Tectonic Evolution of Northwestern Imbrium of the Moon That Lasted In
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
S·O:3::~:~T~!E~~ W!~1~;Dmi~E Te~~- ~~:C:#R.:~~ I~Rt~:Rh~4I!I~Ts · ~Perin,~Ne 'R~9.Ioh ·± ~ .~I.G,Ll.T · I;>E J5est Aqhi'ev~Q:J
... , .~ ~70 10029 ~~. '' .. M ·]\.l;la~y~;:~,i·s o.f · th~ Sqi~:ntiiib D~TE: O<::tdbe.r 13, · 1970 ob:j e'¢.tive$· · and J?.:i;-OJ?ps~d +,.an~iin<J . s:i.. tes irt the. aadley.:.Ap,ennine Re:gion FROM: J . w. lie ad case:34o .) The possible scientiEic objectives at the Hadley~ Ap~nnine region a·re out:~ined: CI;J:ld incl,~de. tlle Ap.el}n:~ne Mo,un;t;;tins 1 H~dley. R.±l:le, mar.e mai;.erial~· lladleyf] c qr~·teri yol·can·ic ra:.Pd'"" :~;s·o:3::~:~t~!e~~ w!~1~;dmi~e te~~- ~~:C:#R.:~~ i~rt~:rH~4i!i~ts · ~perin,~ne 'r~9.ioh ·± ~ .~i.g,ll.t · i;>e J5est aqhi'ev~q:j . ·ba$¢d: on cli;ff.e;temt .irit¢]tpret:a~ions of t:h~. origin {Jf :J:hese va,r$.o\lS fe~tures. Five la'ii~i:hg po;iri·ts are evcl;:l:U.atea: in terms of· t:J:ie, ..$:1;:1,3, ty to acnlev¢ the 'sq;lentific o_bjectfves bo~ on a rover .and a walkil19 mii.s;.. sion. ·c .0 ,.... :.. ..,... .. ··ti:]9::ijii11·-·· uncla:s 12811' .B"'E~I¥-:t,;.;CPM~M • .INC. • ss5· ~;ENFAt4T' P~~~~~I~~::s:y;1 . ~As~IW~ro~~ o:.C: -~01)2~.· .. SUBJECT! oAT£: octo.b~r 1:3~ · 1970 .FROMi j.· W. Head t. GEN:E!M:4 li'~cii~yt~Ap~ni1.ine · 'l'h.~ ~pepf!irie Mol;tn-ta.in!3 rise. up to -~' km· above th.e. -
Geoscience and a Lunar Base
" t N_iSA Conference Pubhcatmn 3070 " i J Geoscience and a Lunar Base A Comprehensive Plan for Lunar Explora, tion unclas HI/VI 02907_4 at ,unar | !' / | .... ._-.;} / [ | -- --_,,,_-_ |,, |, • • |,_nrrr|l , .l -- - -- - ....... = F _: .......... s_ dd]T_- ! JL --_ - - _ '- "_r: °-__.......... / _r NASA Conference Publication 3070 Geoscience and a Lunar Base A Comprehensive Plan for Lunar Exploration Edited by G. Jeffrey Taylor Institute of Meteoritics University of New Mexico Albuquerque, New Mexico Paul D. Spudis U.S. Geological Survey Branch of Astrogeology Flagstaff, Arizona Proceedings of a workshop sponsored by the National Aeronautics and Space Administration, Washington, D.C., and held at the Lunar and Planetary Institute Houston, Texas August 25-26, 1988 IW_A National Aeronautics and Space Administration Office of Management Scientific and Technical Information Division 1990 PREFACE This report was produced at the request of Dr. Michael B. Duke, Director of the Solar System Exploration Division of the NASA Johnson Space Center. At a meeting of the Lunar and Planetary Sample Team (LAPST), Dr. Duke (at the time also Science Director of the Office of Exploration, NASA Headquarters) suggested that future lunar geoscience activities had not been planned systematically and that geoscience goals for the lunar base program were not articulated well. LAPST is a panel that advises NASA on lunar sample allocations and also serves as an advocate for lunar science within the planetary science community. LAPST took it upon itself to organize some formal geoscience planning for a lunar base by creating a document that outlines the types of missions and activities that are needed to understand the Moon and its geologic history. -
Geologic Structure of Shallow Maria
NASA CR. Photo Data Analysis S-221 NASA Contract NAS 9-13196 GEOLOGIC STRUCTURE OF SHALLOW MARIA Rene' A. De Hon, Principal Investigator John A. Waskom, Co-Investigator (NASA-CR-lq7qoo GEOLOGIC STahJCTUnF OF N76-17001 ISBALOW M1BIA-'(Arkansas Uni.v., mHiticelio.) 96 p BC $5.00' CSCL O3B Unclas G3/91, 09970- University of Arkansas at Monticello Monticello, Arkansas December 1975 Photo Data Analysis S-221 NASA Contract NAS 9-13196 GEOLOGIC STRUCTURE OF SHALLOW MARIA Rene' A. De Hon, Principal Investigator I John A. Waskom, Co-Investigator Un-iversity-of Arkansas-:at-.Monticl o Monticello, Arkansas December 1975 ABSTRACT Isopach maps and structural contour maps of the 0 0 eastern mare basins (30 N to 30 OS; 00 to 100 E) are constructed from measurements of partially buried craters. The data, which are sufficiently scattered to yield gross thickness variations, are restricted to shallow maria with less than 1500-2000 m of mare basalts. The average thickness of b-asalt in the irregular maria is between 200 and 400 m. Multiringed mascon basins are filled to various levels. The Serenitatis and Crisium basins have deeply flooded interiors and extensively flooded shelves. Mare basalts in the Nectaris basin fill only the innermost basin, and mare basalts in the Smythii basin occupy a small portion of the basin floor. Sinus Amoris, Mare Spumans, and Mare Undarum are partially filled troughs concentric to large circular basins. The Tranquillitatis and Fecunditatis are composite depressions containing basalts which flood degraded circular basins and adjacent terrain modified by the formation of nearby cir cular basins. -
No. 40. the System of Lunar Craters, Quadrant Ii Alice P
NO. 40. THE SYSTEM OF LUNAR CRATERS, QUADRANT II by D. W. G. ARTHUR, ALICE P. AGNIERAY, RUTH A. HORVATH ,tl l C.A. WOOD AND C. R. CHAPMAN \_9 (_ /_) March 14, 1964 ABSTRACT The designation, diameter, position, central-peak information, and state of completeness arc listed for each discernible crater in the second lunar quadrant with a diameter exceeding 3.5 km. The catalog contains more than 2,000 items and is illustrated by a map in 11 sections. his Communication is the second part of The However, since we also have suppressed many Greek System of Lunar Craters, which is a catalog in letters used by these authorities, there was need for four parts of all craters recognizable with reasonable some care in the incorporation of new letters to certainty on photographs and having diameters avoid confusion. Accordingly, the Greek letters greater than 3.5 kilometers. Thus it is a continua- added by us are always different from those that tion of Comm. LPL No. 30 of September 1963. The have been suppressed. Observers who wish may use format is the same except for some minor changes the omitted symbols of Blagg and Miiller without to improve clarity and legibility. The information in fear of ambiguity. the text of Comm. LPL No. 30 therefore applies to The photographic coverage of the second quad- this Communication also. rant is by no means uniform in quality, and certain Some of the minor changes mentioned above phases are not well represented. Thus for small cra- have been introduced because of the particular ters in certain longitudes there are no good determi- nature of the second lunar quadrant, most of which nations of the diameters, and our values are little is covered by the dark areas Mare Imbrium and better than rough estimates. -
Glossary Glossary
Glossary Glossary Albedo A measure of an object’s reflectivity. A pure white reflecting surface has an albedo of 1.0 (100%). A pitch-black, nonreflecting surface has an albedo of 0.0. The Moon is a fairly dark object with a combined albedo of 0.07 (reflecting 7% of the sunlight that falls upon it). The albedo range of the lunar maria is between 0.05 and 0.08. The brighter highlands have an albedo range from 0.09 to 0.15. Anorthosite Rocks rich in the mineral feldspar, making up much of the Moon’s bright highland regions. Aperture The diameter of a telescope’s objective lens or primary mirror. Apogee The point in the Moon’s orbit where it is furthest from the Earth. At apogee, the Moon can reach a maximum distance of 406,700 km from the Earth. Apollo The manned lunar program of the United States. Between July 1969 and December 1972, six Apollo missions landed on the Moon, allowing a total of 12 astronauts to explore its surface. Asteroid A minor planet. A large solid body of rock in orbit around the Sun. Banded crater A crater that displays dusky linear tracts on its inner walls and/or floor. 250 Basalt A dark, fine-grained volcanic rock, low in silicon, with a low viscosity. Basaltic material fills many of the Moon’s major basins, especially on the near side. Glossary Basin A very large circular impact structure (usually comprising multiple concentric rings) that usually displays some degree of flooding with lava. The largest and most conspicuous lava- flooded basins on the Moon are found on the near side, and most are filled to their outer edges with mare basalts. -
TRANSIENT LUNAR PHENOMENA: REGULARITY and REALITY Arlin P
The Astrophysical Journal, 697:1–15, 2009 May 20 doi:10.1088/0004-637X/697/1/1 C 2009. The American Astronomical Society. All rights reserved. Printed in the U.S.A. TRANSIENT LUNAR PHENOMENA: REGULARITY AND REALITY Arlin P. S. Crotts Department of Astronomy, Columbia University, Columbia Astrophysics Laboratory, 550 West 120th Street, New York, NY 10027, USA Received 2007 June 27; accepted 2009 February 20; published 2009 April 30 ABSTRACT Transient lunar phenomena (TLPs) have been reported for centuries, but their nature is largely unsettled, and even their existence as a coherent phenomenon is controversial. Nonetheless, TLP data show regularities in the observations; a key question is whether this structure is imposed by processes tied to the lunar surface, or by terrestrial atmospheric or human observer effects. I interrogate an extensive catalog of TLPs to gauge how human factors determine the distribution of TLP reports. The sample is grouped according to variables which should produce differing results if determining factors involve humans, and not reflecting phenomena tied to the lunar surface. Features dependent on human factors can then be excluded. Regardless of how the sample is split, the results are similar: ∼50% of reports originate from near Aristarchus, ∼16% from Plato, ∼6% from recent, major impacts (Copernicus, Kepler, Tycho, and Aristarchus), plus several at Grimaldi. Mare Crisium produces a robust signal in some cases (however, Crisium is too large for a “feature” as defined). TLP count consistency for these features indicates that ∼80% of these may be real. Some commonly reported sites disappear from the robust averages, including Alphonsus, Ross D, and Gassendi. -
Radar Remote Sensing of Pyroclastic Deposits in the Southern Mare Serenitatis and Mare Vaporum Regions of the Moon Lynn M
JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 114, E11004, doi:10.1029/2009JE003406, 2009 Click Here for Full Article Radar remote sensing of pyroclastic deposits in the southern Mare Serenitatis and Mare Vaporum regions of the Moon Lynn M. Carter,1 Bruce A. Campbell,1 B. Ray Hawke,2 Donald B. Campbell,3 and Michael C. Nolan4 Received 21 April 2009; revised 12 July 2009; accepted 3 August 2009; published 5 November 2009. [1] We use polarimetric radar observations to study the distribution, depth, and embedded rock abundance of nearside lunar pyroclastic deposits. Radar images were obtained for Mare Vaporum and the southern half of Mare Serenitatis; the imaged areas contain the large Rima Bode, Mare Vaporum, Sulpicius Gallus, and Taurus-Littrow pyroclastic deposits. Potential pyroclastic deposits at Rima Hyginus crater, the Tacquet Formation, and a dome in Mare Vaporum are also included. Data were acquired at S band (12.6 cm wavelength) using Arecibo Observatory and the Green Bank Telescope in a bistatic configuration. The S band images have resolutions between 20 and 100 m/pixel. The pyroclastic deposits appear dark to the radar and have low circular polarization ratios at S band wavelengths because they are smooth, easily penetrable by radar waves, and generally contain few embedded blocks. Changes in circular polarization ratio (CPR) across some of the pyroclastic deposits show areas with increased rock abundance as well as deposits that are shallower. Radar backscatter and CPR maps are used to identify fine-grained mantling deposits in cases where optical and near-infrared data are ambiguous about the presence of pyroclastics. -
June 9, 2020 LIST of ABSENTEE VOTERS HOLDING BALLOTS – NAMES
WARSAW CENTRAL SCHOOL BUDGET/BOARD VOTE – June 9, 2020 LIST OF ABSENTEE VOTERS HOLDING BALLOTS – NAMES Abbasey, Salman Aumer, Andrew J. Bauer, James E. Abbott, John Axtell, Paula A. Bauer, Janet M. Ackerman, James Backlas, Frederick A. Jr Bauer, Michael Ackerman, Susan M. Bagg , Robert L. Bauer, Michelle Adolf, Jeremy J. Bagg, Kenneth G. Baxter, Susan Agrawal, Rajendra Bagg, Patty Bayliss, Bruce A. Aguado, Andrew E. Bagley, Raymond F. Bayoumi, Ahmed Ahl, Florence Bailey, Betty J. Beach, Douglas A. Aker, James D. Bailey, Judith L. Beach, Robert L. Akin, Claudia J. Bailey, Lyndsay Beals, Duane M. Alband, Jeffrey L. Bailey, Richard L. Beals, Shane Alcaraz, Christina M. Bailey, Stephen Beardsley, Peter G. Alderson, Donald P. Bailey, Stephen Beck, Michael J. Aldinger, Suzanne Bailey, Tara L. Beckstrand, Benjamine C. Aldrich, Heather L. Baize, Mary A. Beckstrand, Denise C. Aldrich, Jordan A. Baker, Arlene W. Beilein, Paul T. Aldrich, Kathryn J. Baker, Charles O. Beinhauer, Joseph F. Alexander, Christopher J. Baker, Frederic Belden, Barbara A. Alexander, Tara Baker, Gregory S. Belden, James C. Allen, Patricia A. Baker, Karen Bell, David K. Allison, Eddie R. Baker, Kirk E. Bell, Kathleen D. Almeter, David J Baker, Kristina Bell, Lorraine F. Almeter, George Anna Baker, Nichlos Bell, Milda Almeter, Nathan A. Baker, Peggy J. Bell, Mildred E. Almeter, Steven A. Baker, Roger O. Bellaire, Donald Ames, Gregory K. Baker, Shawn R. Bellaire, Donald W. Sr Ames, Richard A. Bakowski, Christopher Belles, Cody J. Andalora, Ingeburg Ballard, Joanne R. Bellinger, Heather Andalora, Orah Ballerstein, Lisa Bender, Gloria Andrews, Lee H. Ballew, Marjorie Bender, Sidney Antinore, Hope Bannister, Jeffrey H. -
Science Concept 5: Lunar Volcanism Provides a Window Into the Thermal and Compositional Evolution of the Moon
Science Concept 5: Lunar Volcanism Provides a Window into the Thermal and Compositional Evolution of the Moon Science Concept 5: Lunar volcanism provides a window into the thermal and compositional evolution of the Moon Science Goals: a. Determine the origin and variability of lunar basalts. b. Determine the age of the youngest and oldest mare basalts. c. Determine the compositional range and extent of lunar pyroclastic deposits. d. Determine the flux of lunar volcanism and its evolution through space and time. INTRODUCTION Features of Lunar Volcanism The most prominent volcanic features on the lunar surface are the low albedo mare regions, which cover approximately 17% of the lunar surface (Fig. 5.1). Mare regions are generally considered to be made up of flood basalts, which are the product of highly voluminous basaltic volcanism. On the Moon, such flood basalts typically fill topographically-low impact basins up to 2000 m below the global mean elevation (Wilhelms, 1987). The mare regions are asymmetrically distributed on the lunar surface and cover about 33% of the nearside and only ~3% of the far-side (Wilhelms, 1987). Other volcanic surface features include pyroclastic deposits, domes, and rilles. These features occur on a much smaller scale than the mare flood basalts, but are no less important in understanding lunar volcanism and the internal evolution of the Moon. Table 5.1 outlines different types of volcanic features and their interpreted formational processes. TABLE 5.1 Lunar Volcanic Features Volcanic Feature Interpreted Process -
Relative Ages
CONTENTS Page Introduction ...................................................... 123 Stratigraphic nomenclature ........................................ 123 Superpositions ................................................... 125 Mare-crater relations .......................................... 125 Crater-crater relations .......................................... 127 Basin-crater relations .......................................... 127 Mapping conventions .......................................... 127 Crater dating .................................................... 129 General principles ............................................. 129 Size-frequency relations ........................................ 129 Morphology of large craters .................................... 129 Morphology of small craters, by Newell J. Fask .................. 131 D, method .................................................... 133 Summary ........................................................ 133 table 7.1). The first three of these sequences, which are older than INTRODUCTION the visible mare materials, are also dominated internally by the The goals of both terrestrial and lunar stratigraphy are to inte- deposits of basins. The fourth (youngest) sequence consists of mare grate geologic units into a stratigraphic column applicable over the and crater materials. This chapter explains the general methods of whole planet and to calibrate this column with absolute ages. The stratigraphic analysis that are employed in the next six chapters first step in reconstructing -
Download (276Kb)
OUT THERE WALKING ON THE MOON RAMGOPAL (RAMG) VALLATH This is the story k Chotisi Asha — one small hope, that is Fig.1) that is designed to travel from the of a private Ewhat I am named: ECA for short. But the Earth to the Moon, land there and drive Indian company, hope I represent is anything but small. I around on the moon. By the time you read TeamIndus, that represent the hopes of 1.3 billion people of this story, I will be on my way to the moon or is competing in India as they make giant strides across all would have already landed there. the Google Lunar facets of science and I represent the hope of XPRIZE challenge I was conceived and built in the office of humanity to spread wings, move out of the to land a rover on the young start-up company, TeamIndus, in the moon. security of mother Earth and settle on distant Bengaluru, India. It all started when Google planets. I am a small but giant step in that announced the Lunar XPRIZE (GLXP for direction. You see, I am a small rover (refer short), a global competition. It is a $30M Fig. 1. ECA (Short for Ek Chotisi Asha- one small hope) is the moon rover designed by TeamIndus. Credits: TeamIndus. License: Copyrighted and used with permission. 94 - REDISCOVERING SCHOOL SCIENCE Jan 2018 Fig. 2. ECA along with the spacecraft, photographed at the TeamIndus facility in Bangalore. Credits: TeamIndus. License: Copyrighted and used with permission. competition to challenge and inspire twenty people in the team (refer Fig.3), that was also designed by TeamIndus. -
Compositional and Mineralogical Characteristics of Archimedes Crater Region Using Chandrayaan – 1 M3 Data
50th Lunar and Planetary Science Conference 2019 (LPI Contrib. No. 2132) 1040.pdf COMPOSITIONAL AND MINERALOGICAL CHARACTERISTICS OF ARCHIMEDES CRATER REGION USING CHANDRAYAAN – 1 M3 DATA. P. R. Kumaresan1 and J. Saravanavel2, 1Research Scholar, 2Assistant Professor, Department of Remote Sensing, Bharathidasan University, Tiruchirappalli-23, Tamil Nadu, India, email: [email protected], [email protected] Introduction: The Earth’s natural satellite the tometry corrected reflectance data captured during the moon is nearest celestial body appears brightest object OP1B optical period. in our night sky. Moon surfaces are composed of dark and light areas. The dark areas are called Maria which is made up of basaltic terrain and light areas are high- lands mostly made up of Anorthositic rocks. The moon surface is littered with craters, which are formed when meteors hit its surface. To understand the evolution, geological process of the moon it is important to study the surface composition and minerals present in crustal surface. In this regard, in our study, we have attempted to map the minerals and surface composition of Archi- medes crater region. Study area: Archimedes crater is a large impact crater located on the eastern edges of the Mare Imbri- um of near side moon (29.7° N, 4.0° W). The diameter of the crater is 83 km with smooth floor flooded (1) with mare basalt and lack of a central peak. The rim (2) has a significant outer rampart brightened with ejecta (3) and the some portion of a terraced inner wall. Ar- chimedes Crater is named for the Greek mathematician Archimedes, who made many mathematical discoveries in the 200 B.C [1, 2].