Genetic and Physiological Characterizationof Bacillus Subtilis Mutants Resistant to Purine Analogs

Total Page:16

File Type:pdf, Size:1020Kb

Genetic and Physiological Characterizationof Bacillus Subtilis Mutants Resistant to Purine Analogs JOURNAL OF BACTERIOLOGY, JUlY 1987, P. 2977-2983 Vol. 169, No. 7 0021-9193/87/072977-07$02.00/0 Copyright ) 1987, American Society for Microbiology Genetic and Physiological Characterization of Bacillus subtilis Mutants Resistant to Purine Analogs HANS H. SAXILD AND PER NYGAARD* Enzyme Division, University Institute ofBiological Chemistry B, DK-1307 Copenhagen K, Denmark Received 14 November 1986/Accepted 1 April 1987 BaciUus subtilis mutants defective in purine metabolism have been isolated by selecting for resistance to purine analogs. Mutants resistant to 2-fluoroadenine were found to be defective in adenine phosphoribosylbransferase (apt) activity and slightly impaired in adenine uptake. By making use of apt mutants and mutants defective in adenosine phosphorylase activity, it was shown that adenine deamination is an essential step in the conversion of both adenine and adenosine to guanine nucleotides. Mutants resistant to 8-azaguanine, pbuG mutants, appeared to be defective in hypoxanthine and guanine transport and normal in hypoxanthine-guanine phosphoribosyltransferase activity. Purine auxotrophic pbuG mutants grew in a concentration-dependent way on hypoxanthine, while normal growth was observed on inosine as the purine source. Inosine was taken up by a different transport system and utilized after conversion to hypoxanthine. Two mutants resistant to 8-azaxanthine were isolated: one was defective in xanthine phosphoribosyltransferase (xpt) activity and xanthine transport, and another had reduced GMP synthetase activity. The results obtained with the various mutants provide evidence for the existence of specific purine base transport systems. The genetic lesions causing the mutant phenotypes, apt, pbuG, and xpt, have been located on the B. subtilis linkage map at 243, 55, and 198 degrees, respectively. The sporeforming gram-positive bacterium Bacillus sub- sporulation, a shrinkage of the intracellular pools of GDP tilis is able to synthesize purine nucleotides from smaller and GTP occurs under different experimental conditions (8, metabolites via the purine de novo pathway and to reutilize 18, 26). The purpose of the present study was to gain insight nucleosides and nucleobases via the purine salvage path- into purine base and nucleoside utilization. We report the ways (24) (Fig. 1). The preformed purine compounds may be isolation and the physiological and genetic characterization formed endogenously from the turnover of nucleic acids, of mutants of B. subtilis resistant to either 2-fluoroadenine, from nucleic acids taken up, or as degradation products in 8-azaguanine, or 8-azaxanthine. The results obtained have the surroundings from decaying cells. B. subtilis possesses contributed to our knowledge ofthe purine salvage pathways both extracellular and intracellular nucleotidases (6, 24). The and transport systems of B. subtilis. utilization of nucleosides as carbon or nitrogen sources is of minor importance in B. subtilis (9). The purine salvage pathways are well documented in many microorganisms (24) MATERIALS AND METHODS and have been investigated in some detail in B. subtilis (7). The B. used in this While the purine de novo pathway appears to be almost Organisms and media. strains of subtilis identical in the various organisms studied, the salvage path- study are listed in Table 1. The minimal medium used was ways seem far more diverse, as defined by the biochemical Spizizen salts (29) supplemented with 5 F.M MnSO4, 1 ,ug of reactions involved in purine utilization (24). Even among the thiamine hydrochloride per ml, 0.2% L-glutamic acid, and various bacilli there are major differences in how exogenous 0.4% D-glucose. Minimal agar plates contained Spizizen purine compounds are metabolized (11, 24). By comparison, salts, 5 ,uM MnSO4, 1 ,ug of thiamine hydrochloride per ml, less is known about the transport of purine bases and 0.4% glycerol, and 1.6% agar. MG1 medium was Spizizen nucleosides in microorganisms (3, 21). One major obstacle salts, S ,uM MnSO4, 1 p.g of thiamine hydrochloride per ml, has been the problem of separating transport from subse- 0.5% D-glucose, 0.2% yeast extract, and an amino acid quent intracellular conversion. mixture known to enhance competence in B. subtilis (30): L-histidine, L-tryptophan, L-argiline, L-valine, L-lysine, L- Attempts to elucidate purine transport systems in B. threonine, L-glycine, L-asparagine, and L-methionine (all at subtilis have revealed the presence of several systems (3, 50 ,ug/ml). MG2 medium was MG1 supplemented with 2 mM 21). Useful tools for the identification of purine salvage MgCl2 and 0.5 mM CaCl2. As complex media, L-broth and pathways and purine transport systems are the use of brain-heart infusion broth (Difco Laboratories, Detroit, mutants defective in specific steps of the pathways or Mich.) were used. Nutrients required by auxotrophic strains transport systems and of analogs which specifically inhibit were added at a final concentration of 50 ,ug/ml for amino purine metabolism. Purine analogs which are not toxic until acids, 1 p.g/ml for vitamins, and 30 ,ug/ml for punne and they have been converted to nucleotides have been used pyrimidine compounds unless stated otherwise. extensively in microorganisms to select purine salvage and Growth conditions. Cells were cultured overnight at 30°C transport mutants (21, 24). Purine metabolism in B. subtilis is and diluted in the same medium to exponential growth at of particular interest because purine compounds appear to 37°C. Growth was followed by measuring the optical density play a key role in the initiation of sporulation (26, 28). Freese (OD) at 436 nm in an Eppendorf photometer. An optical and colleagues have shown that during the initiation of density of 1 (1-cm light path) corresponds to 0.2 mg (dry weight) of bacteria per ml. Resistance to 2-fluoroadenine (2 * Corresponding author. ,uM), 8-azaguanine (0.5 mM), 8-azaxanthine (2 mM), and 2977 2978 SAXILD AND NYGAARD J. BACTERIOL. ATP---- AICAR-----PRPP GTP Histidine 0 ADP FAICAW~I guaC r.npuuLJI I purE purA grgguaA I AMP *- sAMP *- IMP XMP _-. GMP ujaF Ixpt guaF pupA tapt adeC to guaP guaP Ado - Ade - Hyp * Ino Xan Gua .- Guo <-tt Interior t 4 4- 4 4 I j(3) (1) Exterior IHpuG 1(2) (4) pbuG 1(2) Ado Ade Hyp Ino Xan Gua Guo FIG. 1. Proposed pathways for purine salvage and transport in B. subtilis. The individual reactions are identified by gene symbols. Symbols in italics indicate mapped mutations. Numbers indicate transport systems identified by Beaman et al. (3). AICAR, Aminoimidazolecarboxamide ribonucleotide; FAICAR, formamidoimidazolecarboxamide ribonucleotide; purA, adenylosuccinate synthe- tase; purE, adenylosuccinate lyase; guaA, IMP dehydrogenase; guaB, GMP synthetase; guaC, GMP reductase; apt, adenine phosphoribosyltransferase; xpt, xanthine phosphoribosyltransferase; guaF, guanine-hypoxanthine phosphoribosyltransferase; adeC, adenine deaminase; pupA, adenosine phosphorylase; guaP, guanosine (inosine) phosphorylase; pbuG, purine base uptake (guanine/hypoxanthine). Numbers: 1, Adenine transport system; 2, guanosine (inosine) transport system; 3, adenosine transport system; 4, xanthine transport system. Other abbreviations: see Table 2, footnote b, and Table 3, footnote a. 4-azaleucine (0.2 mM) was scored on minimal agar plates fresh warmed medium, and suspended in 15 ml of warm containing the appropriate analog. The tsi and dnaD markers medium. After 5 min of incubation, 1 ml of culture was were scored on L-broth plates at 48 and 42°C, respectively. transferred to a tube containing the appropriate "C-labeled The tre marker was scored on minimal plates containing purine compound at a final concentration of 1 ,uM (50 0.4% trehalose as the carbon source. Ci/mol). At 15, 30, 45, and 60 s, 200-,ul samples were Chemicals and isotopes. Fine chemicals were purchased withdrawn, filtered through a membrane filter, and washed from Sigma Chemical Co., St. Louis, Mo. 14C-labeled com- with 2.5 ml of medium. The filter was dried, and radioactiv- pounds were purchased from Amersham International, ity was determined by liquid scintillation counting. For Amersham, England. 2-Fluoroadenine was kindly donated uptake measurements in purine auxotrophic strains, the cells by M. W. Taylor (Indiana University, Bloomington, Ind.). were suspended in minimal medium lacking purine, and Carrier-free [32P]phosphoric acid was from Fors0gsanlaeg, uptake was determined immediately thereafter. Ris0, Denmark. Nucleoside triphosphate and PRPP pools. ATP, GTP, and Enzyme assays. Enzyme analyses were carried out at 37°C. PRPP pools were determined as described before (14) in cells Protein was determined by the method of Lowry et al. (20). cultured in low-phosphate medium (23) in the presence of Phosphoribosylpyrophosphate (PRPP) amidotransferase and 32P, (10 Ci/mol). Incorporation of [8-14C]adenine and [8- phosphoribosylglycinamide (GAR) synthetase activities "4C]adenosine into ATP and GTP was performed with cells were measured as described by Houlberg and Jensen (10). growing in minimal medium containing histidine (100 ,uglml). Activities of adenine, guanine, hypoxanthine, and xanthine At an OD436 of 0.5, the labeled compound was added to give phosphoribosyltransferases, adenosine deaminase, and pu- a final concentration of 50 ,uM (5 Ci/mol). At an OD436 of 1, rine nucleoside kinases were assayed as described before 25-,ul samples were withdrawn for nucleotide pool analysis (15, 25). Purine nucleoside phosphorylase activity was de- (14). termined by the method of Jensen (13). AMP deaminase Transduction and phage production. The generalized trans- activity was determined as described by Murakami (22), and ducing phage AR9, which is related to the phage PBS1, was GMP synthetase activity as described by Lambden and used (19). Fifty microliters of producer lysate (propagated in Drabble (16). Adenase activity, the deamination of adenine Bacillus pumilus) and 50 ,ul of bacteria grown in L-broth to hypoxanthine, was measured in whole cells concentrated were added to 5 ml of brain-heart infusion broth and incu- to an OD436 of 3 to 5 in 0.1 M Tris hydrochloride (pH 7.6) bated for 24 h with shaking and then for 24 h without shaking containing 0.5 mM [8-14C]adenine (5 Ci/mol).
Recommended publications
  • Thesis Final
    CHARACTERIZATION OF ADENOSINE NUCLEOSIDASE FROM ALASKA PEA SEEDS by Abdullah K. Shamsuddin A Thesis Submitted to the Faculty of the College of Graduate Studies at Middle Tennessee State University in Partial Fulfillment of the Requirements for the Degree of Master of Science in Chemistry Middle Tennessee State University August 2015 Thesis Committee: Dr. Paul C. Kline, Chair Dr. Donald A. Burden Dr. Kevin L. Bicker I dedicate this research to my parents, my sisters, and my brother. I love you all. ii" " ACKNOWLEDGEMENTS I would like to express my sincere gratitude to my advisor, Dr. Paul C. Kline, for his guidance, support, and ongoing encouragement throughout this project. I also wish to thank my committee members, Dr. Donald A. Burden and Dr. Kevin L. Bicker, for their advice and insightful comments. In addition, I would like to thank all the staff and faculty of the Department of Chemistry for their contribution to the success of this study. Lastly, I wish to thank my family and my friends, without whom none of my accomplishments would have been possible. Thank you for you endless support, concern, love, and prayer. iii" " ABSTRACT Adenosine nucleosidase was purified from Alaska pea seeds five days after germination. A 4-fold purification has been reached with a 1.3 % recovery. The subunit molecular weight of adenosine nucleosidase was determined by mass spectrometry to be 26,103 daltons. The number of subunits was 1. The Michaelis constant, Km, and the maximum velocity, V max, for adenosine were determined to be 137 ± 48 µM, and 0.34 ± 0.02 µM/min respectively.
    [Show full text]
  • United States Patent 19 11 Patent Number: 5,780,253 Subramanian Et Al
    III USOO5780253A United States Patent 19 11 Patent Number: 5,780,253 Subramanian et al. (45) Date of Patent: Jul. 14, 1998 54 SCREENING METHOD FOR DETECTION OF 4.433.999 2/1984 Hyzak ....................................... 71.03 HERBCDES 4.6–552 2/1987 Anoti et al. if O3. 4,802,912 2/1989 Baker ........................................ 7/103 Inventors: Wenkiteswaran Subramanian Danville: Anne G. Toschi. Burlingame. OTHERTHER PPUBLICATION CATIONS both of Calif. Heim et al. Pesticide Biochem & Physiol; vol. 53, pp. 138-145 (1995). 73) Assignee: Sandoz Ltd., Basel. Switzerland Hatch. MD.: Phytochem. vol. 6... pp. 115 to 119, (1967). Haworth et al. J. Agric. Food Chem, vol. 38, pp. 1271-1273. 21 Appl. No.:752.990 1990. Nishimura et al: Phytochem: vol. 34, pp. 613-615. (1993). 22 Filed: Nov. 21, 1996 Primary Examiner-Louise N. Leary Related U.S. Application Data Attorney, Agent, or Firm-Lynn Marcus-Wyner: Michael P. Morris 63 Continuation of Ser. No. 434.826, May 4, 1995, abandoned. 6 57 ABSTRACT 51 Int. Cl. ............................... C12Q 1/48: C12Q 1/32: C12Q 1/37; C12O 1/00 This invention relates to novel screening methods for iden 52 U.S. Cl. ................................. 435/15:435/18: 435/26: tifying compounds that specifically inhibit a biosynthetic 435/23: 435/4, 536/23.6:536/23.2:536/24.3 pathway in plants. Enzymes which are specifically affected 536/26.11:536/26.12:536/26.13 by the novel screening method include plant purine biosyn 58 Field of Search .................................. 435/15, 8, 26, thetic pathway enzymes and particularly the enzymes 435/23 4: 536/23.6, 23.2, 24.3, 26.1, involved in the conversion of inosine monophosphate to 26.12, 26.13 adenosine monophosphate and inosine monophosphate to guanosine monophosphate.
    [Show full text]
  • IMPDH2: a New Gene Associated with Dominant Juvenile-Onset Dystonia-Tremor Disorder
    www.nature.com/ejhg BRIEF COMMUNICATION OPEN IMPDH2: a new gene associated with dominant juvenile-onset dystonia-tremor disorder 1,8 1,8 2 3 1,4 2 5 Anna Kuukasjärvi , Juan✉ C. Landoni , Jyrki Kaukonen , Mika Juhakoski , Mari Auranen , Tommi Torkkeli , Vidya Velagapudi and Anu Suomalainen 1,6,7 © The Author(s) 2021 The aetiology of dystonia disorders is complex, and next-generation sequencing has become a useful tool in elucidating the variable genetic background of these diseases. Here we report a deleterious heterozygous truncating variant in the inosine monophosphate dehydrogenasegene(IMPDH2) by whole-exome sequencing, co-segregating with a dominantly inherited dystonia-tremor disease in a large Finnish family. We show that the defect results in degradation of the gene product, causing IMPDH2 deficiency in patient cells. IMPDH2 is the first and rate-limiting enzyme in the de novo biosynthesis of guanine nucleotides, a dopamine synthetic pathway previously linked to childhood or adolescence-onset dystonia disorders. We report IMPDH2 as a new gene to the dystonia disease entity. The evidence underlines the important link between guanine metabolism, dopamine biosynthesis and dystonia. European Journal of Human Genetics; https://doi.org/10.1038/s41431-021-00939-1 INTRODUCTION The disease-onset was between 9 and 20 years of age. Table 1 Dystonias are rare movement disorders characterised by sustained or summarises the clinical presentations. intermittent muscle contractions causing abnormal, often repetitive, movements and/or postures. Dystonia can manifest as an isolated Case report symptom or combined with e.g. parkinsonism or myoclonus [1]. While Patient II-6 is a 46-year-old woman.
    [Show full text]
  • 35 Disorders of Purine and Pyrimidine Metabolism
    35 Disorders of Purine and Pyrimidine Metabolism Georges van den Berghe, M.- Françoise Vincent, Sandrine Marie 35.1 Inborn Errors of Purine Metabolism – 435 35.1.1 Phosphoribosyl Pyrophosphate Synthetase Superactivity – 435 35.1.2 Adenylosuccinase Deficiency – 436 35.1.3 AICA-Ribosiduria – 437 35.1.4 Muscle AMP Deaminase Deficiency – 437 35.1.5 Adenosine Deaminase Deficiency – 438 35.1.6 Adenosine Deaminase Superactivity – 439 35.1.7 Purine Nucleoside Phosphorylase Deficiency – 440 35.1.8 Xanthine Oxidase Deficiency – 440 35.1.9 Hypoxanthine-Guanine Phosphoribosyltransferase Deficiency – 441 35.1.10 Adenine Phosphoribosyltransferase Deficiency – 442 35.1.11 Deoxyguanosine Kinase Deficiency – 442 35.2 Inborn Errors of Pyrimidine Metabolism – 445 35.2.1 UMP Synthase Deficiency (Hereditary Orotic Aciduria) – 445 35.2.2 Dihydropyrimidine Dehydrogenase Deficiency – 445 35.2.3 Dihydropyrimidinase Deficiency – 446 35.2.4 Ureidopropionase Deficiency – 446 35.2.5 Pyrimidine 5’-Nucleotidase Deficiency – 446 35.2.6 Cytosolic 5’-Nucleotidase Superactivity – 447 35.2.7 Thymidine Phosphorylase Deficiency – 447 35.2.8 Thymidine Kinase Deficiency – 447 References – 447 434 Chapter 35 · Disorders of Purine and Pyrimidine Metabolism Purine Metabolism Purine nucleotides are essential cellular constituents 4 The catabolic pathway starts from GMP, IMP and which intervene in energy transfer, metabolic regula- AMP, and produces uric acid, a poorly soluble tion, and synthesis of DNA and RNA. Purine metabo- compound, which tends to crystallize once its lism can be divided into three pathways: plasma concentration surpasses 6.5–7 mg/dl (0.38– 4 The biosynthetic pathway, often termed de novo, 0.47 mmol/l). starts with the formation of phosphoribosyl pyro- 4 The salvage pathway utilizes the purine bases, gua- phosphate (PRPP) and leads to the synthesis of nine, hypoxanthine and adenine, which are pro- inosine monophosphate (IMP).
    [Show full text]
  • Stimulating Effects of Inosine, Uridine and Glutamine on the Tissue Distribution of Radioactive D-Leucine in Tumor Bearing Mice
    RADIOISOTOPES, 33, 7376 (1984) Note Stimulating Effects of Inosine, Uridine and Glutamine on the Tissue Distribution of Radioactive D-leucine in Tumor Bearing Mice Rensuke GOTO, Atsushi TAKEDA, Osamu TAMEMASA, James E. CHANEY* and George A. DIGENIS* Division of Radiobiochemistry and Radiopharmacology, Shizuoka College of Pharmacy 2-1, Oshika 2-chome, Shizuoka-shi 422, Japan * Division of Medicinal Chemistry and Pharmacognosy , College of Pharmacy, University of Kentucky Lexington, Kentucky 40506, U.S.A. Received September 16, 1983 This experiment was carried out in search for stimulators of the in vivo uptake of D- and L-leucine by tumor and pancreas for the possible application to 7-emitter labeled amino acids in nuclear medical diagnosis. Inosine, uridine, and glutamine which are stimulators of the in vitro incorporation of radioactive L-amino acids into some tumor cells significantly enhanced the uptake of D-leucine into the pancreas, while in Ehrlich solid tumor only a little if any in- crease was observed. Of the compounds tested inosine showed the highest stimulation of pan- creas uptake in the range of doses used, resulting in the best pancreas-to-liver concentration ratio, a factor of significant consideration for pancreas imaging. The uptake of L-leucine by the tumor and pancreas was little affected by these compounds. Key Words: inosine, uridine, glutamine, tissue distribution, radioactive D-leucine, tumor bearing mice, pancreas imaging cine, and L-alanine into Ehrlich or Krebs ascites 1. Introduction carcinoma cells resulting from treatment with High radioactivity uptake of some radioactive inosine, uridine, or glutamine. These findings D-amino acids by the tumor and pancreas of suggest that these compounds might bring about tumor-bearing animalsl' '2) or by the pancreas of the increased in vivo uptake of amino acids.
    [Show full text]
  • Native Microorganisms Nucleoside Phosphorylase Cat
    Native Microorganisms Nucleoside Phosphorylase Cat. No. NATE-0606 Lot. No. (See product label) Introduction Description In enzymology, a purine-nucleoside phosphorylase (EC 2.4.2.1) is an enzyme that catalyzes the chemical reaction:purine nucleoside + phosphate↔ purine + alpha-D-ribose 1-phosphate. Thus, the two substrates of this enzyme are purine nucleoside and phosphate, whereas its two products are purine and alpha-D-ribose 1-phosphate. This enzyme belongs to the family of glycosyltransferases, specifically the pentosyltransferases. This enzyme participates in 3 metabolic pathways:purine metabolism, pyrimidine metabolism, and nicotinate and nicotinamide metabolism. Applications Nucleoside phosphorylase is used in coupled enzyme systems to measure protein dephosphorylation. This enzyme is useful for enzymatic determination of inorganic phosphorus, 5′-nucleotidase and adenosine deaminase when coupled with xanthine oxidase (XTO-212) and uricase (UAO-201, UAO-211). Purine nucleoside phosophorylase has shown the ability to perform both phosphorylosis and synthesis of purine deoxy-and ribonucleosides. It has also been found that membrane-ass ociated nucleoside phosphorylases may have a transmembranal orientation with their base and ribose-1-P binding sites on opposite sides of the membrane. Synonyms purine-nucleoside phosphorylase; inosine phosphorylase; PNP; PNPase; PUNPI; PUNPII; inosine-guanosine phosphorylase; nucleotide phosphatase; purine deoxynucleoside phosphorylase; purine deoxyribonucleoside phosphorylase; purine nucleoside phosphorylase;
    [Show full text]
  • Inosine Binds to A3 Adenosine Receptors and Stimulates Mast Cell Degranulation
    Inosine binds to A3 adenosine receptors and stimulates mast cell degranulation. X Jin, … , B R Duling, J Linden J Clin Invest. 1997;100(11):2849-2857. https://doi.org/10.1172/JCI119833. Research Article We investigated the mechanism by which inosine, a metabolite of adenosine that accumulates to > 1 mM levels in ischemic tissues, triggers mast cell degranulation. Inosine was found to do the following: (a) compete for [125I]N6- aminobenzyladenosine binding to recombinant rat A3 adenosine receptors (A3AR) with an IC50 of 25+/-6 microM; (b) not bind to A1 or A2A ARs; (c) bind to newly identified A3ARs in guinea pig lung (IC50 = 15+/-4 microM); (d) lower cyclic AMP in HEK-293 cells expressing rat A3ARs (ED50 = 12+/-5 microM); (e) stimulate RBL-2H3 rat mast-like cell degranulation (ED50 = 2.3+/-0.9 microM); and (f) cause mast cell-dependent constriction of hamster cheek pouch arterioles that is attenuated by A3AR blockade. Inosine differs from adenosine in not activating A2AARs that dilate vascular smooth muscle and inhibit mast cell degranulation. The A3 selectivity of inosine may explain why it elicits a monophasic arteriolar constrictor response distinct from the multiphasic dilator/constrictor response to adenosine. Nucleoside accumulation and an increase in the ratio of inosine to adenosine may provide a physiologic stimulus for mast cell degranulation in ischemic or inflamed tissues. Find the latest version: https://jci.me/119833/pdf Inosine Binds to A3 Adenosine Receptors and Stimulates Mast Cell Degranulation Xiaowei Jin,* Rebecca K. Shepherd,‡ Brian R. Duling,‡ and Joel Linden‡§ *Department of Biochemistry, ‡Department of Molecular Physiology and Biological Physics, and §Department of Medicine, University of Virginia Health Sciences Center, Charlottesville, Virginia 22908 Abstract Mast cells are found in the lung where they release media- tors that constrict bronchiolar smooth muscle.
    [Show full text]
  • B Number Gene Name Mrna Intensity Mrna
    sample) total list predicted B number Gene name assignment mRNA present mRNA intensity Gene description Protein detected - Membrane protein membrane sample detected (total list) Proteins detected - Functional category # of tryptic peptides # of tryptic peptides # of tryptic peptides detected (membrane b0002 thrA 13624 P 39 P 18 P(m) 2 aspartokinase I, homoserine dehydrogenase I Metabolism of small molecules b0003 thrB 6781 P 9 P 3 0 homoserine kinase Metabolism of small molecules b0004 thrC 15039 P 18 P 10 0 threonine synthase Metabolism of small molecules b0008 talB 20561 P 20 P 13 0 transaldolase B Metabolism of small molecules chaperone Hsp70; DNA biosynthesis; autoregulated heat shock b0014 dnaK 13283 P 32 P 23 0 proteins Cell processes b0015 dnaJ 4492 P 13 P 4 P(m) 1 chaperone with DnaK; heat shock protein Cell processes b0029 lytB 1331 P 16 P 2 0 control of stringent response; involved in penicillin tolerance Global functions b0032 carA 9312 P 14 P 8 0 carbamoyl-phosphate synthetase, glutamine (small) subunit Metabolism of small molecules b0033 carB 7656 P 48 P 17 0 carbamoyl-phosphate synthase large subunit Metabolism of small molecules b0048 folA 1588 P 7 P 1 0 dihydrofolate reductase type I; trimethoprim resistance Metabolism of small molecules peptidyl-prolyl cis-trans isomerase (PPIase), involved in maturation of b0053 surA 3825 P 19 P 4 P(m) 1 GenProt outer membrane proteins (1st module) Cell processes b0054 imp 2737 P 42 P 5 P(m) 5 GenProt organic solvent tolerance Cell processes b0071 leuD 4770 P 10 P 9 0 isopropylmalate
    [Show full text]
  • Identification of the Binding Site for Ammonia in GMP Reductase
    Identification of the binding site for ammonia in GMP reductase Master’s Thesis Presented to The Faculty of the Graduate School of Arts and Sciences Brandeis University Department of Biology Lizbeth Hedstrom, Advisor In Partial Fulfillment of the Requirements for the Degree Master of Science in Molecular and Cell Biology by Tianjiong Yao February 2015 Copyright by Tianjiong Yao © 2015 ABSTRACT Identification of the binding site for ammonia in GMP reductase A thesis presented to the Department of Biology Graduate School of Arts and Sciences Brandeis University Waltham, Massachusetts By Tianjiong Yao The overall reaction of guanosine monophosphate reductase (GMPR) converts GMP to IMP by using NADPH as a cofactor and it includes two sub-steps: (1) a deamination step that releases ammonia from GMP and forms the intermediate E-XMP*; (2) a hydride transfer step that converts E-XMP* to IMP along with the oxidation of NADPH. The hydride transfer step is the rate limiting step, yet we failed to observe a burst of ammonia release. Meanwhile ammonia cannot stay in the same place where it is formed otherwise it will block NADPH. This observation suggests that ammonia remains bound to the enzyme during the hydride transfer step and there exists ammonia holding site after its release from the formation site. We identified a possible ammonia holding site by inspection of crystal structure of human GMPR type 2. Three candidate amino acids were selected and probed by site directed mutagenesis. The substitutions of all three residues decreased the reduction of GMP at least 50 fold and the oxidation of IMP at least 40 fold, and reduced the intermediate production at least 2 fold.
    [Show full text]
  • SUPPY Liglucosexlmtdh
    US 20100314248A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2010/0314248 A1 Worden et al. (43) Pub. Date: Dec. 16, 2010 (54) RENEWABLE BOELECTRONIC INTERFACE Publication Classification FOR ELECTROBOCATALYTC REACTOR (51) Int. Cl. (76) Inventors: Robert M. Worden, Holt, MI (US); C25B II/06 (2006.01) Brian L. Hassler, Lake Orion, MI C25B II/2 (2006.01) (US); Lawrence T. Drzal, Okemos, GOIN 27/327 (2006.01) MI (US); Ilsoon Lee, Okemo s, MI BSD L/04 (2006.01) (US) C25B 9/00 (2006.01) (52) U.S. Cl. ............... 204/403.14; 204/290.11; 204/400; Correspondence Address: 204/290.07; 427/458; 204/252: 977/734; PRICE HENEVELD COOPER DEWITT & LIT 977/742 TON, LLP 695 KENMOOR, S.E., PO BOX 2567 (57) ABSTRACT GRAND RAPIDS, MI 495.01 (US) An inexpensive, easily renewable bioelectronic device useful for bioreactors, biosensors, and biofuel cells includes an elec (21) Appl. No.: 12/766,169 trically conductive carbon electrode and a bioelectronic inter face bonded to a surface of the electrically conductive carbon (22) Filed: Apr. 23, 2010 electrode, wherein the bioelectronic interface includes cata lytically active material that is electrostatically bound directly Related U.S. Application Data or indirectly to the electrically conductive carbon electrode to (60) Provisional application No. 61/172,337, filed on Apr. facilitate easy removal upon a change in pH, thereby allowing 24, 2009. easy regeneration of the bioelectronic interface. 7\ POWER 1 - SUPPY|- LIGLUCOSEXLMtDH?till pi 6.0 - esses&aaaas-exx-xx-xx-xx-xxxxixax-e- Patent Application Publication Dec. 16, 2010 Sheet 1 of 18 US 2010/0314248 A1 Potential (nV) Patent Application Publication Dec.
    [Show full text]
  • Inosine in Biology and Disease
    G C A T T A C G G C A T genes Review Inosine in Biology and Disease Sundaramoorthy Srinivasan 1, Adrian Gabriel Torres 1 and Lluís Ribas de Pouplana 1,2,* 1 Institute for Research in Biomedicine, Barcelona Institute of Science and Technology, 08028 Barcelona, Catalonia, Spain; [email protected] (S.S.); [email protected] (A.G.T.) 2 Catalan Institution for Research and Advanced Studies, 08010 Barcelona, Catalonia, Spain * Correspondence: [email protected]; Tel.: +34-934034868; Fax: +34-934034870 Abstract: The nucleoside inosine plays an important role in purine biosynthesis, gene translation, and modulation of the fate of RNAs. The editing of adenosine to inosine is a widespread post- transcriptional modification in transfer RNAs (tRNAs) and messenger RNAs (mRNAs). At the wobble position of tRNA anticodons, inosine profoundly modifies codon recognition, while in mRNA, inosines can modify the sequence of the translated polypeptide or modulate the stability, localization, and splicing of transcripts. Inosine is also found in non-coding and exogenous RNAs, where it plays key structural and functional roles. In addition, molecular inosine is an important secondary metabolite in purine metabolism that also acts as a molecular messenger in cell signaling pathways. Here, we review the functional roles of inosine in biology and their connections to human health. Keywords: inosine; deamination; adenosine deaminase acting on RNAs; RNA modification; translation Citation: Srinivasan, S.; Torres, A.G.; Ribas de Pouplana, L. Inosine in 1. Introduction Biology and Disease. Genes 2021, 12, 600. https://doi.org/10.3390/ Inosine was one of the first nucleobase modifications discovered in nucleic acids, genes12040600 having been identified in 1965 as a component of the first sequenced transfer RNA (tRNA), tRNAAla [1].
    [Show full text]
  • Central Nervous System Dysfunction and Erythrocyte Guanosine Triphosphate Depletion in Purine Nucleoside Phosphorylase Deficiency
    Arch Dis Child: first published as 10.1136/adc.62.4.385 on 1 April 1987. Downloaded from Archives of Disease in Childhood, 1987, 62, 385-391 Central nervous system dysfunction and erythrocyte guanosine triphosphate depletion in purine nucleoside phosphorylase deficiency H A SIMMONDS, L D FAIRBANKS, G S MORRIS, G MORGAN, A R WATSON, P TIMMS, AND B SINGH Purine Laboratory, Guy's Hospital, London, Department of Immunology, Institute of Child Health, London, Department of Paediatrics, City Hospital, Nottingham, Department of Paediatrics and Chemical Pathology, National Guard King Khalid Hospital, Jeddah, Saudi Arabia SUMMARY Developmental retardation was a prominent clinical feature in six infants from three kindreds deficient in the enzyme purine nucleoside phosphorylase (PNP) and was present before development of T cell immunodeficiency. Guanosine triphosphate (GTP) depletion was noted in the erythrocytes of all surviving homozygotes and was of equivalent magnitude to that found in the Lesch-Nyhan syndrome (complete hypoxanthine-guanine phosphoribosyltransferase (HGPRT) deficiency). The similarity between the neurological complications in both disorders that the two major clinical consequences of complete PNP deficiency have differing indicates copyright. aetiologies: (1) neurological effects resulting from deficiency of the PNP enzyme products, which are the substrates for HGPRT, leading to functional deficiency of this enzyme. (2) immunodeficiency caused by accumulation of the PNP enzyme substrates, one of which, deoxyguanosine, is toxic to T cells. These studies show the need to consider PNP deficiency (suggested by the finding of hypouricaemia) in patients with neurological dysfunction, as well as in T cell immunodeficiency. http://adc.bmj.com/ They suggest an important role for GTP in normal central nervous system function.
    [Show full text]