Nihi Sumba & Rascal Voyages
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Tourism and the Changing Socio-Scapes in Labuan Bajo, Western Flores
The Near becomes Far and the Far Becomes Near: Tourism and the Changing Socio-Scapes in Labuan Bajo, Western Flores Maribeth Erb Department of Sociology National University of Singapore A paper presented at The 4th International Symposium of the Journal Antropologi Indonesia, FISIP, Depok July 12-15, 2005-07-12 *****DRAFT COPY***** NOT TO BE QUOTED OR CITED WITHOUT PERMISSION OF THE AUTHOR *****DRAFT COPY***** NOT TO BE QUOTED OR CITED WITHOUT PERMISSION OF THE AUTHOR The Near Becomes Far and the Far Becomes Near: Tourism and the Changing Socio-Scapes in Labuan Bajo, Western Flores Maribeth Erb Department of Sociology National University of Singapore Landscapes of Social Interaction in a Global World: the Flows and Distances of Tourism “….it is quite probable that the last quarter of the current century will go down in history as the Great War of Independence from Space” Zygmunt Bauman 1998a:8, Globalization: The Human Consequences Geographers have been analyzing the way that space and place is configured and re-configured become of tourism developments for some time now. Many insights have been gained by their studies of how places are shaped and identity constructed within the political and economic landscapes of tourism. Some critical geographers even suggest that a geography of tourism must not emphasize only the static nature of places and positions within tourism (for example ‘hosts’ and ‘guests’ as ‘fixed’ in their meaning and interaction), but recognize the importance of movement and fluidity, the ‘meeting’ of peoples that takes place (McRae 2003). McRae even suggests that the Saidian notion of ‘exile’ is worth exploring for a better understanding of the relations between tourists and locals and the ‘crossing and containment that is embedded in the core practices and politics of the contemporary world’ (2003:246). -
Mapping a Policy-Making Process the Case of Komodo National Park, Indonesia
THESIS REPORT Mapping a Policy-making Process The case of Komodo National Park, Indonesia Novalga Aniswara MSc Tourism, Society & Environment Wageningen University and Research A Master’s thesis Mapping a policy-making process: the case of Komodo National Park, Indonesia Novalga Aniswara 941117015020 Thesis Code: GEO-80436 Supervisor: prof.dr. Edward H. Huijbens Examiner: dr. ir. Martijn Duineveld Wageningen University and Research Department of Environmental Science Cultural Geography Chair Group Master of Science in Tourism, Society and Environment i ACKNOWLEDGEMENT Tourism has been an inseparable aspect of my life, starting with having a passion for travelling until I decided to take a big step to study about it back when I was in vocational high school. I would say, learning tourism was one of the best decisions I have ever made in my life considering opportunities and experiences which I encountered on the process. I could recall that four years ago, I was saying to myself that finishing bachelor would be my last academic-related goal in my life. However, today, I know that I was wrong. With the fact that the world and the industry are progressing and I raise my self-awareness that I know nothing, here I am today taking my words back and as I am heading towards the final chapter from one of the most exciting journeys in my life – pursuing a master degree in Wageningen, the Netherlands. Never say never. In completing this thesis, I received countless assistances and helps from people that I would like to mention. Firstly, I would not be at this point in my life without the blessing and prayers from my parents, grandma, and family. -
Review of Local and Global Impacts of Volcanic Eruptions and Disaster Management Practices: the Indonesian Example
geosciences Review Review of Local and Global Impacts of Volcanic Eruptions and Disaster Management Practices: The Indonesian Example Mukhamad N. Malawani 1,2, Franck Lavigne 1,3,* , Christopher Gomez 2,4 , Bachtiar W. Mutaqin 2 and Danang S. Hadmoko 2 1 Laboratoire de Géographie Physique, Université Paris 1 Panthéon-Sorbonne, UMR 8591, 92195 Meudon, France; [email protected] 2 Disaster and Risk Management Research Group, Faculty of Geography, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia; [email protected] (C.G.); [email protected] (B.W.M.); [email protected] (D.S.H.) 3 Institut Universitaire de France, 75005 Paris, France 4 Laboratory of Sediment Hazards and Disaster Risk, Kobe University, Kobe City 658-0022, Japan * Correspondence: [email protected] Abstract: This paper discusses the relations between the impacts of volcanic eruptions at multiple- scales and the related-issues of disaster-risk reduction (DRR). The review is structured around local and global impacts of volcanic eruptions, which have not been widely discussed in the literature, in terms of DRR issues. We classify the impacts at local scale on four different geographical features: impacts on the drainage system, on the structural morphology, on the water bodies, and the impact Citation: Malawani, M.N.; on societies and the environment. It has been demonstrated that information on local impacts can Lavigne, F.; Gomez, C.; be integrated into four phases of the DRR, i.e., monitoring, mapping, emergency, and recovery. In Mutaqin, B.W.; Hadmoko, D.S. contrast, information on the global impacts (e.g., global disruption on climate and air traffic) only fits Review of Local and Global Impacts the first DRR phase. -
How Mount Agung's Eruption Can Create the World's Most Fertile Soil
How Mount Agung's eruption can create the world's most fertile soil https://theconversation.com/how-mount-agungs-eruption-can-create-the... Disiplin ilmiah, gaya jurnalistik How Mount Agung’s eruption can create the world’s most fertile soil Oktober 5, 2017 3.58pm WIB Balinese farmers with Mount Agung in the background. Areas with high volcanic activity also have some of the world’s most fertile farmlands. Reuters/Darren Whiteside Mount Agung in Bali is currently on the verge of eruption, and more than 100,000 Penulis people have been evacuated. However, one of us (Dian) is preparing to go into the area when it erupts, to collect the ash. This eruption is likely to be catastrophic, spewing lava and ashes at temperatures up to Budiman Minasny 1,250℃, posing serious risk to humans and their livelihoods. Ash ejected from volcano Professor in Soil-Landscape Modelling, not only affects aviation and tourism, but can also affect life and cause much nuisance to University of Sydney farmers, burying agricultural land and damaging crops. However, in the long term, the ash will create world’s most productive soils. Anthony Reid Emeritus Professor, School of Culture, 1 of 5 10/7/2017, 5:37 AM How Mount Agung's eruption can create the world's most fertile soil https://theconversation.com/how-mount-agungs-eruption-can-create-the... History and Language, Australian National University Dian Fiantis Professor of Soil Science, Universitas Andalas Alih bahasa Bahasa Indonesia English Read more: Bali’s Mount Agung threatens to erupt for the first time in more than 50 years While volcanic soils only cover 1% of the world’s land surface, they can support 10% of the world’s population, including some areas with the highest population densities. -
Hypocenter Relocation of Volcanic Earthquake at Agung Vulcano
The 4th International Seminar on Science and Technology 95 August 9th 2018, Postgraduate Program Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia Hypocenter Relocation of Volcanic Earthquake at Agung Vulcano Reni Agustiani1, Bagus J. Santosa1, Yasa Suparman2, Devi K. Syahbana2,Gazali Rachman3 Abstract―Agung Volcano is a stratovolcano located in the Agung considered as one of the most dangerous volcanoes area of Karangasem regency of Bali and is in the northwest- of Indonesia because of the densely populated surrounding. southeast fault alignment with Batur, Abang and Seroja Based on this, it is necessary to analyze Mount Agung's Volcano. The existence of this alignment allegedly related to the seismic data. Thus, in this study, an earthquake hypocenter fracture in the northwest of the island of Bali. The eruption of relocation was conducted to determine the location of the Agung Volcano recorded on November 25th, 2017 was a significant danger for people living around it. Therefore, it is source of the earthquake that caused the eruption. Besides, necessary to monitor the activity of Agung Volcano. The method also obtained of both the 1D earth velocity model and used in this study is the relocation of volcanic earthquake station correction. sources to determine the location of the source of the earthquake which caused an increase in Mount activity. Hypocenter II. COUPLED HYPOCENTER VELOCITY MODEL relocation was carried out on 138 earthquake events during October 2017-January 2018 using the Coupled Velocity- The arrival time of a seismic wave generated by an Hypocenter method. Hypocenter was obtained at a depth of less earthquake is a nonlinear function of the station coordinates than 10 km under sea level with an RMS value <0.3 seconds, (s), the hypocentral parameter (origin time (t) and and this is thought to have a flow of magma fluid through the geographic coordinates (x, y, z, t)), and velocity field (m). -
Download Article
Advances in Economics, Business and Management Research, volume 69 3rd International Conference on Tourism, Economics, Accounting, Management, and Social Science (TEAMS 2018) The Economic Impact of Mount Agung Eruption on Bali Tourism Putu Indah Rahmawati Trianasari A.A.Ngr.Yudha Martin Hotel Department, Economic Faculty Hotel Department, Economic Faculty Hotel Department, Economic Faculty Universitas Pendidikan Ganesha Universitas Pendidikan Ganesha Universitas Pendidikan Ganesha Indonesia Indonesia Indonesia [email protected] [email protected] [email protected] Abstract— This study aims to analyse the economic impact of I. Introduction Mount Agung eruption in 2017 on Bali tourism. This study uses a qualitative research approach. Data was collected Bali is a small island that very vulnerable to the through interviews with hotel managers and tourism impacts of climate change and natural disasters ((Stocker et stakeholders in Bali. The research sample was determined by al., 2013) stated with great confidence - at least 90% the true purposive sampling technique. The results show that most possibility - that small islands "are very vulnerable to the respondents said that they experienced drastic income decline impacts of climate change and natural disasters such as sea after the closure of Ngurah Rai airport due to Mount Agung level rise, floods, landslides, high winds, earthquakes and eruption. The decrease in hotel room occupancy in December other extreme events ". In addition, Mason (2012) argues that 2018 even reaches 20-30%. This is very significant because Bali's excessive dependence on the tourism industry can lead December is usually peak season in Bali and hotels can to an economic crisis in the future. -
Volcanic Unrest at Taupō Volcano in 2019: Causes, 10.1029/2021GC009803 Mechanisms and Implications Key Points: Finnigan Illsley-Kemp1 , Simon J
RESEARCH ARTICLE Volcanic Unrest at Taupō Volcano in 2019: Causes, 10.1029/2021GC009803 Mechanisms and Implications Key Points: Finnigan Illsley-Kemp1 , Simon J. Barker1 , Colin J. N. Wilson1 , • In 2019 Taupō volcano underwent a Calum J. Chamberlain1 , Sigrún Hreinsdóttir2 , Susan Ellis2 , Ian J. Hamling2 , period of volcanic unrest, indicated 1 1 3 by multiple seismic swarms and Martha K. Savage , Eleanor R. H. Mestel , and Fabian B. Wadsworth ground deformation 1 • Earthquakes define a brittle-ductile School of Geography, Environment and Earth Sciences, Victoria University of Wellington, Wellington, New Zealand, 2 3 transition around an aseismic zone GNS Science, Lower Hutt, New Zealand, Department of Earth Sciences, Durham University, Durham, UK that is coincident with an inflating deformation source • These observations suggest the 3 Abstract Taupō volcano, New Zealand, is a large caldera volcano that has been highly active presence of ≥250 km of magma mush in the mid-crust with through the Holocene. It most recently erupted 1,800 years ago but there have been multiple periods >20%–30% melt fraction of historic volcanic unrest. We use seismological∼ and geodetic analysis to show that in 2019 Taupō underwent a period of unrest characterized by increased seismic activity through multiple swarms and Supporting Information: was accompanied by ground deformation within the caldera. The earthquakes, which include non-double- Supporting Information may be found couple events, serve to outline an aseismic zone beneath the most recent eruptive vents. This aseismic in the online version of this article. zone is coincident with an inflating source, based on forward modeling of ground deformation data. -
Lava Dome Changes Detection at Agung Mountain During High Level of Volcanic Activity Using Uav Photogrammetry
The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W13, 2019 ISPRS Geospatial Week 2019, 10–14 June 2019, Enschede, The Netherlands LAVA DOME CHANGES DETECTION AT AGUNG MOUNTAIN DURING HIGH LEVEL OF VOLCANIC ACTIVITY USING UAV PHOTOGRAMMETRY Ruli Andaru 1, Jiann-Yeou Rau 2 1 Department of Geomatics, National Cheng Kung University, Taiwan – [email protected] Department of Geodetic Engineering, Gadjah Mada University, Indonesia 2 Department of Geomatics, National Cheng Kung University, Taiwan - [email protected] KEY WORDS: lava dome, changes detection, UAV, volcanic activity, photogrammetry ABSTRACT: Lava dome changes detection during increasingly high volcanic activity are essential for hazard assessment purposes. However, it is challenging to conduct direct field measurement due to safety reason. Here, we investigate the lava dome changes of Mount Agung in Indonesia during the highest level of volcanic activity. On 22 September 2017, the rumbling and seismic activity in this volcano started increasing to the highest level for a period of time. We afterwards collected image data at lava dome area by using UAV over this time period. To accomplish the goal of change detection, we assembled and developed a fixed-wing UAV platform, i.e. Buffalo FX-79 to acquire images of Mount Agung whose elevation is roughly 3,142 m above sea level. We acquired the UAV images on two dates, i.e. Oct 19 and Oct 21 of 2017. Due to an exclusion zone surround the volcano, we could only operate the UAV at 20km distance from the crater. With these data set, we produced three-dimensional point clouds, high-resolution Digital Elevation Model and orthophoto by using Structure from Motion (SfM) and Multi View Stereo (SfM-MVS) technique with Photoscan Pro software. -
From Labuan Bajo on a Day Trip) Sanggoang Lake, but Best Visited from Labuan Bajo Cunca Wulang (Waterfall and Canyon) but Best Visited from Labuan Bajo on a Day Trip
FLORES SURGA KITA 1.7 SPESIAL2 Paling lengkap, paling surga, paling luar biasa 17 days day route overnight see/do extra info 1 Denpasar-Ende Ende H East coast/Wolotopo/former house Soekarno/sunset 2 Ende-Maumere Maumere D G Floresweg mark/ricefields Detusoko/seldom traveled road Detusoko- via North Coast Maurole/Tiwu Bowu/Wair Nokerua/Magepanda ricefields 3 Maumere-Larantuka Larantuka B C Ahok market/Wuring, village on stilts/Watublapi/views 4 Adonara (and/or Solor) Larantuka A Chartered boat (Larantuka Beach Apartments)/Watotena Beach/Lamakera 5 Larantuka-Maumere Maumere B See 3/detour Nobo-Boru around the twin volcano 6 Maumere-Moni Moni C E Nilo hill/Sikka old church/Koka Beach 7 Moni-Mbay Mbay F G I J Kelimutu NP/blue stone beach/views 8 Mbay Mbay L M To Riung Marine Park 17 islands with a local fisherman 9 Mbay-Bajawa Bajawa N Jalan tengah/Tutubhada traditional village/Wolobobo view Inerie 10 Bajawa Bajawa R Traditional villages Bena, Gurusina/Manalage Hotspring 11 Bajawa Bajawa R Rest or explore the area north east of Bajawa 12 Bajawa-Ruteng Ruteng S Belaraghi/arrack production/Watu Cepi/market Ruteng 13 Ruteng Ruteng T U V Road to Reo/Reo river/beaches west of Reo 14 Ruteng Ruteng T U V Any road around town/Liang Bua/south to Iteng 15 Ruteng-Labuan Bajo Labuan Bajo T X Cancar spiderweb ricefields/Nangalili Beach 16 Sano Nggoang/Cunca Wulang Labuan Bajo Y Z Choose one of the two OR leave very early around 7 am. A guide is needed for Cunca Wulang 17 Komodo NP Labuan Bajo Y Z Komodo National Park 18 Labuan Bajo – Denpasar Garuda Indonesia (20 kg) or Jakarta Bagtik Air (20 kg) or Timor NAM Air (20 kg) or Sumba via Kupang Wings Air (10 kg) Check here below the letters of the alphabet to find all tourist objects, things to see and do which are interesting along the way. -
Volcanic Eruption Eruption at Kuchinoerabujima Volcano, Japan
Volcanic Eruption Eruption at Kuchinoerabujima volcano, Japan Source: watchers.news,11 January,2020 Japan's Kuchinoerabujima volcano erupted at 06:05 UTC on January 11, 2020, ejecting volcanic material up to 300 m (984 feet) from the crater of Mount Shindake. This is the first eruption at the volcano since February 2, 2019. Kuchinoerabujima is a volcano island in Satsunan Islands, Japan, about 120 km (75 miles) SSW of Kagoshima city and about 1 100 km (685 miles) WSW of Tokyo. A series of eruptions with pyroclastic flows were recorded in December 2018 and January 2019. Volcanic ash cloud reached up to 2.7 km (9000 feet) above sea level. There were no pyroclastic flows produced and no evacuation orders were issued, the Japan Meteorological Agency (JMA) said. The Alert Level remains at 3 (on a scale of 5) since 15:15 UTC on October 27, 2019 (00:15 JST, October 28), after a large earthquake hit the island. "There is a possibility that an eruption will occur of a magnitude similar to the one in January when pyroclastic flows reached a point 1.9 km (1.2 miles) from the crater," JMA said at the time. In 2015, pyroclastic flows reached all the way to the coast, forcing all residents to evacuate. Residents (currently about 100 of them) and tourists are warned not to approach the danger zone. Geological summary A group of young stratovolcanoes forms the eastern end of the irregularly shaped island of Kuchinoerabujima in the northern Ryukyu Islands, 15 km (9.3 miles) west of Yakushima. -
Vmsg Abstract Book
V-VMSG Annual General Meeting 6-8 January 2021 Abstract book CODE OF CONDUCT FOR MEETINGS AND EVENTS The Volcanic & Magmatic Studies Group is a Special Interest Group joint between the Geological Society of London and Mineralogical Society. These learned societies are signatories to the Science Council Declaration on Diversity, Equality and Inclusion. Through their members, the Geological Society of London and Mineralogical Society have a duty in the public interest to provide a safe, productive and welcoming environment for all participants and attendees of meetings, workshops, and events regardless of gender, sexual orientation, gender identity, race, ethnicity, religion, disability, physical appearance, or career level. The Volcanic & Magmatic Studies Group has worked with the Geological Society of London and Mineralogical Society on Code of Conduct policies. These are available from https://www.geolsoc.org.uk/codeofconduct and https://www.minersoc.org/code-of- conduct.html. The Code of Conduct outlined below specifically applies to all participants in Volcanic & Magmatic Studies Group activities, including ancillary events and social gatherings. The Volcanic & Magmatic Studies Group expects all participants -- including, but is not limited to, attendees, speakers, volunteers, exhibitors, staff, service providers and representatives to outside bodies -- to uphold the principles of this Code of Conduct. 1. Behaviour The Volcanic & Magmatic Studies Group aims to provide a constructive, supportive and professionally stimulating environment for all its members. Participants of VMSG meetings and events are expected to behave in a professional manner at all times. 2. Unacceptable Behaviour Harassment and/or sexist, racist, or exclusionary comments or jokes are not appropriate and will not be tolerated. -
Changes in Vegetation on Mount Agung Volcano Bali Indonesia
Journal of Tropical Biodiversity and Biotechnology Volume 04, Issue 02 (2019): 54 — 61 DOI: 10.22146/jtbb.41008 Research Article Changes in Vegetation on Mount Agung Volcano Bali Indonesia Sutomo1,2*, Luthfi Wahab2 1) Research Centre for Plant Conservation and Botanic Garden-Indonesian Institute of Sciences (LIPI), Bali Botanical Garden, Candikuning, Baturiti, Bali, Indonesia. 2) AF GIS and Remote Sensing Consultant and Training, Karanggayam, Yogyakarta, Indonesia. *Corresponding author, email: [email protected] Keywords: ABSTRACT Vegetation Volcanic activity is a major natural disturbance that can catastrophically change an Mt. Agung ecosystem over a short time scale. The eruption of Mt. Agung strato-volcano in 1963- Bali 1964 was considered among the most important volcanic event of the 20th century LANDSAT due to its effect on global climate. Studies on vegetation and landscape of Mt. Agung REMAP post-1970-1980 has been scarce. The current eruption of Mount Agung in June-July 2018, brought awareness of the importance urge to document the past and current Article history: landscape along with vegetation on Mt. Agung. Our study aimed to utilize remote Submitted 16/11/2018 sensing technique to explore the pattern of current (2017) land cover and vegetation density on Mt. Agung and estimate of vegetated areas and whether it has changed from Revised 08/05/2019 the past. LANDSAT 8 images (www.earthexplorer.usgs.gov/) were used in this study. Accepted 17/05/2019 Supervised classification in ENVI was employed to obtain land use or land cover of the Mt. Agung area. Normalized Difference Vegetation Index (NDVI) was also calculated using the feature in the ARC GIS.