 8.64 Km SE comprises eight species distributed from western Costa of Puerto Carlos (S 12.9699, W 70.2323; 266m) at 21:30 Rica and Panama to the Amazonian forests of Bolivia on 30 September 2013 by José Malqui and Germán (Chávez and Catenazzi, 2014). Likewise, with five Chávez. It was catched in the leaf-litter alongside a slow species Peru is the country with the highest diversity flowing stream 2-2.5 m in width. The stream drained a within this genus: P. flavogularis Altamirano-Benavides, closed canopy primary forest with riparian vegetation Zaher, Lobo, Grazziotin, Sales Nunes and Rodrigues, of ferns, lichens, plants of the family Heliconaceae and 2013; P. ecpleopus Cope 1876, P. montanicola Chavez Asteraceae and trees of the family Fabaceae. An adult y Vasquez, 2012; P. strangulatus Cope, 1868; and P. male (CORBIDI 15152) was also found at the locality erythrocularis Chavez and Catenazzi, 2014. Most of of El Parador (S 12.9804, W 70.2362; 253m) at 00:32 them are distributed in the Amazonian lowlands (Doan on 5 November 2014 by Juan C. Chávez-Arribasplata and Castoe, 2005; Chávez and Catenazzi, 2014; Chávez and Vilma Duran. It was detected under a piece of dry and Vásquez, 2012; Uzell, 1996). Only two species: P. montanicola and P. erythrocularis have been recorded in montane streams above 2000 meters of elevation, being this, an extreme environment condition for lizards due to the relatively low temperatures of the water bodies (Chávez and Catenazzi, 2014; Chávez and Vásquez, 2012) inhabited by both species. Rapid surveys carried out during 2013-2014 at the foothills of the Inambari river drainage (tributary of Madre de Dios river) three 1 Centro de Ornitología y Biodiversidad (CORBIDI). Av. Santa Rita 105, Urb. Los Huertos de San Antonio, Surco, Lima 33, Peru. 2 Centro de Ornitología y Biodiversidad (CORBIDI). Av. Santa Rita 105, Urb. Los Huertos de San Antonio, Surco, Lima 33, Peru. 3 Centro de Ornitología y Biodiversidad (CORBIDI). Figure 1. Map of south-eastern Peru showing the new Av. Santa Rita 105, Urb. Los Huertos de San Antonio, Surco, distribution records (red dot) compared with the type locality Lima 33, Peru. 7 of Potamites erythrocularis (green dots) reported by Chávez * Corresponding author e-mail: [email protected] and Catenazzi (2014). 626 Juan C. Chávez-Arribasplata et al. Table 1. Morphometric and pholidosis data of the P. erythrocularis specimens examined by Chávez & Catenazzi, 2014 in comparison to the newly found specimens. Type series CORBIDI 13548 CORBIDI 15152 CORBIDI 15153 Character (Chavez & Catenazzi, 2014) n=15 (female) (male) (juvenile) male 84.3–83.6 (74.7 ± 8.0) SVL (mm) 42.9 81.2 35.0 females 61.1–70.9 (66.8 ± 3.2) males 1.5–1.8 (1.5 ± 0.1) Head length / Head width 1.7 1.5 1.66 females 1.6–1.8 (1.7 ± 0.1) males 20–21 (20.33 ± 0.51) Number of femoral pores 0 20 0 females 0 (0.00 ± 0.00) Scales between tympanum 24–29 (25.7 ± 1.3) 24 23 23 Number of supralabials 5–6 (5.1 ± 0.2) 6 6 6 Number of infralabials 4–5 (4.1 ± 0.2) 5 5 5 Number of supraoculars 4 (4.00 ± 0.00) 4 4 4 Number of superciliars 4–5 (4.2 ± 0.4) 4 4 5 Number of scales around 42–45 (43.3 ± 1.2) 46 45 46 midbody Longitudinal dorsal count 30–33 (31.7 ± 0.9) 30 29 35 Number of longitudinal 22–24 (23.4 ± 0.6) 24 23 24 ventral scales rows Lamellae under fourth toe 20–24 (21.8 ± 1.2) 23 24 24 wood on the beach of a low flowing stream with clear Vilma Duran. The lizard was hiding under a rock at the water and a sandy riverbed with some big rocks covered bottom of the stream. At this spot, the stream follows a with moss. The stream was surrounded by secondary small curve surrounded by a rock and mud wall of about forest, with well developed shrubs, ferns and shaded by 3 meters height covered in mud, ferns, lichen, moss, a dense forest canopy. At a nearby spot (240 m distance), with abundant leaf litter on each side of the stream, and a juvenile was detected (CORBIDI 15153) at 10:28 on 80% canopy cover. All specimens were collected on 7 November 2014 by Juan C. Chávez-Arribasplata and rainless days, however, heavy rains fell for at least 4 hours the days preceding our observations. Specimens have been deposited in the herpetological collection of the Centro de Ornitología y Biodiversidad (CORBIDI), in Lima, Peru. All specimens collected during our surveys agree with the description of Potamites erythrocularis presented by Chávez & Catenazzi (2014) showing the following typical characters: male having 20 femoral pores, scattered keeled scales, frontonasal undivided, female is lacking femoral pores. Furthermore, male (CORBIDI 15152) is bearing a red ring around the eye like the holotype (MUSM 28057) and shows a similar body length (SVL in male CORBIDI 15152=81.22 mm) as the specimen of the type series. Details of specimens’ measurements and squamation are presented in Table 1. Our new records extend the distribution range of Figure 2. Habitat where the third juvenile specimen Potamites erythrocularis by approximately 145 km (CORBIDI 15153) was found. southeast of the type locality in the Kosñipata valley Potamites erythrocularis: Distribution extension 627 Figure 3. Individuals of Potamites erythrocularis collected during the surveys: dorsal and ventral view of the adult male specimen CORBIDI 15152 (A, B), dorsal and ventral view of the young female specimen CORBIDI 13548 (B, C), and dorsal and ventral view of the third specimen CORBIDI 15153 female (E, F). near Manu National Park, Cusco Region, and confirm also occurs in Bahuaja Sonene National Park, which is the occurrence of this semi aquatic lizard in the Inambari only about 16 Km far from the new localities, presented river drainage, Tambopata, Madre de Dios Region, Peru. herein. Furthermore, it provides a new altitude record for the species, 750 m below the minimum altitude reported by Acknowledgments. We thank to Asociacion para la Conservacion Chávez and Catenazzi, 2014 (1000m). Further studies de la Cuenca Amazonica (ACCA) and Asociacion para la should be undertaken to determine whether the species Resiliencia del Bosque frente a la Interoceanica (ARBIO) by all 628 Juan C. Chávez-Arribasplata et al. logistic support for the fieldworks. GC is indebted to Tatiana Espinosa (ARBIO´s staff) by her trust for the fieldworks. As well, we thank to Caterina H. Cosmópolis for her value help with geographical data and designing the map. This project was funded by Gordon and Betty Moore fund and USAID. References Chávez, G. and A. Catenazzi. (2014): A new Andean lizard of the genus Potamites (Sauria, Gymophthalmidae) from Manu National Park, southeastern Peru. Zootaxa 3774 (1): 045-056. Chávez, G. and D. Vasquez. (2012): A new species of Andean semiaquatic lizard of the genus Potamites (Sauria, Gymnophthalmidae) from southern Peru. Zookeys 168: 31–43. Goicoechea, N., J. Padial, J. Chaparro, S. Castroviejo-Fisher and I. De la Riva. (2012): Molecular phylogenetics, species diversity, and biogeography of the Andean lizards of the genus Proctoporus (Squamata, Gymophthalmidae). Molecular Phylogenetics and Evolution 65: 953 – 964. Doan, T. and T. Castoe. (2005): Phylogenetic taxonomy of the Cercosaurini (Squamata, Gymophthalmidae), with a new genera for species of Neusticurus and Proctoporus. Zoological Journal of the Linnean Society 143: 405-416. Uzell, T. (1996): Teiid lizards of the genus Neusticurus (Reptilia: Sauria). Bulletin of the American Museum of the Natural History 132: 227–377. Accepted by Mirco Solé.
Recommended publications
  • Anfibios Y Reptiles 1 Keiner Meza-Tilvez1,2, Adolfo Mulet-Paso1,2 & Ronald Zambrano-Cantillo1 1Universidad De Cartagena & 2Fauna Silvestre Fundación
    Fauna del Jardín Botánico “Guillermo Piñeres” de Cartagena, Turbaco, COLOMBIA Anfibios y Reptiles 1 Keiner Meza-Tilvez1,2, Adolfo Mulet-Paso1,2 & Ronald Zambrano-Cantillo1 1 2 Universidad de Cartagena & Fauna Silvestre Fundación Fotos: Adolfo Mulet Paso (AMP) – Hugo Claessen (HC) – Jairo H. Maldonado (JHM) – Jesús Torres Meza (JTM) – José Luis Pérez-González (JPG) – Jose Luna (JL) – Keiner Meza-Tilvez (KMT) – Luis Alberto Rueda Solano (LRS) – Mauricio Rivera Correa (MRC) – Juan Salvador Mendoza (JSM). © Jardín Botánico de Cartagena “Guillermo Piñeres” [[email protected]] Macho = (M), Hembra = (H) y Juvenil = (Juv.) [fieldguides.fieldmuseum.org] [1097] versión 1 12/2018 1 Rhinella horribilis 2 Rhinella humboldti 3 Dendrobates truncatus 4 Boana pugnax BUFONIDAE (foto KMT) BUFONIDAE (foto KMT) DENDROBATIDAE (foto KMT) HYLIDAE (foto KMT) 5 Boana xerophylla 6 Dendropsophus microcephalus 7 Scarthyla vigilans 8 Scinax rostratus HYLIDAE (foto LRS) HYLIDAE (foto KMT) HYLIDAE (foto KMT) HYLIDAE (foto KMT) 9 Scinax ruber 10 Trachycephalus typhonius 11 Engystomops pustulosus 12 Leptodactylus fragilis HYLIDAE (foto KMT) HYLIDAE (foto KMT) LEPTODACTYLIDAE (foto KMT) LEPTODACTYLIDAE (foto LRS) 13 Leptodactylus insularum 14 Pleurodema brachyops 15 Elachistocleis pearsei 16 Agalychnis callidryas LEPTODACTYLIDAE (foto AMP) LEPTODACTYLIDAE (foto KMT) MICROHYLIDAE (foto MRC) PHYLLOMEDUSIDAE (foto HC) 17 Phyllomedusa venusta 18 Basiliscus basiliscus (M) 19 Basiliscus basiliscus (Juv.) 20 Anolis auratus PHYLLOMEDUSIDAE (foto AMP) CORYTOPHANIDAE (foto KMT) CORYTOPHANIDAE (foto AMP) DACTYLOIDAE (foto AMP) Fauna del Jardín Botánico “Guillermo Piñeres” de Cartagena, Turbaco, COLOMBIA Anfibios y Reptiles 2 Keiner Meza-Tilvez1,2, Adolfo Mulet-Paso1,2 & Ronald Zambrano-Cantillo1 1 2 Universidad de Cartagena & Fauna Silvestre Fundación Fotos: Adolfo Mulet Paso (AMP) – Hugo Claessen (HC) – Jairo H.
    [Show full text]
  • Zootaxa, Herpetological Results of the 2002 Expedition to Sarisarinama, A
    ZOOTAXA 1942 Herpetological results of the 2002 expedition to Sarisariñama, a tepui in Venezuelan Guayana, with the description of five new species CESAR L. BARRIO-AMOROS & CHARLES BREWER-CARIAS Magnolia Press Auckland, New Zealand Cesar L. Barrio-Amoros & Charles Brewer-Carias Herpetological results of the 2002 expedition to Sarisariñama, a tepui in Venezuelan Guayana, with the description of five new species (Zootaxa 1942) 68 pp.; 30 cm. 26 Nov. 2008 ISBN 978-1-86977-269-7 (paperback) ISBN 978-1-86977-270-3 (Online edition) FIRST PUBLISHED IN 2008 BY Magnolia Press P.O. Box 41-383 Auckland 1346 New Zealand e-mail: [email protected] http://www.mapress.com/zootaxa/ © 2008 Magnolia Press All rights reserved. No part of this publication may be reproduced, stored, transmitted or disseminated, in any form, or by any means, without prior written permission from the publisher, to whom all requests to reproduce copyright material should be directed in writing. This authorization does not extend to any other kind of copying, by any means, in any form, and for any purpose other than private research use. ISSN 1175-5326 (Print edition) ISSN 1175-5334 (Online edition) 2 · Zootaxa 1942 © 2008 Magnolia Press BARRIO-AMORÓS & BREWER-CARÍAS Zootaxa 1942: 1–68 (2008) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA Copyright © 2008 · Magnolia Press ISSN 1175-5334 (online edition) Herpetological results of the 2002 expedition to Sarisariñama, a tepui in Venezuelan Guayana, with the description of five new species CÉSAR L. BARRIO-AMORÓS1 & CHARLES BREWER-CARÍAS2 1Fundación AndígenA, Apartado Postal 210, 5101-A Mérida, Venezuela.
    [Show full text]
  • Literature Cited in Lizards Natural History Database
    Literature Cited in Lizards Natural History database Abdala, C. S., A. S. Quinteros, and R. E. Espinoza. 2008. Two new species of Liolaemus (Iguania: Liolaemidae) from the puna of northwestern Argentina. Herpetologica 64:458-471. Abdala, C. S., D. Baldo, R. A. Juárez, and R. E. Espinoza. 2016. The first parthenogenetic pleurodont Iguanian: a new all-female Liolaemus (Squamata: Liolaemidae) from western Argentina. Copeia 104:487-497. Abdala, C. S., J. C. Acosta, M. R. Cabrera, H. J. Villaviciencio, and J. Marinero. 2009. A new Andean Liolaemus of the L. montanus series (Squamata: Iguania: Liolaemidae) from western Argentina. South American Journal of Herpetology 4:91-102. Abdala, C. S., J. L. Acosta, J. C. Acosta, B. B. Alvarez, F. Arias, L. J. Avila, . S. M. Zalba. 2012. Categorización del estado de conservación de las lagartijas y anfisbenas de la República Argentina. Cuadernos de Herpetologia 26 (Suppl. 1):215-248. Abell, A. J. 1999. Male-female spacing patterns in the lizard, Sceloporus virgatus. Amphibia-Reptilia 20:185-194. Abts, M. L. 1987. Environment and variation in life history traits of the Chuckwalla, Sauromalus obesus. Ecological Monographs 57:215-232. Achaval, F., and A. Olmos. 2003. Anfibios y reptiles del Uruguay. Montevideo, Uruguay: Facultad de Ciencias. Achaval, F., and A. Olmos. 2007. Anfibio y reptiles del Uruguay, 3rd edn. Montevideo, Uruguay: Serie Fauna 1. Ackermann, T. 2006. Schreibers Glatkopfleguan Leiocephalus schreibersii. Munich, Germany: Natur und Tier. Ackley, J. W., P. J. Muelleman, R. E. Carter, R. W. Henderson, and R. Powell. 2009. A rapid assessment of herpetofaunal diversity in variously altered habitats on Dominica.
    [Show full text]
  • Evolution of Limblessness
    Evolution of Limblessness Evolution of Limblessness Early on in life, many people learn that lizards have four limbs whereas snakes have none. This dichotomy not only is inaccurate but also hides an exciting story of repeated evolution that is only now beginning to be understood. In fact, snakes represent only one of many natural evolutionary experiments in lizard limblessness. A similar story is also played out, though to a much smaller extent, in amphibians. The repeated evolution of snakelike tetrapods is one of the most striking examples of parallel evolution in animals. This entry discusses the evolution of limblessness in both reptiles and amphibians, with an emphasis on the living reptiles. Reptiles Based on current evidence (Wiens, Brandley, and Reeder 2006), an elongate, limb-reduced, snakelike morphology has evolved at least twenty-five times in squamates (the group containing lizards and snakes), with snakes representing only one such origin. These origins are scattered across the evolutionary tree of squamates, but they seem especially frequent in certain families. In particular, the skinks (Scincidae) contain at least half of all known origins of snakelike squamates. But many more origins within the skink family will likely be revealed as the branches of their evolutionary tree are fully resolved, given that many genera contain a range of body forms (from fully limbed to limbless) and may include multiple origins of snakelike morphology as yet unknown. These multiple origins of snakelike morphology are superficially similar in having reduced limbs and an elongate body form, but many are surprisingly different in their ecology and morphology. This multitude of snakelike lineages can be divided into two ecomorphs (a are surprisingly different in their ecology and morphology.
    [Show full text]
  • Discovery of an Additional Piece of the Large Gymnophthalmid Puzzle: A
    Zootaxa 4950 (2): 296–320 ISSN 1175-5326 (print edition) https://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2021 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4950.2.4 http://zoobank.org/urn:lsid:zoobank.org:pub:9464FC1F-2F92-46B7-BA53-1CFC93981F09 Discovery of an additional piece of the large gymnophthalmid puzzle: a new genus and species of stream spiny lizard (Squamata: Gymnophthalmidae: Cercosaurinae) from the western Guiana Shield in Venezuela FERNANDO J.M. ROJAS-RUNJAIC1*, CÉSAR L. BARRIO-AMORÓS2, J. CELSA SEÑARIS3,4, IGNACIO DE LA RIVA5 & SANTIAGO CASTROVIEJO-FISHER4,6 1Museo de Historia Natural La Salle, Fundación La Salle de Ciencias Naturales, Caracas 1050, Distrito Capital, Venezuela 2Doc Frog Expeditions/CRWild, 60504, Bahía Ballena, Uvita, Costa Rica �[email protected]; https://orcid.org/0000-0001-5837-9381 3PROVITA, calle La Joya con Av. Libertador, Unidad Técnica del Este, piso 10, oficina 29-30, Caracas 1060, Miranda, Venezuela �[email protected]; https://orcid.org/0000-0001-8673-7385 4Laboratório de Sistemática de Vertebrados, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Av. Ipiranga 6681, Porto Alegre, RS 90619-900, Brazil 5Museo Nacional de Ciencias Naturales-CSIC, C/ José Gutiérrez Abascal 2, 28006 Madrid, Spain �[email protected]; https://orcid.org/0000-0001-5064-4507 6Department of Herpetology, American Museum of Natural History, 200 Central Park West, New York, NY 10024-5102, USA �[email protected]; https://orcid.org/0000-0002-1048-2168 *Corresponding author. �[email protected]; https://orcid.org/0000-0001-5409-4231 Abstract Gymnophthalmids are a highly diverse group of Neotropical lizards and its species richness is still in process of discovery.
    [Show full text]
  • A Rapid Biological Assessment of the Upper Palumeu River Watershed (Grensgebergte and Kasikasima) of Southeastern Suriname
    Rapid Assessment Program A Rapid Biological Assessment of the Upper Palumeu River Watershed (Grensgebergte and Kasikasima) of Southeastern Suriname Editors: Leeanne E. Alonso and Trond H. Larsen 67 CONSERVATION INTERNATIONAL - SURINAME CONSERVATION INTERNATIONAL GLOBAL WILDLIFE CONSERVATION ANTON DE KOM UNIVERSITY OF SURINAME THE SURINAME FOREST SERVICE (LBB) NATURE CONSERVATION DIVISION (NB) FOUNDATION FOR FOREST MANAGEMENT AND PRODUCTION CONTROL (SBB) SURINAME CONSERVATION FOUNDATION THE HARBERS FAMILY FOUNDATION Rapid Assessment Program A Rapid Biological Assessment of the Upper Palumeu River Watershed RAP (Grensgebergte and Kasikasima) of Southeastern Suriname Bulletin of Biological Assessment 67 Editors: Leeanne E. Alonso and Trond H. Larsen CONSERVATION INTERNATIONAL - SURINAME CONSERVATION INTERNATIONAL GLOBAL WILDLIFE CONSERVATION ANTON DE KOM UNIVERSITY OF SURINAME THE SURINAME FOREST SERVICE (LBB) NATURE CONSERVATION DIVISION (NB) FOUNDATION FOR FOREST MANAGEMENT AND PRODUCTION CONTROL (SBB) SURINAME CONSERVATION FOUNDATION THE HARBERS FAMILY FOUNDATION The RAP Bulletin of Biological Assessment is published by: Conservation International 2011 Crystal Drive, Suite 500 Arlington, VA USA 22202 Tel : +1 703-341-2400 www.conservation.org Cover photos: The RAP team surveyed the Grensgebergte Mountains and Upper Palumeu Watershed, as well as the Middle Palumeu River and Kasikasima Mountains visible here. Freshwater resources originating here are vital for all of Suriname. (T. Larsen) Glass frogs (Hyalinobatrachium cf. taylori) lay their
    [Show full text]
  • Diet of the Lizard Ecpleopus Gaudichaudii (Gymnophthalmidae) in Atlantic Rainforest, State of Rio De Janeiro, Brazil
    ZOOLOGIA 28 (5): 587–592, October, 2011 doi: 10.1590/S1984-46702011000500006 Diet of the lizard Ecpleopus gaudichaudii (Gymnophthalmidae) in Atlantic Rainforest, state of Rio de Janeiro, Brazil Thiago Maia1, 5; Mauricio Almeida-Gomes1; Carla C. Siqueira2; Davor Vrcibradic3; Mara C. Kiefer4 & Carlos Frederico D. Rocha1 1 Departamento de Ecologia, Universidade do Estado do Rio de Janeiro. Rua São Francisco Xavier 524, 20550-019 Rio de Janeiro, RJ, Brazil. 2 Programa de Pós-Graduação em Ecologia, Instituto de Biologia, Universidade Federal do Rio de Janeiro. Avenida Carlos Chagas Filho 373, Bloco A, Cidade Universitária, 21941-902 Rio de Janeiro, RJ, Brazil. 3 Departamento de Zoologia, Universidade Federal do Estado do Rio de Janeiro. Avenida Pasteur 458, Urca, 22240-290 Rio de Janeiro, RJ, Brazil. 4 Departamento de Biologia Geral, Instituto de Biologia, Universidade Federal Fluminense. Caixa Postal 100436, Centro, 24020-971 Niterói, RJ, Brazil. 5 Corresponding author. E-mail: [email protected] ABSTRACT. In this study we analyzed the diet of the gymnophthalmid lizard Ecpleopus gaudichaudii Duméril & Bibron, 1839, a typical inhabitant of the forest-floor leaf litter, in an Atlantic Forest area in the state of Rio de Janeiro, southeast- ern Brazil. The 26 individuals sampled during the study had a mean snout-vent length (SVL) of 36.2 ± 4.2 mm and a mean jaw width (JW) of 4.1 ± 0.5 mm. We did not find differences in SVL between males and females, though the sexes differed in JW when the effect of body size was factored out, with females presenting higher values. The diet of the lizards was composed exclusively of arthropods, especially isopods and orthopterans.
    [Show full text]
  • Molecular Phylogenetics, Species Diversity, and Biogeography of the Andean Lizards of the Genus Proctoporus (Squamata: Gymnophthalmidae)
    Molecular Phylogenetics and Evolution 65 (2012) 953–964 Contents lists available at SciVerse ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Molecular phylogenetics, species diversity, and biogeography of the Andean lizards of the genus Proctoporus (Squamata: Gymnophthalmidae) Noemí Goicoechea a, José M. Padial b, Juan C. Chaparro c, Santiago Castroviejo-Fisher b, ⇑ Ignacio De la Riva a,d, a Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales-CSIC, C/José Gutiérrez Abascal 2, 28006 Madrid, Spain b Department of Herpetology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024-5192, United States c Museo de Historia Natural, Universidad Nacional de San Antonio Abad del Cusco, Cusco, Peru d School of Marine and Tropical Biology, James Cook University, Townsville, Queensland 4811, Australia article info abstract Article history: The family Gymnophthalmidae comprises ca. 220 described species of Neotropical lizards distributed Received 25 February 2012 from southern Mexico to Argentina. It includes 36 genera, among them Proctoporus, which contains six Revised 20 August 2012 currently recognized species occurring across the yungas forests and wet montane grasslands of the Ama- Accepted 21 August 2012 zonian versant of the Andes from central Peru to central Bolivia. Here, we investigate the phylogenetic Available online 7 September 2012 relationships and species limits of Proctoporus and closely related taxa by analyzing 2121 base pairs of mitochondrial (12S, 16S, and ND4) and nuclear (c-mos) genes. Our taxon sampling of 92 terminals Keywords: includes all currently recognized species of Proctoporus and 15 additional species representing the most Andes closely related groups to the genus.
    [Show full text]
  • First Record of Amphisbaena Lumbricalis
    Herpetology Notes, volume 10: 19-22 (2017) (published online on 27 January 2017) First record of Amphisbaena lumbricalis (Squamata, Amphisbaenidae) in the state of Pernambuco, Brazil: including a distribution map and soil classification of its occurrence Ana Paula G. Tavares1, José Jorge S. Carvalho2 and Leonardo B. Ribeiro1,* Amphisbaenia is currently represented by 196 species (Vanzolini, 1996; Galdino et al., 2015). In Alagoas, (Uetz and Hošek, 2016) belonging to six families (Vidal A. lumbricalis has been recorded in the municipalities and Hedges, 2009). Amphisbaenidae, the most diverse of Delmiro Gouveia, Piranhas and Traipu, and in the family (178 species), is distributed throughout South municipality of Canindé de São Francisco in Sergipe America and Africa (Gans, 2005; Vidal et al., 2008; state. In the present study, we report a new occurrence of Uetz and Hošek, 2016). Of these, 73 species occur in this worm lizard for the semiarid region of Pernambuco Brazil (Costa and Bérnils, 2015), and 20 in the semiarid state and classify the soil where it occurs. region. Three distribution patterns can be recognised Between July 2009 and March 2014, specimens in these species (Rodrigues, 2003): i) species with of A. lumbricalis were gathered during wild fauna wide distribution in the Caatinga Morphoclimatic rescue missions conducted by the Project to Integrate Domain: Amphisbaena alba, A. pretrei, A. vermicularis, the San Francisco River with the Northern Northeast Leposternon infraorbitale, L. microcephalum and L. Hydrographic Basins (PISF). A total of 477 km of polystegum; ii) species associated with the sand dunes the area (eastern and northern axes of the PISF) were of the middle São Francisco River and adjacent sands: sampled during vegetation suppression and worm A.
    [Show full text]
  • A New Andean Lizard of the Genus Potamites (Sauria, Gymnophthalmidae) from Manu National Park, Southeastern Peru
    Zootaxa 3774 (1): 045–056 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2014 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3774.1.3 http://zoobank.org/urn:lsid:zoobank.org:pub:831DF0B3-7799-4BD5-833B-49489050B96B A new Andean lizard of the genus Potamites (Sauria, Gymnophthalmidae) from Manu National Park, southeastern Peru GERMÁN CHÁVEZ1 & ALESSANDRO CATENAZZI1,2 1Centro de Ornitología y Biodiversidad (CORBIDI), Av. Santa Rita 105, Urb. Los Huertos de San Antonio, Surco, Lima 33, Peru 2Department of Zoology, Southern Illinois University, Carbondale, IL 62901, USA Abstract We describe a new lizard of the genus Potamites from elevations of 1000–2100 m in the montane forests of the Cordillera de Paucartambo and the upper Kosñipata valley, Region of Cusco, Peru. The new species differs from other species of Potamites by having scattered keeled scales on dorsum, an undivided frontonasal and absence of femoral pores in females. Key words: Squamata, Gymnophthalmidae, Andes, Cusco, stream, cloud forest, taxonomy Resumen Describimos una nueva especie de lagartija del genero Potamites de los bosques montanos de la Cordillera de Paucartam- bo y de la parte alta del valle del río Kosñipata, Región de Cusco, Perú, entre los 1000 y 2100 metros de elevación. La nueva especie se diferencia de las otras especies de Potamites por tener escamas quilladas desordenadas en el dorso, es- cama frontonasal no dividida y ausencia de poros femorales en las hembras . Palabras clave: Squamata, Gymnophthalmidae, Andes, Cusco, riachuelo, bosque nublado, taxonomía Introduction The genus Potamites was described by Doan & Castoe (2005) and currently contains seven species: Potamites apodemus (Uzzell, 1966) from western Costa Rica and Panama (Lotzkat et al, 2012), P.
    [Show full text]
  • Reptile Diversity in an Amazing Tropical Environment: the West Indies - L
    TROPICAL BIOLOGY AND CONSERVATION MANAGEMENT - Vol. VIII - Reptile Diversity In An Amazing Tropical Environment: The West Indies - L. Rodriguez Schettino REPTILE DIVERSITY IN AN AMAZING TROPICAL ENVIRONMENT: THE WEST INDIES L. Rodriguez Schettino Department of Zoology, Institute of Ecology and Systematics, Cuba To the memory of Ernest E. Williams and Austin Stanley Rand Keywords: Reptiles, West Indies, geographic distribution, morphological and ecological diversity, ecomorphology, threatens, conservation, Cuba Contents 1. Introduction 2. Reptile diversity 2.1. Morphology 2.2.Habitat 3. West Indian reptiles 3.1. Greater Antilles 3.2. Lesser Antilles 3.3. Bahamas 3.4. Cuba (as a study case) 3.4.1. The Species 3.4.2. Geographic and Ecological Distribution 3.4.3. Ecomorphology 3.4.4. Threats and Conservation 4. Conclusions Acknowledgments Glossary Bibliography Biographical Sketch Summary The main features that differentiate “reptiles” from amphibians are their dry scaled tegument andUNESCO their shelled amniotic eggs. In– modern EOLSS studies, birds are classified under the higher category named “Reptilia”, but the term “reptiles” used here does not include birds. One can externally identify at least, three groups of reptiles: turtles, crocodiles, and lizards and snakes. However, all of these three groups are made up by many species that are differentSAMPLE in some morphological characters CHAPTERS like number of scales, color, size, presence or absence of limbs. Also, the habitat use is quite variable; there are reptiles living in almost all the habitats of the Earth, but the majority of the species are only found in the tropical regions of the world. The West Indies is a region of special interest because of its tropical climate, the high number of species living on the islands, the high level of endemism, the high population densities of many species, and the recognized adaptive radiation that has occurred there in some genera, such as Anolis, Sphaerodactylus, and Tropidophis.
    [Show full text]
  • From Four Sites in Southern Amazonia, with A
    Bol. Mus. Para. Emílio Goeldi. Cienc. Nat., Belém, v. 4, n. 2, p. 99-118, maio-ago. 2009 Squamata (Reptilia) from four sites in southern Amazonia, with a biogeographic analysis of Amazonian lizards Squamata (Reptilia) de quatro localidades da Amazônia meridional, com uma análise biogeográfica dos lagartos amazônicos Teresa Cristina Sauer Avila-PiresI Laurie Joseph VittII Shawn Scott SartoriusIII Peter Andrew ZaniIV Abstract: We studied the squamate fauna from four sites in southern Amazonia of Brazil. We also summarized data on lizard faunas for nine other well-studied areas in Amazonia to make pairwise comparisons among sites. The Biogeographic Similarity Coefficient for each pair of sites was calculated and plotted against the geographic distance between the sites. A Parsimony Analysis of Endemicity was performed comparing all sites. A total of 114 species has been recorded in the four studied sites, of which 45 are lizards, three amphisbaenians, and 66 snakes. The two sites between the Xingu and Madeira rivers were the poorest in number of species, those in western Amazonia, between the Madeira and Juruá Rivers, were the richest. Biogeographic analyses corroborated the existence of a well-defined separation between a western and an eastern lizard fauna. The western fauna contains two groups, which occupy respectively the areas of endemism known as Napo (west) and Inambari (southwest). Relationships among these western localities varied, except between the two northernmost localities, Iquitos and Santa Cecilia, which grouped together in all five area cladograms obtained. No variation existed in the area cladogram between eastern Amazonia sites. The easternmost localities grouped with Guianan localities, and they all grouped with localities more to the west, south of the Amazon River.
    [Show full text]