Antares Test Launch “A-ONE Mission” Overview Briefing
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Orbital Lifetime Predictions
Orbital LIFETIME PREDICTIONS An ASSESSMENT OF model-based BALLISTIC COEFfiCIENT ESTIMATIONS AND ADJUSTMENT FOR TEMPORAL DRAG co- EFfiCIENT VARIATIONS M.R. HaneVEER MSc Thesis Aerospace Engineering Orbital lifetime predictions An assessment of model-based ballistic coecient estimations and adjustment for temporal drag coecient variations by M.R. Haneveer to obtain the degree of Master of Science at the Delft University of Technology, to be defended publicly on Thursday June 1, 2017 at 14:00 PM. Student number: 4077334 Project duration: September 1, 2016 – June 1, 2017 Thesis committee: Dr. ir. E. N. Doornbos, TU Delft, supervisor Dr. ir. E. J. O. Schrama, TU Delft ir. K. J. Cowan MBA TU Delft An electronic version of this thesis is available at http://repository.tudelft.nl/. Summary Objects in Low Earth Orbit (LEO) experience low levels of drag due to the interaction with the outer layers of Earth’s atmosphere. The atmospheric drag reduces the velocity of the object, resulting in a gradual decrease in altitude. With each decayed kilometer the object enters denser portions of the atmosphere accelerating the orbit decay until eventually the object cannot sustain a stable orbit anymore and either crashes onto Earth’s surface or burns up in its atmosphere. The capability of predicting the time an object stays in orbit, whether that object is space junk or a satellite, allows for an estimate of its orbital lifetime - an estimate satellite op- erators work with to schedule science missions and commercial services, as well as use to prove compliance with international agreements stating no passively controlled object is to orbit in LEO longer than 25 years. -
Spacecraft System Failures and Anomalies Attributed to the Natural Space Environment
NASA Reference Publication 1390 - j Spacecraft System Failures and Anomalies Attributed to the Natural Space Environment K.L. Bedingfield, R.D. Leach, and M.B. Alexander, Editor August 1996 NASA Reference Publication 1390 Spacecraft System Failures and Anomalies Attributed to the Natural Space Environment K.L. Bedingfield Universities Space Research Association • Huntsville, Alabama R.D. Leach Computer Sciences Corporation • Huntsville, Alabama M.B. Alexander, Editor Marshall Space Flight Center • MSFC, Alabama National Aeronautics and Space Administration Marshall Space Flight Center ° MSFC, Alabama 35812 August 1996 PREFACE The effects of the natural space environment on spacecraft design, development, and operation are the topic of a series of NASA Reference Publications currently being developed by the Electromagnetics and Aerospace Environments Branch, Systems Analysis and Integration Laboratory, Marshall Space Flight Center. This primer provides an overview of seven major areas of the natural space environment including brief definitions, related programmatic issues, and effects on various spacecraft subsystems. The primary focus is to present more than 100 case histories of spacecraft failures and anomalies documented from 1974 through 1994 attributed to the natural space environment. A better understanding of the natural space environment and its effects will enable spacecraft designers and managers to more effectively minimize program risks and costs, optimize design quality, and achieve mission objectives. .o° 111 TABLE OF CONTENTS -
March 21–25, 2016
FORTY-SEVENTH LUNAR AND PLANETARY SCIENCE CONFERENCE PROGRAM OF TECHNICAL SESSIONS MARCH 21–25, 2016 The Woodlands Waterway Marriott Hotel and Convention Center The Woodlands, Texas INSTITUTIONAL SUPPORT Universities Space Research Association Lunar and Planetary Institute National Aeronautics and Space Administration CONFERENCE CO-CHAIRS Stephen Mackwell, Lunar and Planetary Institute Eileen Stansbery, NASA Johnson Space Center PROGRAM COMMITTEE CHAIRS David Draper, NASA Johnson Space Center Walter Kiefer, Lunar and Planetary Institute PROGRAM COMMITTEE P. Doug Archer, NASA Johnson Space Center Nicolas LeCorvec, Lunar and Planetary Institute Katherine Bermingham, University of Maryland Yo Matsubara, Smithsonian Institute Janice Bishop, SETI and NASA Ames Research Center Francis McCubbin, NASA Johnson Space Center Jeremy Boyce, University of California, Los Angeles Andrew Needham, Carnegie Institution of Washington Lisa Danielson, NASA Johnson Space Center Lan-Anh Nguyen, NASA Johnson Space Center Deepak Dhingra, University of Idaho Paul Niles, NASA Johnson Space Center Stephen Elardo, Carnegie Institution of Washington Dorothy Oehler, NASA Johnson Space Center Marc Fries, NASA Johnson Space Center D. Alex Patthoff, Jet Propulsion Laboratory Cyrena Goodrich, Lunar and Planetary Institute Elizabeth Rampe, Aerodyne Industries, Jacobs JETS at John Gruener, NASA Johnson Space Center NASA Johnson Space Center Justin Hagerty, U.S. Geological Survey Carol Raymond, Jet Propulsion Laboratory Lindsay Hays, Jet Propulsion Laboratory Paul Schenk, -
SGAC-Annual-Report-2014.Pdf
ANNUAL REPORT SPACE GENERATION ADVISORY COUNCIL 2014 In support of the United Nations Programme on Space Applications A. TABLE OF CONTENTS A. Table of Contents 2 In support of the United Nations Programme B. Sponsors and Partners 4 on Space Applications 1. Introduction 10 1.1 About the SGAC 12 14 c/o European Space Policy Institute (ESPI) 1.2 Letter from the Co-chairs 15 Schwarzenbergplatz 6 1.3 Letter from the Executive Director 16 Vienna A-1030 1.4 SGAC output at a glance AUSTRIA 2. SGAC Background 22 2.1 History of the SGAC 24 26 [email protected] 2.2 Leadership and Structure 27 www.spacegeneration.org 2.3 Programme +41 1 718 11 18 30 3. The organisation in 2014 30 32 +43 1 718 11 18 99 3.1 Goal Achievement Review 3.2 SGAC Activity Highlights 36 42 © 2015 Space Generation Advisory Council 3.3 Space Generation Fusion Forum Report 3.4 Space Generation Congress Report 50 3.5 United Nations Report 62 3.6 SGAC Regional Workshops 66 3.7 SGAC Supported Events 68 3.8 Financial Summary 72 Acknowledgements 4. Projects 78 4.1 Project Outcomes and Highlights 80 The SGAC 2014 Annual Report was compiled and 4.2 Space Technologies for Disaster Management Project Group 81 edited by Minoo Rathansabapathy (South Africa/ 4.3 Near Earth Objects Project Group 82 Australia), Andrea Jaime (Spain), Laura Rose (USA) 4.4 Space Law and Policy Project Group 84 and Arno Geens (Belgium) with the assistance of 4.5 Commercial Space Project Group 86 Candice Goodwin (South Africa), Justin Park (USA), 4.6 Space Safety and Sustainability Project Group 88 Nikita Marwaha (United Kingdom), Dario Schor 4.7 Small Satellites Project Group 90 (Argentina/Canada), Leo Teeney (UK) and Abhijeet 4.8 Space Exploration Project Group 92 Kumar (Australia) in editing. -
Commercial Orbital Transportation Services
National Aeronautics and Space Administration Commercial Orbital Transportation Services A New Era in Spaceflight NASA/SP-2014-617 Commercial Orbital Transportation Services A New Era in Spaceflight On the cover: Background photo: The terminator—the line separating the sunlit side of Earth from the side in darkness—marks the changeover between day and night on the ground. By establishing government-industry partnerships, the Commercial Orbital Transportation Services (COTS) program marked a change from the traditional way NASA had worked. Inset photos, right: The COTS program supported two U.S. companies in their efforts to design and build transportation systems to carry cargo to low-Earth orbit. (Top photo—Credit: SpaceX) SpaceX launched its Falcon 9 rocket on May 22, 2012, from Cape Canaveral, Florida. (Second photo) Three days later, the company successfully completed the mission that sent its Dragon spacecraft to the Station. (Third photo—Credit: NASA/Bill Ingalls) Orbital Sciences Corp. sent its Antares rocket on its test flight on April 21, 2013, from a new launchpad on Virginia’s eastern shore. Later that year, the second Antares lifted off with Orbital’s cargo capsule, (Fourth photo) the Cygnus, that berthed with the ISS on September 29, 2013. Both companies successfully proved the capability to deliver cargo to the International Space Station by U.S. commercial companies and began a new era of spaceflight. ISS photo, center left: Benefiting from the success of the partnerships is the International Space Station, pictured as seen by the last Space Shuttle crew that visited the orbiting laboratory (July 19, 2011). More photos of the ISS are featured on the first pages of each chapter. -
Precision Magnetometers for Aerospace Applications: a Review
sensors Review Precision Magnetometers for Aerospace Applications: A Review James S. Bennett 1,† , Brian E. Vyhnalek 2,†, Hamish Greenall 1 , Elizabeth M. Bridge 1 , Fernando Gotardo 1 , Stefan Forstner 1 , Glen I. Harris 1 , Félix A. Miranda 2,* and Warwick P. Bowen 1,* 1 School of Mathematics and Physics, The University of Queensland, St. Lucia, QLD 4072, Australia; [email protected] (J.S.B.); [email protected] (H.G.); [email protected] (E.M.B.); [email protected] (F.G.); [email protected] (S.F.); [email protected] (G.I.H.) 2 NASA Glenn Research Center, Cleveland, OH 44135, USA; [email protected] * Correspondence: [email protected] (F.A.M.); [email protected] (W.P.B.) † These authors contributed equally to this work. Abstract: Aerospace technologies are crucial for modern civilization; space-based infrastructure underpins weather forecasting, communications, terrestrial navigation and logistics, planetary observations, solar monitoring, and other indispensable capabilities. Extraplanetary exploration— including orbital surveys and (more recently) roving, flying, or submersible unmanned vehicles—is also a key scientific and technological frontier, believed by many to be paramount to the long-term survival and prosperity of humanity. All of these aerospace applications require reliable control of the craft and the ability to record high-precision measurements of physical quantities. Magnetometers deliver on both of these aspects and have been vital to the success of numerous missions. In this review Citation: Bennett, J.S.; Vyhnalek, paper, we provide an introduction to the relevant instruments and their applications. -
Prototype Design and Mission Analysis for a Small Satellite Exploiting Environmental Disturbances for Attitude Stabilization
Calhoun: The NPS Institutional Archive Theses and Dissertations Thesis and Dissertation Collection 2016-03 Prototype design and mission analysis for a small satellite exploiting environmental disturbances for attitude stabilization Polat, Halis C. Monterey, California: Naval Postgraduate School http://hdl.handle.net/10945/48578 NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS PROTOTYPE DESIGN AND MISSION ANALYSIS FOR A SMALL SATELLITE EXPLOITING ENVIRONMENTAL DISTURBANCES FOR ATTITUDE STABILIZATION by Halis C. Polat March 2016 Thesis Advisor: Marcello Romano Co-Advisor: Stephen Tackett Approved for public release; distribution is unlimited THIS PAGE INTENTIONALLY LEFT BLANK REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704–0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington, DC 20503. 1. AGENCY USE ONLY 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED (Leave blank) March 2016 Master’s thesis 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS PROTOTYPE DESIGN AND MISSION ANALYSIS FOR A SMALL SATELLITE EXPLOITING ENVIRONMENTAL DISTURBANCES FOR ATTITUDE STABILIZATION 6. AUTHOR(S) Halis C. Polat 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING Naval Postgraduate School ORGANIZATION REPORT Monterey, CA 93943-5000 NUMBER 9. -
International Amateur Radio Union Region 1 VHF - UHF - MW Newsletter
International Amateur Radio Union Region 1 VHF - UHF - MW Newsletter Edition 59 17 May 2012 Michael Kastelic, OE1MCU Satellites (contributed by Graham Shirville, G3VZV) Here is an update on the availability of satellites operating in the amateur satellite service. We have noted changes that have occurred since the R1 Meeting in Sun City to spacecraft which carry transponders. Additionally there are many other, non-transponder satellites in operation – see http://www.amsat.org/amsat-new/satellites/status.php for the latest information on these. • AO7 was launched in the 1970’s and is still working well when in sunlight. Linear U/V and V/A transponders • FO29 currently has the V/U linear transponder active • VO52 recently had a failure of one U/V transponder, but luckily it has been carrying a “spare” since launch and this is now functioning well • AO27 the V/U FM transponder is active • SO50 the V/U FM transponder is active • SO67 carries a V/U FM transponder, but is presently not active • HO68 the transponder is currently not functioning, but a CW beacon can be heard • AO51 after seven years of active service this satellite suffered a battery failure in late 2011 and is no longer active • ARISSAT this spacecraft which was deployed from the ISS in 2011 de-orbited in early 2012. A number of satellites intended to carry transponders are presently being constructed and have a launch planned: • FUNcube-1 is scheduled for launch from Russia in late 2012. A single CubeSat with a linear U/V transponder and will also provide telemetry for educational outreach • Delfi-n3xt is a triple CubeSat which will also carry a linear U/V transponder and is scheduled to be on the same launch as FUNcube-1 • Fox-1 is a single CubeSat which will carry a U/V FM transponder and is expected to be launched by NASA during 2013. -
National Aeronautics and Space Administration
9 National Aeronautics and Space Administration Ross B. Garelick Bell American Institute of Aeronautics and Astronautics HIGHLIGHTS • The President’s Budget Request for NASA in FY 2014 is $17.7 billion, $1.3 billion above the estimated FY 2013 level and $84 million below the enacted FY 2012 level. • NASA’s FY 2013 appropriations suffered two across-the-board reductions, a 1.877% rescission in the FY 2013 Continuing Appropriations, P.L. 113-6, and the forced 5% sequester required by the Budget Control Act of 2011. The President’s Budget Request for FY 2014 does not account for the expected sequester required by the Budget Control Act of 2011 on FY 2014 appropriations. • The Orion Multi-Purpose Crew Vehicle and Space Launch System, scheduled for their first combined test launch in 2018, with a target crew launch in 2021, are slightly reduced in funding the President’s FY 2014 Budget Request. • As of May 25, 2012, with Space Exploration Technologies Corporation (SpaceX) having successfully completing its resupply mission to the ISS, commercial cargo has officially begun operations. SpaceX again resupplied the ISS on March 3, 3013. On April 22, 2013, Orbital Sciences Corporation successfully launched its Antares rocket from NASA’s Wallops Launch Facility on the coast of Virginia, another important milestone in creating a commercial market for cargo to the ISS. Orbital anticipates launching both the Antares rocket and the Cygnus capsule in the fall of 2013, and SpaceX, The Boeing Company, Sierra Nevada Corporation, and unfunded Blue Origin are working toward commercial crew missions to the ISS, with launches to begin in 2017. -
3.2 the Extended Kalman Filter
Pointing System Performance Analysis for Optical Inter-satellite Communication on CubeSats by Hyosang Yoon B.S., Korea Advanced Institute of Science and Technology (2008) S.M., Korea Advanced Institute of Science and Technology (2010) Submitted to the Department of Aeronautics and Astronautics in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY June 2017 @ Massachusetts Institute of Technology 2017. All rights reserved. Author ....................... Signature redacted Department of Aeronautics and Astronautics May 24, 2017 Certified by.....Signature redacted ............... Kerri L. Cahoy Associate Professor of Aeronautics and Astronautics Thesij Supervisor Certified by ....... Signature redacted ..... Steven R. Hall Professor of eronVbics 4nd Asironautics Certified by............. Signature redacted ....... David W. Miller Professo.-ro r cs and Astronautics Accepted by ............ Signature redacted ('* Youssef M. Marzouk Associate Professor of Aeronautics and Astronautics MASSACHUSETTS INSTITUT E Chair, Graduate Program Committee OF TECHNOLOGY SEP 272017 LIBRARIES ARCHIVES Pointing System Performance Analysis for Optical Inter-satellite Communication on CubeSats by Hyosang Yoon Submitted to the Department of Aeronautics and Astronautics on May 24, 2017, in partial fulfillment of the requirements for the degree of Doctor of Philosophy Abstract Free-space optical communication using lasers (lasercom) is a leading contender for future space-based communication systems with potential advantages over radio fre- quency (RF) communication systems in size, weight, and power consumption (SWaP). Key benefits are due to the shorter wavelength: additional bandwidth and narrow beam width. The narrower beam supports higher energy density for a given aperture size, so that lasercom can transmit data at the same rate with smaller SWaP as well as improve link security since the beam footprint is smaller. -
PHONESAT IN-FLIGHT EXPERIENCE RESULTS V4
PHONESAT IN-FLIGHT EXPERIENCE RESULTS Mr. Alberto Guillen Salas (1,2) [[email protected]] Mr. Watson Attai (1,2), Mr. Ken Y. Oyadomari (1,2), Mr. Cedric Priscal (1,2), Dr. Rogan S. Shimmin (1,2), Mr. Oriol Tintore Gazulla (1,2), Mr. Jasper L. Wolfe (1,2) (1) NASA Ames Research Center, Moffett Field (CA), United States (2)Stinger Ghaffarian Technologies (SGT,) Moffett Field (CA), United States ABSTRACT Over the last decade, consumer technology has vastly improved its performances, become more affordable and reduced its size. Modern day smartphones offer capabilities that enable us to figure out where we are, which way we are pointing, observe the world around us, and store and transmit this information to wherever we want. These capabilities are remarkably similar to those required for multi-million dollar satellites. The PhoneSat project at NASA Ames Research Center is building a series of CubeSat-size spacecrafts using an off-the-shelf smartphone as its on-board computer with the goal of showing just how simple and cheap space can be. Since the PhoneSat project started, different suborbital and orbital flight activities have proven the viability of this revolutionary approach. In early 2013, the PhoneSat project launched the first triage of PhoneSats into LEO. In the five day orbital life time, the nano-satellites flew the first functioning smartphone-based satellites (using the Nexus One and Nexus S phones), the cheapest satellite (a total parts cost below $3,500) and one of the fastest on-board processors (CPU speed of 1GHz). In this paper, an overview of the PhoneSat project as well as a summary of the in-flight experimental results is presented. -
WORLD SPACECRAFT DIGEST by Jos Heyman 2013 Version: 1 January 2014 © Copyright Jos Heyman
WORLD SPACECRAFT DIGEST by Jos Heyman 2013 Version: 1 January 2014 © Copyright Jos Heyman The spacecraft are listed, in the first instance, in the order of their International Designation, resulting in, with some exceptions, a date order. Spacecraft which did not receive an International Designation, being those spacecraft which failed to achieve orbit or those which were placed in a sub orbital trajectory, have been inserted in the date order. For each spacecraft the following information is provided: a. International Designation and NORAD number For each spacecraft the International Designation, as allocated by the International Committee on Space Research (COSPAR), has been used as the primary means to identify the spacecraft. This is followed by the NORAD catalogue number which has been assigned to each object in space, including debris etc., in a numerical sequence, rather than a chronoligical sequence. Normally no reference has been made to spent launch vehicles, capsules ejected by the spacecraft or fragments except where such have a unique identification which warrants consideration as a separate spacecraft or in other circumstances which warrants their mention. b. Name The most common name of the spacecraft has been quoted. In some cases, such as for US military spacecraft, the name may have been deduced from published information and may not necessarily be the official name. Alternative names have, however, been mentioned in the description and have also been included in the index. c. Country/International Agency For each spacecraft the name of the country or international agency which owned or had prime responsibility for the spacecraft, or in which the owner resided, has been included.