Preserving the Unique Puna Ecosystems of the Andean Altiplano Author(S): Philip W

Total Page:16

File Type:pdf, Size:1020Kb

Preserving the Unique Puna Ecosystems of the Andean Altiplano Author(S): Philip W Preserving the Unique Puna Ecosystems of the Andean Altiplano Author(s): Philip W. Rundel and Beatriz Palma Source: Mountain Research and Development, 20(3):262-271. 2000. Published By: International Mountain Society DOI: http://dx.doi.org/10.1659/0276-4741(2000)020[0262:PTUPEO]2.0.CO;2 URL: http://www.bioone.org/doi/full/10.1659/0276-4741%282000%29020%5B0262%3APTUPEO %5D2.0.CO%3B2 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Mountain Research and Development Vol 20 No 3 Aug 2000: 262–271 Philip W. Rundel and Beatriz Palma Preserving the Unique Puna Ecosystems of the Andean Altiplano 262 A Descriptive Account of Lauca National Park, Chile Lauca National Park elevation of 4518 m. It is the highest lake of significant forms a unique area of size in the world. Beyond these scenic attributes are puna and prepuna rich and unique flora and fauna exhibiting remarkable ecosystems in the high adaptations to the high elevations of Lauca. Vicuña, Altiplano of northeast- guanaco, huemul, viscacha, rhea, and flamingo are ern Chile. Its extensive among the notable wildlife readily visible and protect- puna steppe shrub- ed in this park. lands lying above Associated with Lauca National Park, which com- 4000 m and high vol- prises 137,833 ha, are Las Vicuñas National Reserve canoes reaching above (209,131 ha) and the Salar de Surire National Monu- 6000 m provide some ment (11,298 ha). The former was established to pro- of many strong justifications for its designation as a tect and manage populations of the endangered UNESCO International Biosphere Reserve in 1983. The vicuña, while the latter protects a relatively small saline park also contains Lago Chungará, the highest lake in lake that is of international significance for its large the world at 4518 m elevation, and a rich variety of fau- and diverse populations of resident birds. Lauca Bio- na and flora. The mammal fauna of the park includes sphere Reserve (including Lauca National Park, Las notable populations of large herbivores such as vicuña, Vicuñas National Reserve, and Salar de Surire National guanaco, and huemul, and a rich diversity of rodent Monument) was declared a UNESCO International species. More than 140 species of birds, one third of the Biosphere Reserve in 1983, 1 of only 7 reserves in total Chilean bird fauna—with many rare wetland Chile so designated. species— and more than 400 species of vascular plants Lauca National Park is situated at about occur within the park. Despite its relatively pristine natu- 18°10'–18°25' S latitude along the Bolivian border in ral environment, Lauca National Park faces numerous Region 1 of northern Chile (Figure 1). Despite its very management challenges. These include the management high elevation, the entrance to the park lies only of critical and limited water resources, the impacts of 160 km east of the coastal city of Arica. The area of Lau- human population and tourism, management of rare and ca National Park was first set aside as a portion of a endangered species, and pressures from mining and large forest reserve in 1965 and then redesignated as a agricultural interests to decertify areas currently within national park in 1970 by a decree of the Chilean Min- park boundaries. Expansion of the park boundary west- istry of Agriculture. Its present boundaries were set in ward to include ecologically significant prepuna habitats 1983, along with those of Las Vicuñas National Reserve should be a high priority of park management. and Salar de Surire National Monument. It is 1 of only 2 national parks existing in the puna region of the Keywords: Parinacota; Lago Chungará; bofedales; northern Chilean Andes. The other, Volcán Isluga Polylepis; Azorella; park management; Lauca National National Park, lies 120 km to the south. Park; Chile. The summer rainfall regime in the puna region is unique in Chile and different from the Mediterranean- Peer reviewed: April 2000. Accepted: May 2000. like climate in most of the country (Table 1). This cli- matic regime represents the most arid extension of a tropical alpine ecosystem that occurs from central Peru Introduction southward through western Bolivia into northern Chile and Argentina. Tropical alpine climates create extreme Lauca National Park, positioned in the high Andean conditions for survival, with freezing temperatures Altiplano of northern Chile, provides an unparalleled occurring almost every night of the year. Daily ranges example of a pristine, arid puna ecosystem. The Lauca of temperature extremes from high to low may be as Basin within which the major area of this large park much as 25–30°C. The puna as represented at Lauca lies forms a portion of the Altiplano Plateau shared by thus represents a unique bioclimatic and biogeographic southern Peru, western Bolivia, northern Chile, and region of Chile, with strong floristic and faunistic rela- Argentina. Included within the park boundaries are tionships to Peru and Bolivia rather than to other parts spectacular vistas of extensive puna landscapes, large of Chile. Andean lakes and wetlands, and a series of snow- Despite its many attributes, Lauca National Park capped volcanoes. Three volcanic cones rise above continues to face significant issues of resource manage- 6000 m elevation—Parinacota (6342 m), Ponerape ment and protection that are critically important for its (6240 m), and Guallatire (6063 m)—and numerous future. The present article briefly reviews the natural peaks reaching above 5000 m ring the Lauca Basin in attributes of Lauca and discusses issues of resource which the park lies. Lago Chungará is situated at an management and external forces impacting the park. Research FIGURE 1 Map of Lauca National Park showing the primary geographical features and vegetation formations. The transitions from pre-puna shrub- 263 lands to puna shrub steppe and from puna shrub/steppe to high Andean occur at elevations of roughly 4000 and 5000 m, respectively. TABLE 1 Mean monthly maximum and minimum temperatures and rainfall at Geomorphology and hydrology Parinacota (4390 m asl). Data from Novoa and Villaseca (1989) for tempera- tures and wind speed and CONAF (1986) for rainfall. Lauca National Park lies largely within the northern Lauca Basin, which is the westernmost extension of a Mean Mean Mean series of fluvio-lacustrine basins that stretch over more maximum minimum Mean wind than 800 km from Lago Titicaca across the Bolivian temperature temperature rainfall speed Altiplano to the Salar de Uyuni. This basin is drained by Month (°C) (°C) (mm) (km/h) the Rio Lauca, which flows eastward into the Copiasa January 7.9 0.3 90.0 5.3 Basin of Bolivia. The eastern margin of the basin is February 7.8 0.2 99.3 4.9 formed by a line of active volcanoes extending from Parinacota and Ponerape to Cerro de Quisiquisini, March 7.5 -0.1 55.9 4.7 Guallatire, and south to Puquintica (5780 m). The west- April 6.1 -1.1 9.5 4.9 ern hydrologic boundary of the basin is formed by a May 3.9 -2.9 3.0 4.9 chain of deeply eroded Miocene volcanoes, which are sometimes termed the Chilean Western Cordillera. Geo- June 1.1 -5.1 1.7 5.9 logically, this chain consists of folded and faulted Creta- July 0.0 -6.0 0.6 5.7 ceous and Tertiary sediments mixed with former vol- August 3.1 -3.5 1.4 5.9 canic centers of activity. The most prominent peaks are the Nevados de Putre (with the Cerro de Taapaca at September 3.7 -0.1 2.7 6.0 5775 m) and Cerro Belén, Cerro Tallacollo, Cerro Oro- October 5.9 -1.3 2.9 6.1 tunco, and Cerro de Anocarire, which all reach above November 6.7 -0.7 14.2 6.0 5000 m. Beyond this chain to the west, the Altiplano plateau exhibits a sharp staircase drop of more than December 7.3 -0.3 39.8 ND 2500 m along two north–south striking normal faults Mean 5.1 -2.0 321.6 5.5 (Kött et al 1995). Philip W. Rundel and Beatriz Palma FIGURE 2 Volcán Parinacota (6342 m) with Lago Chungará, the highest elevation lake in the world, at its base. In the right foreground are dwarf woodlands dominated by Polylepis tarapacana, and the left foreground 264 shows wetland habitats termed bofedales with grazing vicuñas. (Photo by authors) The relatively gentle topography within the Lauca the youngest of a trio of volcanoes forming the Nevados Basin averages about 4100 m in altitude, giving it an de Quimsachata, is one of the most active volcanoes in elevation about 500 m higher than Lago Titicaca. Geo- northern Chile. It has the distinction of being the logical evidence and climate indicators such as pollen, southernmost volcano in the Central Andes to retain a evaporites, and sedimentary facies indicate that an arid perennial thick ice cap. climate has existed in the Lauca Basin over the past 6.2 At 4518 m, Lago Chungará (Figure 2) is the highest million years (Kött et al 1995; Gaupp et al 1999).
Recommended publications
  • Jürgen Reinmüller
    JÜRGEN REINMÜLLER KLIMAVERHÄLTNISSE IN EXTREMEN HOCHGEBIRGEN DER ERDE Ergebnisse eines Sonderklimamessnetzes Diplomarbeit zur Erlangung des akademischen Grades „Magister der Naturwissenschaften“ an der Naturwissenschaftlichen Fakultät der Karl-Franzens-Universität Graz Betreuung durch: Ao. UNIV. PROF. DR. REINHOLD LAZAR Institut für Geographie und Raumforschung 2010 Eidesstattliche Erklärung 2 Eidesstattliche Erklärung Ich, Jürgen Reinmüller, erkläre hiermit, dass die vorliegende Diplomarbeit von mir selbst und ohne unerlaubte Beihilfe verfasst wurde. Die von mir benutzten Hilfsmittel sind im Literaturverzeichnis am Ende dieser Arbeit aufgelistet und wörtlich oder inhaltlich entnommene Stellen wurden als solche kenntlich gemacht. Admont, im März 2010 Jürgen Reinmüller Vorwort 3 Vorwort Die höchstgelegenen Bereiche der Hochgebirge der Erde weisen bis dato eine außerordentlich geringe Dichte an Klimastationen und damit ein Defizit an verfügbaren Klimadaten auf. Aussagen zu den thermischen Aspekten in den Gipfellagen extremer Hochgebirge jenseits der 6000 m Grenze konnten bis dato nur unbefriedigend erörtert werden. Als staatlich geprüfter Berg- und Schiführer und begeisterter Höhenbergsteiger liegen die beeindruckenden, hochgelegenen Gipfel seit Jahren in meinem Interessensbereich. Zudem sehe ich mich in meinem bergführerischen Arbeitsbereich zunehmend mit den Zeichen des aktuellen Klimawandels konfrontiert. Schmelzende Gletscher oder auftauender Permafrost stellen für Bergsteiger ein nicht unwesentliches Gefahrenpotential dar. Die durch das von Univ. Prof. Dr. Reinhold Lazar ins Leben gerufene Projekt HAMS.net (High Altitude Meteorological Station Network) gewonnenen Daten können künftig bei der Tourenplanung diverser Expeditionen miteinbezogen werden und stellen eine wichtige Grundlage für klimatologische Hochgebirgsforschung in großen Höhen dar. Ich selbst durfte dieses interessante Projekt durch den Data-Logger-Tausch am Aconcagua im Februar 2007 ein wenig unterstützen und werde dem Projekt auch in Zukunft mit Rat und Tat zur Seite stehen.
    [Show full text]
  • Appendix A. Supplementary Material to the Manuscript
    Appendix A. Supplementary material to the manuscript: The role of crustal and eruptive processes versus source variations in controlling the oxidation state of iron in Central Andean magmas 1. Continental crust beneath the CVZ Country Rock The basement beneath the sampled portion of the CVZ belongs to the Paleozoic Arequipa- Antofalla terrain – a high temperature metamorphic terrain with abundant granitoid intrusions that formed in response to Paleozoic subduction (Lucassen et al., 2000; Ramos et al., 1986). In Northern Chile and Northwestern Argentina this Paleozoic metamorphic-magmatic basement is largely homogeneous and felsic in composition, consistent with the thick, weak, and felsic properties of the crust beneath the CVZ (Beck et al., 1996; Fig. A.1). Neodymium model ages of exposed Paleozoic metamorphic-magmatic basement and sediments suggest a uniform Proterozoic protolith, itself derived from intrusions and sedimentary rock (Lucassen et al., 2001). AFC Model Parameters Pervasive assimilation of continental crust in the Central Andean ignimbrite magmas is well established (Hildreth and Moorbath, 1988; Klerkx et al., 1977; Fig. A.1) and has been verified by detailed analysis of radiogenic isotopes (e.g. 87Sr/86Sr and 143Nd/144Nd) on specific systems within the CVZ (Kay et al., 2011; Lindsay et al., 2001; Schmitt et al., 2001; Soler et al., 2007). Isotopic results indicate that the CVZ magmas are the result of mixing between a crustal endmember, mainly gneisses and plutonics that have a characteristic crustal signature of high 87Sr/86Sr and low 145Nd/144Nd, and the asthenospheric mantle (low 87Sr/86Sr and high 145Nd/144Nd; Fig. 2). In Figure 2, we model the amount of crustal assimilation required to produce the CVZ magmas that are targeted in this study.
    [Show full text]
  • Iv BOLIVIA the Top of the World
    iv BOLIVIA The top of the world Bolivia takes the breath away - with its beauty, its geographic and cultural diversity, and its lack of oxygen. From the air, the city of La Paz is first glimpsed between two snowy Andean mountain ranges on either side of a plain; the spread of the joined-up cities of El Alto and La Paz, cradled in a huge canyon, is an unforgettable sight. For passengers landing at the airport, the thinness of the air induces a mixture of dizziness and euphoria. The city's altitude affects newcomers in strange ways, from a mild headache to an inability to get up from bed; everybody, however, finds walking up stairs a serious challenge. The city's airport, in the heart of El Alto (literally 'the high place'), stands at 4000 metres, not far off the height of the highest peak in Europe, Mont Blanc. The peaks towering in the distance are mostly higher than 5000m, and some exceed 6000m in their eternally white glory. Slicing north-south across Bolivia is a series of climatic zones which range from tropical lowlands to tundra and eternal snows. These ecological niches were exploited for thousands of years, until the Spanish invasion in the early sixteenth century, by indigenous communities whose social structure still prevails in a few ethnic groups today: a single community, linked by marriage and customs, might live in two or more separate climes, often several days' journey away from each other on foot, one in the arid high plateau, the other in a temperate valley.
    [Show full text]
  • Evaluación Del Riesgo Volcánico En El Sur Del Perú
    EVALUACIÓN DEL RIESGO VOLCÁNICO EN EL SUR DEL PERÚ, SITUACIÓN DE LA VIGILANCIA ACTUAL Y REQUERIMIENTOS DE MONITOREO EN EL FUTURO. Informe Técnico: Observatorio Vulcanológico del Sur (OVS)- INSTITUTO GEOFÍSICO DEL PERÚ Observatorio Vulcanológico del Ingemmet (OVI) – INGEMMET Observatorio Geofísico de la Univ. Nacional San Agustín (IG-UNSA) AUTORES: Orlando Macedo, Edu Taipe, José Del Carpio, Javier Ticona, Domingo Ramos, Nino Puma, Víctor Aguilar, Roger Machacca, José Torres, Kevin Cueva, John Cruz, Ivonne Lazarte, Riky Centeno, Rafael Miranda, Yovana Álvarez, Pablo Masias, Javier Vilca, Fredy Apaza, Rolando Chijcheapaza, Javier Calderón, Jesús Cáceres, Jesica Vela. Fecha : Mayo de 2016 Arequipa – Perú Contenido Introducción ...................................................................................................................................... 1 Objetivos ............................................................................................................................................ 3 CAPITULO I ........................................................................................................................................ 4 1. Volcanes Activos en el Sur del Perú ........................................................................................ 4 1.1 Volcán Sabancaya ............................................................................................................. 5 1.2 Misti ..................................................................................................................................
    [Show full text]
  • Volcán Lascar
    Volcán Lascar Región: Antofagasta Provincia: El Loa Comuna: San Pedro de Atacama Coordenadas: 21°22’S – 67°44’O Poblados más cercanos: Talabre – Camar – Socaire Tipo: Estratovolcán Altura: 5.592 m s.n.m. Diámetro basal: 8.9 km Área basal: 62.2 km2 Volumen estimado: 28.5 km3 Última actividad: 2015 Última erupción mayor: 1993 Volcán Lascar. Vista desde el norte Ranking de riesgo (Fotografía: Gabriela Jara, SERNAGEOMIN) 14 específico: Generalidades El volcán Láscar corresponde a un estratovolcán compuesto, elongado en dirección este-oeste, activo desde hace unos 240 ka y emplazado en el margen oeste de la planicie altiplánica. Está conformado por lavas andesíticas, que alcanzan más de 10 km de longitud, y por potentes lavas dacíticas que se extienden hasta 5 km, las que fueron emitidas desde los flancos NO a SO. La lava más reciente se estima en 7 mil años de antigüedad. En los alrededores del volcán se reconocen depósitos de flujo y caída piroclástica, además de numerosos cráteres de impacto asociados a la eyección de bombas durante erupciones plinianas y subplinianas. El principal evento eruptivo durante su evolución se denomina Ignimbrita Soncor, generado hace unos 27 ka al oeste del volcán y con un volumen estimado cercano a los 10 km3. En la cima de este volcán se observan seis cráteres, algunos anidados, y el central de estos se encuentra activo. Registro eruptivo Este volcán ha presentado alrededor de 30 erupciones explosivas desde el siglo XIX, lo que lo convierte en el volcán más activo del norte de Chile. Estos eventos han consistido típicamente en erupciones vulcanianas de corta duración, con emisión de ceniza fina y proyecciones balísticas en un radio de 5 km, donde el último evento de este tipo ocurrió el 30 de octubre del 2015.
    [Show full text]
  • Final Copy 2021 03 23 Ituarte
    This electronic thesis or dissertation has been downloaded from Explore Bristol Research, http://research-information.bristol.ac.uk Author: Ituarte, Lia S Title: Exploring differential erosion patterns using volcanic edifices as a proxy in South America General rights Access to the thesis is subject to the Creative Commons Attribution - NonCommercial-No Derivatives 4.0 International Public License. A copy of this may be found at https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode This license sets out your rights and the restrictions that apply to your access to the thesis so it is important you read this before proceeding. Take down policy Some pages of this thesis may have been removed for copyright restrictions prior to having it been deposited in Explore Bristol Research. However, if you have discovered material within the thesis that you consider to be unlawful e.g. breaches of copyright (either yours or that of a third party) or any other law, including but not limited to those relating to patent, trademark, confidentiality, data protection, obscenity, defamation, libel, then please contact [email protected] and include the following information in your message: •Your contact details •Bibliographic details for the item, including a URL •An outline nature of the complaint Your claim will be investigated and, where appropriate, the item in question will be removed from public view as soon as possible. Exploring differential erosion patterns using volcanic edifices as a proxy in South America Lia S. Ituarte A dissertation submitted to the University of Bristol in accordance with the requirements for award of the degree of Master by Research in the Faculty of Science, School of Earth Sciences, October 2020.
    [Show full text]
  • Conservation of Biodiversity in Protected Areas of Shared Priority Ecoregions of Latin America and the Caribbean
    Inter-Agency Technical Committee of the Forum of Ministers of the Environment of Latin America and the Caribbean Twelfth Forum of Ministers of the Environment Distribution: of Latin America and the Caribbean Limited UNEP/LAC-IGWG.XII/TD.3 Bridgetown, Barbados 27 February, 2000 2nd to 7th March 2000 Original: English - Spanish A. Preparatory Meeting of Experts 2nd to 3rd March 2000 The World Bank United Nations Development Programme Conservation of Biodiversity in United Nations Protected Areas of Shared Environment Programme (ITC Coordinator) Priority Ecoregions of Latin America and the Caribbean Economic Commission for Latin America and the Caribbean Inter-American Development Bank Conservation and sustainable use of tropical rainforests of Latin America and the Caribbean This document was prepared by the Inter-Agency Technical Committee on the basis of the mandates of the Eleventh Meeting of the Forum of Ministers of the Environment of Latin America and the Caribbean (Lima, Peru, March 1998). The work was carried out by the United Nations Development Programme (UNDP) and the United Nations Environment Programme (UNEP), as the lead agencies, in coordination with the Food and Agriculture Organization of the United Nations (FAO). The purpose of the document is to provide the Forum with support for discussing and approving courses of action in the sphere of the Regional Action Plan for the period 2000-2001. UNEP/LAC-IGWG.XII/TD.4 Page i Table of Contents Chapter I. Conservation of Biodiversity in Protected Areas of Shared Priority Ecoregions of Latin America and the Caribbean................................................. 1 I. Introduction................................................................................................ 1 II. Development of priority theme lines ................................................................
    [Show full text]
  • La Calidad Y Accesibilidad Del Agua Potable Rural Chile: Arica – Parinacota Eileen Kapples SIT Study Abroad
    SIT Graduate Institute/SIT Study Abroad SIT Digital Collections Independent Study Project (ISP) Collection SIT Study Abroad Fall 2011 La Calidad y Accesibilidad del Agua Potable Rural Chile: Arica – Parinacota Eileen Kapples SIT Study Abroad Follow this and additional works at: https://digitalcollections.sit.edu/isp_collection Part of the Demography, Population, and Ecology Commons, Inequality and Stratification Commons, Natural Resources Management and Policy Commons, and the Water Resource Management Commons Recommended Citation Kapples, Eileen, "La Calidad y Accesibilidad del Agua Potable Rural Chile: Arica – Parinacota" (2011). Independent Study Project (ISP) Collection. 1168. https://digitalcollections.sit.edu/isp_collection/1168 This Unpublished Paper is brought to you for free and open access by the SIT Study Abroad at SIT Digital Collections. It has been accepted for inclusion in Independent Study Project (ISP) Collection by an authorized administrator of SIT Digital Collections. For more information, please contact [email protected]. La calidad y accesibilidad del agua potable rural Chile: Arica – Parinacota Eileen Kapples SIT Study Abroad Programa: Salud Publica, Medicina Tradicional y Empoderamiento de la Comunidad Diciembre, 2011 Consejero: Dr. Alfrodin Turra Directora Académica: Rossana Testa, Ph.D Abstract The World Health Organization (WHO) affirms that clean drinking water is an essential resource and deems it a basic human right. The principle objective of this investigation is to study the quality and accessibility of drinking water in rural Chile, in the northern most region, XV Arica – Parinacota. Specific objectives include the investigation of the functioning and management of water services, determining the percentages of populations who do not have access to water services, and conducting analyses of the physical-chemical and bacteriological content of the water.
    [Show full text]
  • Vegetation and Climate Change on the Bolivian Altiplano Between 108,000 and 18,000 Years Ago
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by DigitalCommons@University of Nebraska University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Earth and Atmospheric Sciences, Department Papers in the Earth and Atmospheric Sciences of 1-1-2005 Vegetation and climate change on the Bolivian Altiplano between 108,000 and 18,000 years ago Alex Chepstow-Lusty Florida Institute of Technology, [email protected] Mark B. Bush Florida Institute of Technology Michael R. Frogley Florida Institute of Technology, 150 West University Boulevard, Melbourne, FL Paul A. Baker Duke University, [email protected] Sherilyn C. Fritz University of Nebraska-Lincoln, [email protected] See next page for additional authors Follow this and additional works at: https://digitalcommons.unl.edu/geosciencefacpub Part of the Earth Sciences Commons Chepstow-Lusty, Alex; Bush, Mark B.; Frogley, Michael R.; Baker, Paul A.; Fritz, Sherilyn C.; and Aronson, James, "Vegetation and climate change on the Bolivian Altiplano between 108,000 and 18,000 years ago" (2005). Papers in the Earth and Atmospheric Sciences. 30. https://digitalcommons.unl.edu/geosciencefacpub/30 This Article is brought to you for free and open access by the Earth and Atmospheric Sciences, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Papers in the Earth and Atmospheric Sciences by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Authors Alex Chepstow-Lusty, Mark B. Bush, Michael R. Frogley, Paul A. Baker, Sherilyn C. Fritz, and James Aronson This article is available at DigitalCommons@University of Nebraska - Lincoln: https://digitalcommons.unl.edu/ geosciencefacpub/30 Published in Quaternary Research 63:1 (January 2005), pp.
    [Show full text]
  • Seasonal Patterns of Atmospheric Mercury in Tropical South America As Inferred by a Continuous Total Gaseous Mercury Record at Chacaltaya Station (5240 M) in Bolivia
    Atmos. Chem. Phys., 21, 3447–3472, 2021 https://doi.org/10.5194/acp-21-3447-2021 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License. Seasonal patterns of atmospheric mercury in tropical South America as inferred by a continuous total gaseous mercury record at Chacaltaya station (5240 m) in Bolivia Alkuin Maximilian Koenig1, Olivier Magand1, Paolo Laj1, Marcos Andrade2,7, Isabel Moreno2, Fernando Velarde2, Grover Salvatierra2, René Gutierrez2, Luis Blacutt2, Diego Aliaga3, Thomas Reichler4, Karine Sellegri5, Olivier Laurent6, Michel Ramonet6, and Aurélien Dommergue1 1Institut des Géosciences de l’Environnement, Université Grenoble Alpes, CNRS, IRD, Grenoble INP, Grenoble, France 2Laboratorio de Física de la Atmósfera, Instituto de Investigaciones Físicas, Universidad Mayor de San Andrés, La Paz, Bolivia 3Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki, 00014, Finland 4Department of Atmospheric Sciences, University of Utah, Salt Lake City, UT 84112, USA 5Université Clermont Auvergne, CNRS, Laboratoire de Météorologie Physique, UMR 6016, Clermont-Ferrand, France 6Laboratoire des Sciences du Climat et de l’Environnement, LSCE-IPSL (CEA-CNRS-UVSQ), Université Paris-Saclay, Gif-sur-Yvette, France 7Department of Atmospheric and Oceanic Sciences, University of Maryland, College Park, MD 20742, USA Correspondence: Alkuin Maximilian Koenig ([email protected]) Received: 22 September 2020 – Discussion started: 28 October 2020 Revised: 20 January 2021 – Accepted: 21 January 2021 – Published: 5 March 2021 Abstract. High-quality atmospheric mercury (Hg) data are concentrations were linked to either westerly Altiplanic air rare for South America, especially for its tropical region. As a masses or those originating from the lowlands to the south- consequence, mercury dynamics are still highly uncertain in east of CHC.
    [Show full text]
  • World Bank Document
    69701 Chile: Regional Development Planning Public Disclosure Authorized Evolving Policy and its Application to Regions I and XV Main Document December 21, 2007 Poverty Reduction and Economic Management Unit Latin America and the Caribbean Public Disclosure Authorized Document of The World Bank Public Disclosure Authorized Public Disclosure Authorized i CURRENCY EQUIVALENTS Currency Unit = Chilean Pesos (CLP) US$1.0 = CLP $496.75 (December, 2007) GOVERNMENT FISCAL YEAR January 1 to December 31 WEIGHTS MEASURES Metric System Vice President: Pamela Cox Country Director: Pedro Alba Sector Director: Marcelo Giugale Sector Leader: James Parks Sector Manager: Nick Manning 1. Task Manager : Fernando Rojas ACKNOWLEDGEMENTS In order to address this research agenda, the Bank assembled a team of Chilean and international experts. The team, lead by Fernando Rojas, was composed of Mr. Geoffrey Shepherd, who was the main editor of this report. It was also composed of Thomas Courchene, Enrique Fanta, Roberto Panzardi, Emily Sinnott, Wolfgang Koehling, Fanny Weiner, Raul Labán, Helena Dúran, Paulina Soto, Azul del Villar and Chie Ingvoldstad and Patricia Mendez. Yoko Katakura, William Dillinger, Maria Emilia Freire, Remy Prud’Homme, Paul Bernd Spahn, Harald L. Fuhr and Ignacio Irarrázaval provided useful comments to earlier drafts as peer reviewers. The team as a whole spent two separate weeks in Chile for data collection, meeting with officials and experts, and internal discussion and deliberation. As part of the initial meeting, the team visited Region I and Region XV, where the team met with officials, experts, politicians and various civil society associations. Earlier drafts of this report were presented to and discussed with the Minister of Finance and his team, and the Sub Direccion de Desarrollo Regional.
    [Show full text]
  • ACCIÓN VOLCÁNICA Y CLIMÁTICA EN SU MODELADO Diálogo Andino - Revista De Historia, Geografía Y Cultura Andina, Núm
    Diálogo Andino - Revista de Historia, Geografía y Cultura Andina ISSN: 0716-2278 [email protected] Universidad de Tarapacá Chile Rodríguez Valdivia, Alan; Albornoz Espinoza, Cristián; Tapia Tosetti, Alejandro GEOMORFOLOGÍA DEL ÁREA DE PUTRE, ANDES DEL NORTE DE CHILE: ACCIÓN VOLCÁNICA Y CLIMÁTICA EN SU MODELADO Diálogo Andino - Revista de Historia, Geografía y Cultura Andina, núm. 54, 2017, pp. 7-20 Universidad de Tarapacá Arica, Chile Disponible en: http://www.redalyc.org/articulo.oa?id=371353686002 Cómo citar el artículo Número completo Sistema de Información Científica Más información del artículo Red de Revistas Científicas de América Latina, el Caribe, España y Portugal Página de la revista en redalyc.org Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso abierto Nº 54, 2017. Páginas 7-20 Diálogo Andino GEOMORFOLOGÍA DEL ÁREA DE PUTRE, ANDES DEL NORTE DE CHILE: ACCIÓN VOLCÁNICA Y CLIMÁTICA EN SU MODELADO* GEOMORPHOLOGY OF THE PUTRE AREA, NORTHERN ANDES OF CHILE: VOLCANIC AND CLIMATE ACTION IN ITS MODELING Alan Rodríguez Valdivia**, Cristián Albornoz Espinoza*** y Alejandro Tapia Tosetti**** El área de Putre se localiza en una subcuenca de montaña a 3.500 msnm, en la vertiente oeste de la cordillera occidental Andina (extremo norte de Chile), en el que predominan formas de relieve asociadas a la acción volcánica y del clima. Dicho relieve es producto de la evolución geológica del Complejo Volcánico Taapaca (CVT), cuyos procesos eruptivos han dado paso a morfolito- logías constructivas que configuran la subcuenca estudiada, en las que el factor climático ha actuado constantemente, meteorizando y erosionando los materiales, dando como resultado formas derivadas de procesos gravitacionales, fluviales y, en menor medida, periglaciales.
    [Show full text]