The Biogeography of Ectomycorrhizal Fungi a History of Life in The

Total Page:16

File Type:pdf, Size:1020Kb

The Biogeography of Ectomycorrhizal Fungi a History of Life in The Chapter 19 The biogeography of ectomycorrhizal fungi – a history of life in the subterranean Kabir G Peay1 and P Brandon Matheny2 1 Department of Biology, Stanford University, California, USA 2 Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, USA 19.1 Why study the The documentation of basic biogeographic biogeography of patterns is fundamental to understanding ectomycorrhizal fungi? any taxonomic group. Knowing the time or place that an organism first arose and diver­ The science of biogeography maps spatial sified provides a window into the ecological patterns of biological diversity as a means of and evolutionary processes shaping their understanding the evolutionary and ecolog­ diversity and tells us how they responded to ical processes that structure life on this past changes in the environment, or how planet (Lomolino et al., 2006). Understanding they might fare under new climates. Yet, for spatial patterns of biodiversity has given rise the organisms studied by microbiologists to some of the most important discoveries in (fungi, bacteria, viruses) and that constitute modern science. The unique composition of the majority of life on earth, basic details of flora and fauna in different parts of the biogeography remain poorly known, and world, coupled with the spatial and tempo­ are still a subject of debate. ral coincidence of allied species, led both Biogeography was one of the earliest Darwin and Wallace to the idea of evolution branches of plant and animal biology, but by natural selection (Darwin, 1859; Wallace, the development of microbial biogeography 1855). Similarly, Wegener’s theory of conti­ lagged, because the use of morphological nental drift was formulated in great part by systematics to differentiate microbes and the realization that the fossil record pro­ reconstruct their evolutionary histories was vided a window into the past arrangement a “fruitless search”, to quote Carl Woese of landmasses, precisely because of the (Woese, 1987). As a result of the paucity of s patially restricted nature of species distribu­ morphological characters, until very recently tions. Biogeography may not be a field many microbes were thought to lack distinct familiar to most lay people or most micro­ biogeographical patterns (Finlay, 2002; biologists, but it is a powerful window into Peay et al., 2010c), and the importance of life on this planet. these organisms to the diversity and function Molecular Mycorrhizal Symbiosis, First Edition. Edited by Francis Martin. © 2017 John Wiley & Sons, Inc. Published 2017 by John Wiley & Sons, Inc. 341 342 Molecular mycorrhizal symbiosis of earth systems was underappreciated 19.2 Ectomycorrhizal (Falkowski et al., 2008). The molecular revo­ biogeography in the lution in DNA sequencing (Horton and pre‐molecular era Bruns, 2001; Woese, 1987) has provided the tools necessary for accurate identification The limitation placed on organisms in their and mapping of microbial distributions, ability to disperse is, perhaps, the primary and is forcing reevaluation of microbial driver of biogeographic patterns. This limita­ biogeography. tion creates a historical tie between where a Ectomycorrhizal fungi (EMF) are obli­ species arises and its geographical distribu­ gate symbionts of dominant tree species in tion. Early biologists viewed fungi as organ­ both temperate and tropical biomes, and are isms with incredible dispersal potential an important part of the diversity of terres­ and cosmopolitan ranges. Wallace, Darwin, trial ecosystems. While ecological studies of Candolle, and von Humboldt, upon whose EMF have traditionally focused on local‐scale writings the field of biogeography developed, processes, understanding the large‐scale dis­ were focused primarily on the distributions tributional patterns of these organisms can of plants and animals and, where fungi shed light onto many key biological ques­ were noted, it was mostly to indicate their tions, such as the role of symbiosis in shaping uniqueness. species distributions, and how nutrient Candolle, an influential Swiss botanist, mutualisms are affected by climate and geol­ alluded to this in his observation that fungi ogy. Mushroom‐forming fungi are relatively would occur, “everywhere upon the earth rich in morphological features among … when the same circumstances propitious microbial groups. However, the study of their to their production occur” (de Candolle, biogeography has also progressed slowly. 1820). Similarly, the Reverend Miles Joseph In this chapter, we review the current Berkeley, one of the early founders of the state of EMF biogeography in light of new field of mycology, wrote in a letter to Charles data stemming from the use of DNA‐based Darwin, “that were not Fungi so much the molecular tools. We begin first with a look at creatures of peculiar atmospheric conditions, the pre‐molecular history of EMF biogeog­ there would seem to be no limit to the diffusion raphy, before turning to recent develop­ of their species” (Berkeley, 1863). ments. The remainder of the review moves While Darwin and Wallace could view from smaller to longer temporal scales, large‐scale distributional patterns of plants beginning with current species’ distribu­ and animals as a historical record of evolu­ tional patterns, and their effects on commu­ tion precisely because of their limited ability nity composition and diversity at large to move between regions, the presence of scales. From there, we take a phylogeo­ fungi seems to have been seen by contem­ graphic approach to examine the population porary biologists more as a reflection of the level processes that give rise to species distri­ “peculiar” environmental conditions in a butions over thousands of years, before particular place, rather than a record of finally turning to historical biogeography to evolutionary history. This perception was examine how the movement of continents perhaps self‐reinforcing; early fungal tax­ and long‐distance dispersal have shaped onomists arriving in North America expected modern distributions of EMF taxa. to find European species and, as a result, Chapter 19: The biogeography of ectomycorrhizal fungi – a history of life in the subterranean 343 (incorrectly) applied European names to the north from South American Nothofagaceae species they found – a problem that is still (southern beech) associates. In hindsight, being sorted out today. Consequently, however, none of these scenarios is likely m aking biogeographic conclusions from dis­ correct, as these investigators were misled at tribution records based on morphological a more fundamental level by the fact that taxonomy can be highly misleading (Pringle the key morphological feature distinguish­ and Vellinga, 2006). ing Rozites as a genus (presence of a mem­ The early view that fungi were “unrelia­ branous veil) evolved multiple times ble as biogeographic markers”, coupled with independently in the Cortinariaceae a paucity of reliable taxonomic data, slowed (Peintner et al., 2002). the development of fungal biogeography Even for more conspicuous taxa, basic (Pirozynski, 1983) for nearly a century. biogeographic patterns were difficult to dis­ However, improved fungal taxonomy and tinguish. For example, Watling proposed a increased global migration of European or boreal origin for boletes (Watling, 2001), North American trained systematists led to rather than an origin centered on their cur­ some attempts to assemble geographic dis­ rent day diversity in Southeast Asia (Corner, tribution information for fungi, and to 1972). While these hypotheses were not determine the extent to which factors such directly testable at the time, these early as climate or host identity affected these dis­ s cientists outlined the key questions that tributions (Bisby, 1943). Pirozynski (1983) continue to drive the field: was an early champion for the study of EMF (i) What are the centers of ectomycorrhizal as a window into biogeography, as he sus­ endemism? pected that their tight associations with host (ii) How important is long‐distance dispersal plants would more greatly limit their disper­ in shaping species distributions? sal and lead to distinct geographic pattern­ (iii) What are the key migration routes that ing, compared with other fungal groups. link regions? Still, he suspected much less endemism in (iv) When did this migration occur? fungi than in plants, at least in the context of These questions have proved fertile insular islands. grounds for the application of molecular Biogeographic hypotheses began to tools to assess biogeographic patterns among emerge, particularly for distinct groups with closely related species or populations (the clear centers of diversity. For example, the field of phylogeography), and more coarse strongly southern hemisphere‐biased distri­ global patterns at deeper taxonomic levels bution for the genus Rozites was thought to (the field of historical biogeography). suggest a Gondwanan origin (Bougher et al., 1994; Horak, 1981). However, distinguish­ ing amongst finer‐scale biogeographic sce­ 19.3 The advance narios was difficult. In examination of some of molecular phylogeography Central American Rozites, for example, Halling (Halling and Ovrebo, 1987) noted The development of DNA‐based tools for that it was not possible to tell if they were studying fungi has provided an unambigu­ northern co‐migrants with oaks from an ous way to discriminate fungal species Indo‐Malayan land bridge, or had migrated and reconstruct evolutionary relationships 344 Molecular mycorrhizal
Recommended publications
  • Pakaraimaea Dipterocarpacea
    The Ectomycorrhizal Fungal Community in a Neotropical Forest Dominated by the Endemic Dipterocarp Pakaraimaea dipterocarpacea Matthew E. Smith1*, Terry W. Henkel2, Jessie K. Uehling2, Alexander K. Fremier3, H. David Clarke4, Rytas Vilgalys5 1 Department of Plant Pathology, University of Florida, Gainesville, Florida, United States of America, 2 Department of Biological Sciences, Humboldt State University, Arcata, California, United States of America, 3 Department of Fish and Wildlife Resources, University of Idaho, Moscow, Idaho, United States of America, 4 Department of Biology, University of North Carolina Asheville, Asheville, North Carolina, United States of America, 5 Department of Biology, Duke University, Durham, North Carolina, United States of America Abstract Ectomycorrhizal (ECM) plants and fungi can be diverse and abundant in certain tropical ecosystems. For example, the primarily paleotropical ECM plant family Dipterocarpaceae is one of the most speciose and ecologically important tree families in Southeast Asia. Pakaraimaea dipterocarpacea is one of two species of dipterocarp known from the Neotropics, and is also the only known member of the monotypic Dipterocarpaceae subfamily Pakaraimoideae. This Guiana Shield endemic is only known from the sandstone highlands of Guyana and Venezuela. Despite its unique phylogenetic position and unusual geographical distribution, the ECM fungal associations of P. dipterocarpacea are understudied throughout the tree’s range. In December 2010 we sampled ECM fungi on roots of P. dipterocarpacea and the co-occurring ECM tree Dicymbe jenmanii (Fabaceae subfamily Caesalpinioideae) in the Upper Mazaruni River Basin of Guyana. Based on ITS rDNA sequencing we documented 52 ECM species from 11 independent fungal lineages. Due to the phylogenetic distance between the two host tree species, we hypothesized that P.
    [Show full text]
  • Tropical Plant-Animal Interactions: Linking Defaunation with Seed Predation, and Resource- Dependent Co-Occurrence
    University of Montana ScholarWorks at University of Montana Graduate Student Theses, Dissertations, & Professional Papers Graduate School 2021 TROPICAL PLANT-ANIMAL INTERACTIONS: LINKING DEFAUNATION WITH SEED PREDATION, AND RESOURCE- DEPENDENT CO-OCCURRENCE Peter Jeffrey Williams Follow this and additional works at: https://scholarworks.umt.edu/etd Let us know how access to this document benefits ou.y Recommended Citation Williams, Peter Jeffrey, "TROPICAL PLANT-ANIMAL INTERACTIONS: LINKING DEFAUNATION WITH SEED PREDATION, AND RESOURCE-DEPENDENT CO-OCCURRENCE" (2021). Graduate Student Theses, Dissertations, & Professional Papers. 11777. https://scholarworks.umt.edu/etd/11777 This Dissertation is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. TROPICAL PLANT-ANIMAL INTERACTIONS: LINKING DEFAUNATION WITH SEED PREDATION, AND RESOURCE-DEPENDENT CO-OCCURRENCE By PETER JEFFREY WILLIAMS B.S., University of Minnesota, Minneapolis, MN, 2014 Dissertation presented in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biology – Ecology and Evolution The University of Montana Missoula, MT May 2021 Approved by: Scott Whittenburg, Graduate School Dean Jedediah F. Brodie, Chair Division of Biological Sciences Wildlife Biology Program John L. Maron Division of Biological Sciences Joshua J. Millspaugh Wildlife Biology Program Kim R. McConkey School of Environmental and Geographical Sciences University of Nottingham Malaysia Williams, Peter, Ph.D., Spring 2021 Biology Tropical plant-animal interactions: linking defaunation with seed predation, and resource- dependent co-occurrence Chairperson: Jedediah F.
    [Show full text]
  • Fungi of North East Victoria Online
    Agarics Agarics Agarics Agarics Fungi of North East Victoria An Identication and Conservation Guide North East Victoria encompasses an area of almost 20,000 km2, bounded by the Murray River to the north and east, the Great Dividing Range to the south and Fungi the Warby Ranges to the west. From box ironbark woodlands and heathy dry forests, open plains and wetlands, alpine herb elds, montane grasslands and of North East Victoria tall ash forests, to your local park or backyard, fungi are found throughout the region. Every fungus species contributes to the functioning, health and An Identification and Conservation Guide resilience of these ecosystems. Identifying Fungi This guide represents 96 species from hundreds, possibly thousands that grow in the diverse habitats of North East Victoria. It includes some of the more conspicuous and distinctive species that can be recognised in the eld, using features visible to the Agaricus xanthodermus* Armillaria luteobubalina* Coprinellus disseminatus Cortinarius austroalbidus Cortinarius sublargus Galerina patagonica gp* Hypholoma fasciculare Lepista nuda* Mycena albidofusca Mycena nargan* Protostropharia semiglobata Russula clelandii gp. yellow stainer Australian honey fungus fairy bonnet Australian white webcap funeral bell sulphur tuft blewit* white-crowned mycena Nargan’s bonnet dung roundhead naked eye or with a x10 magnier. LAMELLAE M LAMELLAE M ■ LAMELLAE S ■ LAMELLAE S, P ■ LAMELLAE S ■ LAMELLAE M ■ ■ LAMELLAE S ■ LAMELLAE S ■ LAMELLAE S ■ LAMELLAE S ■ LAMELLAE S ■ LAMELLAE S ■ When identifying a fungus, try and nd specimens of the same species at dierent growth stages, so you can observe the developmental changes that can occur. Also note the variation in colour and shape that can result from exposure to varying weather conditions.
    [Show full text]
  • Historical Biogeography and Diversification of the Cosmopolitan Ectomycorrhizal Mushroom Family Inocybaceae
    Out of the Palaeotropics? Historical biogeography and diversification of the cosmopolitan ectomycorrhizal mushroom family Inocybaceae P. Brandon Matheny1*, M. Catherine Aime2, Neale L. Bougher3, Bart Buyck4, Dennis E. Desjardin5, Egon Horak6, Bradley R. Kropp7, D. Jean Lodge8, Kasem Soytong9, James M. Trappe10 and David S. Hibbett11 ABSTRACT Aim The ectomycorrhizal (ECM) mushroom family Inocybaceae is widespread in north temperate regions, but more than 150 species are encountered in the tropics and the Southern Hemisphere. The relative roles of recent and ancient biogeographical processes, relationships with plant hosts, and the timing of divergences that have shaped the current geographic distribution of the family are investigated. location Africa, Australia, Neotropics, New Zealand, north temperate zone, Palaeotropics, Southeast Asia, South America, south temperate zone. Methods We reconstruct a phylogeny of the Inocybaceae with a geological timeline using a relaxed molecular clock. Divergence dates of lineages are estimated statistically to test vicariance-based hypotheses concerning relatedness of disjunct ECM taxa. A series of internal maximum time constraints is used to evaluate two different calibrations. Ancestral state reconstruction is used to infer ancestral areas and ancestral plant partners of the family. Results The Palaeotropics are unique in containing representatives of all major clades of Inocybaceae. Six of the seven major clades diversified initially during the Cretaceous, with subsequent radiations probably during the early Palaeogene. Vicariance patterns cannot be rejected that involve area relationships for Africa- Australia, Africa-India and southern South America-Australia. Northern and southern South America, Australia and New Zealand are primarily the recipients of immigrant taxa during the Palaeogene or later. Angiosperms were the earliest hosts of Inocybaceae.
    [Show full text]
  • AR TICLE New Sequestrate Fungi from Guyana: Jimtrappea Guyanensis
    IMA FUNGUS · 6(2): 297–317 (2015) doi:10.5598/imafungus.2015.06.02.03 New sequestrate fungi from Guyana: Jimtrappea guyanensis gen. sp. nov., ARTICLE Castellanea pakaraimophila gen. sp. nov., and Costatisporus cyanescens gen. sp. nov. (Boletaceae, Boletales) Matthew E. Smith1, Kevin R. Amses2, Todd F. Elliott3, Keisuke Obase1, M. Catherine Aime4, and Terry W. Henkel2 1Department of Plant Pathology, University of Florida, Gainesville, FL 32611, USA 2Department of Biological Sciences, Humboldt State University, Arcata, CA 95521, USA; corresponding author email: Terry.Henkel@humboldt. edu 3Department of Integrative Studies, Warren Wilson College, Asheville, NC 28815, USA 4Department of Botany & Plant Pathology, Purdue University, West Lafayette, IN 47907, USA Abstract: Jimtrappea guyanensis gen. sp. nov., Castellanea pakaraimophila gen. sp. nov., and Costatisporus Key words: cyanescens gen. sp. nov. are described as new to science. These sequestrate, hypogeous fungi were collected Boletineae in Guyana under closed canopy tropical forests in association with ectomycorrhizal (ECM) host tree genera Caesalpinioideae Dicymbe (Fabaceae subfam. Caesalpinioideae), Aldina (Fabaceae subfam. Papilionoideae), and Pakaraimaea Dipterocarpaceae (Dipterocarpaceae). Molecular data place these fungi in Boletaceae (Boletales, Agaricomycetes, Basidiomycota) ectomycorrhizal fungi and inform their relationships to other known epigeous and sequestrate taxa within that family. Macro- and gasteroid fungi micromorphological characters, habitat, and multi-locus DNA sequence data are provided for each new taxon. Guiana Shield Unique morphological features and a molecular phylogenetic analysis of 185 taxa across the order Boletales justify the recognition of the three new genera. Article info: Submitted: 31 May 2015; Accepted: 19 September 2015; Published: 2 October 2015. INTRODUCTION 2010, Gube & Dorfelt 2012, Lebel & Syme 2012, Ge & Smith 2013).
    [Show full text]
  • A Rapid Biological Assessment of the Upper Palumeu River Watershed (Grensgebergte and Kasikasima) of Southeastern Suriname
    Rapid Assessment Program A Rapid Biological Assessment of the Upper Palumeu River Watershed (Grensgebergte and Kasikasima) of Southeastern Suriname Editors: Leeanne E. Alonso and Trond H. Larsen 67 CONSERVATION INTERNATIONAL - SURINAME CONSERVATION INTERNATIONAL GLOBAL WILDLIFE CONSERVATION ANTON DE KOM UNIVERSITY OF SURINAME THE SURINAME FOREST SERVICE (LBB) NATURE CONSERVATION DIVISION (NB) FOUNDATION FOR FOREST MANAGEMENT AND PRODUCTION CONTROL (SBB) SURINAME CONSERVATION FOUNDATION THE HARBERS FAMILY FOUNDATION Rapid Assessment Program A Rapid Biological Assessment of the Upper Palumeu River Watershed RAP (Grensgebergte and Kasikasima) of Southeastern Suriname Bulletin of Biological Assessment 67 Editors: Leeanne E. Alonso and Trond H. Larsen CONSERVATION INTERNATIONAL - SURINAME CONSERVATION INTERNATIONAL GLOBAL WILDLIFE CONSERVATION ANTON DE KOM UNIVERSITY OF SURINAME THE SURINAME FOREST SERVICE (LBB) NATURE CONSERVATION DIVISION (NB) FOUNDATION FOR FOREST MANAGEMENT AND PRODUCTION CONTROL (SBB) SURINAME CONSERVATION FOUNDATION THE HARBERS FAMILY FOUNDATION The RAP Bulletin of Biological Assessment is published by: Conservation International 2011 Crystal Drive, Suite 500 Arlington, VA USA 22202 Tel : +1 703-341-2400 www.conservation.org Cover photos: The RAP team surveyed the Grensgebergte Mountains and Upper Palumeu Watershed, as well as the Middle Palumeu River and Kasikasima Mountains visible here. Freshwater resources originating here are vital for all of Suriname. (T. Larsen) Glass frogs (Hyalinobatrachium cf. taylori) lay their
    [Show full text]
  • Spongiforma, a New Genus of Gasteroid Boletes from Thailand
    Fungal Diversity Spongiforma, a new genus of gasteroid boletes from Thailand Desjardin, D.E.1*, Binder, M.2, Roekring, S.3 and Flegel, T.4 1Department of Biology, San Francisco State University, 1600 Holloway Ave., San Francisco, CA 94132 2Department of Biology, Clark University, 950 Main St., Worcester, MA 01601 3Asia Star Lab Co., Ltd., Research and Development, 9 Soi Prachanimitr, Pradipat Road, Samsennai Phayathai, Bangkok 10400, Thailand 4Centex Shrimp, 4th Floor Chalermprakiat Bldg., Faculty of Science, Mahidol University, Rama 6 Road, Bangkok 10400, Thailand Desjardin, D.E., Binder, M., Roekring, S. and Flegel, T. (2009). Spongiforma, a new genus of gastroid boletes from Thailand. Fungal Diversity 37: 1-8. Based on morphological and molecular characters, Spongiforma is described as a new genus of gasteroid boletes belonging in the Boletineae. It is represented by a single species, S. thailandica, that is putatively mycorrhizal with dipterocarp trees in central Thailand. Unusual morphological features include a sponge-like, astipitate, epigeous basidiome with large exposed locules and a strong coal tar odor, and rugulose, reddish brown basidiospores with an apical pore that become smooth and violet grey in 3% potasium hydroxide solution. A description, illustrations, phylogenetic analysis and comparison with allied taxa are presented. Key words: Agaricomycotina, Basidiomycota, Boletineae, molecular phylogenetics, taxonomy. Article Information Received 27 October 2008 Accepted 4 March 2009 Published online 1 August 2009 *Corresponding
    [Show full text]
  • <I>Paxillus Albidulus
    ISSN (print) 0093-4666 © 2012. Mycotaxon, Ltd. ISSN (online) 2154-8889 MYCOTAXON http://dx.doi.org/10.5248/119.351 Volume 119, pp. 351–359 January–March 2012 Paxillus albidulus, P. ammoniavirescens, and P. validus revisited Else C. Vellinga1*, Erin P. Blanchard1, Stephen Kelly2 & Marco Contu3 1Department of Plant and Microbial Biology, University of California, 111 Koshland Hall #3102, Berkeley CA 94720-3102, U.S.A. 21 Church Hill, Bedmond, Abbotts Langley, Hertfordshire. WD5 0RW, U.K. 3Via Marmilla,12, I-07026 Olbia (OT), Italy *Correspondence to: [email protected] Abstract—Comparison of nrITS sequences of the type specimens of Paxillus ammonia- virescens and P. validus show them to be identical. The name Paxillus ammoniavirescens was published in ‘Spring 1999’ [northern hemisphere] and that of Paxillus validus in August 1999, making P. ammoniavirescens the correct name for this species. A variant without pigments fits into P. involutus, suggesting that P. albidulus might be an albino variant of any species in the P. involutus complex. Paxillus ammoniavirescens is widespread in Europe and has been introduced in the southern hemisphere; P. obscurosporus is known from China and Europe; and the two taxa in the P. involutus clade are reported from Europe and from North America. Keywords—Paxillaceae, phylogenetic species, pigment-free variants Introduction The genus Paxillus Fr. is widely distributed in the northern hemisphere, forms ectomycorrhiza with a range of host trees, is extensively used in ectomycorrhizal research (e.g. Ek 1997, Leake et al. 2001, Prendergast-Miller et al. 2011, Wilkinson et al. 2010), and is a nightmare for species recognition.
    [Show full text]
  • Sequencing Abstracts Msa Annual Meeting Berkeley, California 7-11 August 2016
    M S A 2 0 1 6 SEQUENCING ABSTRACTS MSA ANNUAL MEETING BERKELEY, CALIFORNIA 7-11 AUGUST 2016 MSA Special Addresses Presidential Address Kerry O’Donnell MSA President 2015–2016 Who do you love? Karling Lecture Arturo Casadevall Johns Hopkins Bloomberg School of Public Health Thoughts on virulence, melanin and the rise of mammals Workshops Nomenclature UNITE Student Workshop on Professional Development Abstracts for Symposia, Contributed formats for downloading and using locally or in a Talks, and Poster Sessions arranged by range of applications (e.g. QIIME, Mothur, SCATA). 4. Analysis tools - UNITE provides variety of analysis last name of primary author. Presenting tools including, for example, massBLASTer for author in *bold. blasting hundreds of sequences in one batch, ITSx for detecting and extracting ITS1 and ITS2 regions of ITS 1. UNITE - Unified system for the DNA based sequences from environmental communities, or fungal species linked to the classification ATOSH for assigning your unknown sequences to *Abarenkov, Kessy (1), Kõljalg, Urmas (1,2), SHs. 5. Custom search functions and unique views to Nilsson, R. Henrik (3), Taylor, Andy F. S. (4), fungal barcode sequences - these include extended Larsson, Karl-Hnerik (5), UNITE Community (6) search filters (e.g. source, locality, habitat, traits) for 1.Natural History Museum, University of Tartu, sequences and SHs, interactive maps and graphs, and Vanemuise 46, Tartu 51014; 2.Institute of Ecology views to the largest unidentified sequence clusters and Earth Sciences, University of Tartu, Lai 40, Tartu formed by sequences from multiple independent 51005, Estonia; 3.Department of Biological and ecological studies, and for which no metadata Environmental Sciences, University of Gothenburg, currently exists.
    [Show full text]
  • Notes, Outline and Divergence Times of Basidiomycota
    Fungal Diversity (2019) 99:105–367 https://doi.org/10.1007/s13225-019-00435-4 (0123456789().,-volV)(0123456789().,- volV) Notes, outline and divergence times of Basidiomycota 1,2,3 1,4 3 5 5 Mao-Qiang He • Rui-Lin Zhao • Kevin D. Hyde • Dominik Begerow • Martin Kemler • 6 7 8,9 10 11 Andrey Yurkov • Eric H. C. McKenzie • Olivier Raspe´ • Makoto Kakishima • Santiago Sa´nchez-Ramı´rez • 12 13 14 15 16 Else C. Vellinga • Roy Halling • Viktor Papp • Ivan V. Zmitrovich • Bart Buyck • 8,9 3 17 18 1 Damien Ertz • Nalin N. Wijayawardene • Bao-Kai Cui • Nathan Schoutteten • Xin-Zhan Liu • 19 1 1,3 1 1 1 Tai-Hui Li • Yi-Jian Yao • Xin-Yu Zhu • An-Qi Liu • Guo-Jie Li • Ming-Zhe Zhang • 1 1 20 21,22 23 Zhi-Lin Ling • Bin Cao • Vladimı´r Antonı´n • Teun Boekhout • Bianca Denise Barbosa da Silva • 18 24 25 26 27 Eske De Crop • Cony Decock • Ba´lint Dima • Arun Kumar Dutta • Jack W. Fell • 28 29 30 31 Jo´ zsef Geml • Masoomeh Ghobad-Nejhad • Admir J. Giachini • Tatiana B. Gibertoni • 32 33,34 17 35 Sergio P. Gorjo´ n • Danny Haelewaters • Shuang-Hui He • Brendan P. Hodkinson • 36 37 38 39 40,41 Egon Horak • Tamotsu Hoshino • Alfredo Justo • Young Woon Lim • Nelson Menolli Jr. • 42 43,44 45 46 47 Armin Mesˇic´ • Jean-Marc Moncalvo • Gregory M. Mueller • La´szlo´ G. Nagy • R. Henrik Nilsson • 48 48 49 2 Machiel Noordeloos • Jorinde Nuytinck • Takamichi Orihara • Cheewangkoon Ratchadawan • 50,51 52 53 Mario Rajchenberg • Alexandre G.
    [Show full text]
  • Early Diverging Clades of Agaricomycetidae Dominated by Corticioid Forms
    Mycologia, 102(4), 2010, pp. 865–880. DOI: 10.3852/09-288 # 2010 by The Mycological Society of America, Lawrence, KS 66044-8897 Amylocorticiales ord. nov. and Jaapiales ord. nov.: Early diverging clades of Agaricomycetidae dominated by corticioid forms Manfred Binder1 sister group of the remainder of the Agaricomyceti- Clark University, Biology Department, Lasry Center for dae, suggesting that the greatest radiation of pileate- Biosciences, 15 Maywood Street, Worcester, stipitate mushrooms resulted from the elaboration of Massachusetts 01601 resupinate ancestors. Karl-Henrik Larsson Key words: morphological evolution, multigene Go¨teborg University, Department of Plant and datasets, rpb1 and rpb2 primers Environmental Sciences, Box 461, SE 405 30, Go¨teborg, Sweden INTRODUCTION P. Brandon Matheny The Agaricomycetes includes approximately 21 000 University of Tennessee, Department of Ecology and Evolutionary Biology, 334 Hesler Biology Building, described species (Kirk et al. 2008) that are domi- Knoxville, Tennessee 37996 nated by taxa with complex fruiting bodies, including agarics, polypores, coral fungi and gasteromycetes. David S. Hibbett Intermixed with these forms are numerous lineages Clark University, Biology Department, Lasry Center for Biosciences, 15 Maywood Street, Worcester, of corticioid fungi, which have inconspicuous, resu- Massachusetts 01601 pinate fruiting bodies (Binder et al. 2005; Larsson et al. 2004, Larsson 2007). No fewer than 13 of the 17 currently recognized orders of Agaricomycetes con- Abstract: The Agaricomycetidae is one of the most tain corticioid forms, and three, the Atheliales, morphologically diverse clades of Basidiomycota that Corticiales, and Trechisporales, contain only corti- includes the well known Agaricales and Boletales, cioid forms (Hibbett 2007, Hibbett et al. 2007). which are dominated by pileate-stipitate forms, and Larsson (2007) presented a preliminary classification the more obscure Atheliales, which is a relatively small in which corticioid forms are distributed across 41 group of resupinate taxa.
    [Show full text]
  • The New Genus Auritella from Africa and Australia (Inocybaceae, Agaricales): Molecular Systematics, Taxonomy and Historical Biogeography
    Mycol Progress (2006) 5: 2–17 DOI 10.1007/s11557-005-0001-8 ORIGINAL ARTICLE P. Brandon Matheny . Neale L. Bougher The new genus Auritella from Africa and Australia (Inocybaceae, Agaricales): molecular systematics, taxonomy and historical biogeography Received: 10 January 2005 / Revised: 21 September 2005 / Accepted: 11 October 2005 / Published online: 14 February 2006 # German Mycological Society and Springer-Verlag 2006 Abstract Recent phylogenetic evidence strongly supports a Introduction monophyletic group of Afro-Australian mushroom species with phenotypic affinities to the genus Inocybe (Agaricales, Progress towards generating a phylogenetic-based classi- Basidiomycota). In this study, this clade is proposed as the fication of Inocybe and allies in the Agaricales or euagarics new genus Auritella. Seven species are fully documented clade has been accelerated recently by several molecular with taxonomic descriptions and illustrations, four of which systematic studies of the group (Kropp and Matheny 2004; are described as new, including one sequestrate or truffle-like Matheny et al. 2002; Matheny 2005; Matheny and species. A key to genera and major clades of the Inocybaceae Ammirati 2003; Matheny and Watling 2004). In particular, and a key to species of Auritella are provided. A maximum Matheny (2005) demonstrated the monophyly of five likelihood tree using rpb2 and nLSU-rDNA nucleotide major lineages within Inocybe and provided strong sequences depicts the phylogenetic relationships of five of evidence for a sister relationship between the Inocybaceae, the seven species of the genus, of which the Australian taxa a monophyletic family of ectomycorrhizal species, and the form a monophyletic group. An ancient split between Crepidotaceae, a family of saprophytic species.
    [Show full text]