Predictive Coding As a Unifying Principle for Explaining a Broad Range of Brightness Phenomena

Total Page:16

File Type:pdf, Size:1020Kb

Predictive Coding As a Unifying Principle for Explaining a Broad Range of Brightness Phenomena bioRxiv preprint doi: https://doi.org/10.1101/2020.04.23.057620; this version posted April 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Predictive coding as a unifying principle for explaining a broad range of brightness phenomena Alejandro Lerer1Y*, Hans Sup`er2, Matthias S.Keil1,2Y, 1 Departament de Cognici´o,Desenvolupament i Psicologia de l’Educaci´o,Faculty of Psychology, University of Barcelona, Barcelona, Spain 2 Institut de Neuroci`encies,Universitat de Barcelona, Barcelona, Spain 3 Institut de Recerca Pedi`atricaHospital Sant Joan de D´eu,Barcelona, Spain 4 Catalan Institute for Advanced Studies (ICREA), Barcelona, Spain YThese authors contributed equally to this work. * [email protected] Abstract The visual system is highly sensitive to spatial context for encoding luminance patterns. Context sensitivity inspired the proposal of many neural mechanisms for explaining the perception of luminance (brightness). Here we propose a novel computational model for estimating the brightness of many visual illusions. We hypothesize that many aspects of brightness can be explained by a predictive coding mechanism, which reduces the redundancy in edge representations on the one hand, while non-redundant activity is enhanced on the other (response equalization). Response equalization is implemented with a dynamic filtering process, which (dynamically) adapts to each input image. Dynamic filtering is applied to the responses of complex cells in order to build a gain control map. The gain control map then acts on simple cell responses before they are used to create a brightness map via activity propagation. Our approach is successful in predicting many challenging visual illusions, including contrast effects, assimilation, and reverse contrast. Author summary We hardly notice that what we see is often different from the physical world \outside" 1 of the brain. This means that the visual experience that the brain actively constructs 2 may be different from the actual physical properties of objects in the world. In this 3 work, we propose a hypothesis about how the visual system of the brain may construct 4 a representation for achromatic images. Since this process is not unambiguous, 5 sometimes we notice \errors" in our perception, which cause visual illusions. The 6 challenge for theorists, therefore, is to propose computational principles that recreate a 7 large number of visual illusions and to explain why they occur. Notably, our proposed 8 mechanism explains a broader set of visual illusions than any previously published 9 proposal. We achieved this by trying to suppress predictable information. For example, 10 if an image contained repetitive structures, then these structures are predictable and 11 would be suppressed. In this way, non-predictable structures stand out. Predictive 12 coding mechanisms act as early as in the retina (which enhances luminance changes but 13 suppresses uniform regions of luminance), and our computational model holds that this 14 principle also acts at the next stage in the visual system, where representations of 15 perceived luminance (brightness) are created. 16 April 18, 2020 1/30 bioRxiv preprint doi: https://doi.org/10.1101/2020.04.23.057620; this version posted April 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Introduction 17 Visual perception is relative rather than absolute; the visual system (VS) computes the 18 perceptual attributes of a visual target not only based on its physical properties, but 19 also by considering information from the surrounding region of the target (context). For 20 example, it is possible to induce different kinds of effects by context modification, such 21 that the brightness of a target is contrasted (increasing brightness differences) or 22 assimilated (decreasing brightness differences) with respect to its adjacent surround. 23 Variants of these effects give rise to a myriad of visual illusions, which are of great 24 utility for building hypothesis about computational mechanisms or perceptual rules for 25 brightness perception. 26 At first sight it seems that contrast effects, such as simultaneous brightness contrast 27 (SBC), can be explained by lateral inhibition between a target (center) and its context 28 (surround). However, activity related to brightness contrast does possibly not occur 29 before V1, albeit the receptive fields of retinal ganglion cells are consistent with lateral 30 inhibition [1]. 31 Unlike contrast, brightness assimilation pulls a target's brightness towards to that of 32 its immediate context, and therefore cannot be explained by mechanisms based on plain 33 lateral inhibition. In fact, the neural mechanisms involved in generating brightness 34 appear to be more intricate, and only few computational proposals were made so far for 35 explaining assimilation effects. Note that any (computational) proposal could only be 36 deemed as being successful if it explained contrast and assimilation effects at the same 37 time. For example, the simplest (low-level) explanation for assimilation is spatial 38 lowpass filtering, but it would predict brightness assimilation also for contrast displays. 39 Similarly, [2] suggested a retinal model based on a second-order adaptation mechanism 40 induced by double opponent receptive fields; it predicted assimilation, but then again it 41 failed to predict contrast displays. With respect to mid-or higher-level processing, [3] 42 suggested a pattern-specific inhibition mechanism acting in the visual cortex, which 43 inhibits regularly arranged patterns of a visual stimulus. 44 Anchoring theory is a rule-based mechanism for segregating the contributions of 45 illumination and reflectance in brightness, and thus to map luminance to perceived gray 46 levels [4]. Accordingly, a visual image is first divided into one or more perceptual 47 frameworks (a framework is a set of surfaces that are grouped together). Within each 48 framework, the highest luminance value is anchored at perceived white, and smaller 49 luminance values are mapped to gray levels according to their luminance-ratio with the 50 anchor. Note that \white" may not be the only possible anchor. For example, the 51 lowest luminance may be anchored at \black", or the mean luminance may be anchored 52 at the Eigengrau level. Although anchoring theory is successful in explaining the 53 perception of reflectance for simple displays, it is not clear how its rules apply to 54 natural images [5,6]. Furthermore, rather than specifying computational mechanisms, 55 anchoring theory (but also White's suggestion) represents only a phenomenological 56 proposal, and it is not clear how its empirically defined set of rules could be related to 57 any specific information processing strategy in the visual system (but see e.g., [7]). 58 Another fairly popular hypothesis holds that contrast and assimilation effects are 59 related to the contrast sensitivity function of the visual system [8]. In one or the other 60 way, this idea forms the base of many computational brightness models, which 61 decompose a visual image according to its spatial frequency content (multi-scale models). 62 Typically, multi-scale models adjust the response amplitudes of spatial-frequency 63 selective filters in a way that the resulting distribution (response amplitude versus 64 spatial frequency) follows the shape of the contrast sensitivity function. Contrast and 65 assimilation effects are then predicted to occur as a consequence of the adjustment. 66 Specifically, [9, 10] proposed a multi-scale model which represents a luminance image 67 with oriented difference of Gaussians (ODOG) filters. The crucial mechanism in the 68 April 18, 2020 2/30 bioRxiv preprint doi: https://doi.org/10.1101/2020.04.23.057620; this version posted April 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. ODOG-model is (local) contrast normalization for adjusting the spatial frequency 69 representation. In agreement with [8], [9] observed that contrast and assimilation 70 displays are distinguished according to their respective content in spatial frequencies: 71 Luminance patterns with lower spatial frequencies than the encoding filters exhibit a 72 loss of low spatial frequency information in their brightness representation and produce 73 contrast as a consequence. Assimilation, on the other hand, is generated when the high 74 spatial frequencies of a luminance pattern exceed the highest spatial frequencies that 75 can be represented with the encoding filters. Although the ODOG model predicts SBC 76 and White's effect, it cannot account for more sophisticated visual illusions such as the 77 Dungeon Illusion and the Benary Cross. Both of the latter cannot be reproduced by 78 building a brightness representation with oriented filters that are confined to a specific 79 spatial frequency range. Several extensions of the ODOG model have been proposed in 80 order to account for a bigger set of brightness illusions [11].
Recommended publications
  • Role of Stereopsis Losses in Older Adults’ Performance
    ROLE OF STEREOPSIS LOSSES IN OLDER ADULTS’ PERFORMANCE ON THE FINE-GRAIN MOVEMENT ILLUSION TASK by Marlena Pearson Honours Bachelor of Science, Psychology, Nipissing University, North Bay, Ontario, 2014 Honours Bachelor of Arts, Criminal Justice, Nipissing University, North Bay, Ontario, 2014 A thesis presented to Ryerson University in partial fulfillment of the requirement for the degree of Master of Arts in the program of Psychology Toronto, Ontario, Canada, 2017 © Marlena Pearson, 2017 Author’s Declaration AUTHOR'S DECLARATION FOR ELECTRONIC SUBMISSION OF A THESIS I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners. I authorize Ryerson University to lend this thesis to other institutions or individuals for the purpose of scholarly research I further authorize Ryerson University to reproduce this thesis by photocopying or by other means, in total or in part, at the request of other institutions or individuals for the purpose of scholarly research. I understand that my thesis may be made electronically available to the public. ii Role of Stereopsis Losses in Older Adults’ Performance on the Fine-Grain Movement Illusion Task Master of Arts, 2017 Marlena Pearson Psychology, Ryerson University Abstract Accurate motion perception is necessary for older adults to safely navigate their environments. Yet it is not clear how stereopsis losses contribute to findings of motion perception deficits in older adults. To assess the contribution of stereopsis losses, three groups (younger adults, older adults with intact stereopsis, older adults with poor stereopsis) were recruited for a fine-grain movement task.
    [Show full text]
  • Polarity Selectivity of Spatial Interactions in Perceived Contrast
    Journal of Vision (2012) 12(2):3, 1–10 http://www.journalofvision.org/content/12/2/3 1 Polarity selectivity of spatial interactions in perceived contrast Department of Psychology, The University of Tokyo, Japan,& Human and Information Science Laboratory, Hiromi Sato NTT Communication Science Laboratories, NTT, Japan Human and Information Science Laboratory, Isamu Motoyoshi NTT Communication Science Laboratories, NTT, Japan Department of Psychology, Takao Sato The University of Tokyo, Japan The apparent contrast of a texture is reduced when surrounded by another texture with high contrast. This contrast–contrast phenomenon has been thought to be a result of spatial interactions between visual channels that encode contrast energy. In the present study, we show that contrast–contrast is selective to luminance polarity by using texture patterns composed of sparse elongated blobs. The apparent contrast of a texture of bright (dark) elements was substantially reduced only when it was surrounded by a texture of elements with the same polarity. This polarity specificity was not evident for textures with high element densities, which were similar to those used in previous studies, probably because such stimuli should inevitably activate both on- and off-type sensors. We also found that polarity-selective suppression decreased as the difference in orientation between the center and surround elements increased but remained for orthogonally oriented elements. These results suggest that the contrast–contrast illusion largely depends on spatial interactions between visual channels that are selective to on–off polarity and only weakly selective to orientation. Keywords: polarity selectivity, spatial interactions, perceived contrast Citation: Sato, H., Motoyoshi, I., & Sato, T.
    [Show full text]
  • Visual Context Processing in Schizophrenia
    Empirical Article Clinical Psychological Science 1(1) 5 –15 Visual Context Processing in Schizophrenia © The Author(s) 2013 Reprints and permission: sagepub.com/journalsPermissions.nav DOI: 10.1177/2167702612464618 http://cpx.sagepub.com Eunice Yang1,2, Duje Tadin3,4, Davis M. Glasser3, Sang Wook Hong1,5, Randolph Blake1,2, and Sohee Park1 1Department of Psychology, Vanderbilt University; 2Department of Brain and Cognitive Sciences, Seoul National University, Republic of Korea; 3Center for Visual Science and Department of Brain and Cognitive Sciences, University of Rochester; 4Department of Ophthalmology, University of Rochester; and 5Department of Psychology, Florida Atlantic University Abstract Abnormal perceptual experiences are central to schizophrenia, but the nature of these anomalies remains undetermined. We investigated contextual processing abnormalities across a comprehensive set of visual tasks. For perception of luminance, size, contrast, orientation, and motion, we quantified the degree to which the surrounding visual context altered a center stimulus’s appearance. Healthy participants showed robust contextual effects across all tasks, as evidenced by pronounced misperceptions of center stimuli. Schizophrenia patients exhibited intact contextual modulations of luminance and size but showed weakened contextual modulations of contrast, performing more accurately than controls. Strong motion and orientation context effects correlated with worse symptoms and social functioning. Importantly, the overall strength of contextual
    [Show full text]
  • Download Thesis
    This electronic thesis or dissertation has been downloaded from the King’s Research Portal at https://kclpure.kcl.ac.uk/portal/ Contextual Processing in Psychosis and Cannabis use Kane, Fergus Awarding institution: King's College London The copyright of this thesis rests with the author and no quotation from it or information derived from it may be published without proper acknowledgement. END USER LICENCE AGREEMENT Unless another licence is stated on the immediately following page this work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International licence. https://creativecommons.org/licenses/by-nc-nd/4.0/ You are free to copy, distribute and transmit the work Under the following conditions: Attribution: You must attribute the work in the manner specified by the author (but not in any way that suggests that they endorse you or your use of the work). Non Commercial: You may not use this work for commercial purposes. No Derivative Works - You may not alter, transform, or build upon this work. Any of these conditions can be waived if you receive permission from the author. Your fair dealings and other rights are in no way affected by the above. Take down policy If you believe that this document breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 05. Oct. 2021 This electronic theses or dissertation has been downloaded from the King’s Research Portal at https://kclpure.kcl.ac.uk/portal/ Title: Contextual Processing in Psychosis and Cannabis use Author: Kane, Fergus The copyright of this thesis rests with the author and no quotation from it or information derived from it may be published without proper acknowledgement.
    [Show full text]
  • Optical Illusion - Wikipedia, the Free Encyclopedia
    Optical illusion - Wikipedia, the free encyclopedia Try Beta Log in / create account article discussion edit this page history [Hide] Wikipedia is there when you need it — now it needs you. $0.6M USD $7.5M USD Donate Now navigation Optical illusion Main page From Wikipedia, the free encyclopedia Contents Featured content This article is about visual perception. See Optical Illusion (album) for Current events information about the Time Requiem album. Random article An optical illusion (also called a visual illusion) is characterized by search visually perceived images that differ from objective reality. The information gathered by the eye is processed in the brain to give a percept that does not tally with a physical measurement of the stimulus source. There are three main types: literal optical illusions that create images that are interaction different from the objects that make them, physiological ones that are the An optical illusion. The square A About Wikipedia effects on the eyes and brain of excessive stimulation of a specific type is exactly the same shade of grey Community portal (brightness, tilt, color, movement), and cognitive illusions where the eye as square B. See Same color Recent changes and brain make unconscious inferences. illusion Contact Wikipedia Donate to Wikipedia Contents [hide] Help 1 Physiological illusions toolbox 2 Cognitive illusions 3 Explanation of cognitive illusions What links here 3.1 Perceptual organization Related changes 3.2 Depth and motion perception Upload file Special pages 3.3 Color and brightness
    [Show full text]
  • Gaze-Contingent Visual Communication
    GAZE-CONTINGENT VISUAL COMMUNICATION A Dissertation by ANDREW TED DUCHOWSKI Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY August 1997 Major Subject: Computer Science GAZE-CONTINGENT VISUAL COMMUNICATION A Dissertation by ANDREW TED DUCHOWSKI Submitted to Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Approved as to style and content by: Bruce H. McCormick Udo W. Pooch (Chair of Committee) (Member) John J. Leggett Norman C. Griswold (Member) (Member) Wayne L. Shebilske Richard A. Volz (Member) (Head of Department) August 1997 Major Subject: Computer Science iii ABSTRACT Gaze-Contingent Visual Communication. (August 1997) Andrew Ted Duchowski, B.Sc., Simon Fraser University Chair of Advisory Committee: Dr. Bruce H. McCormick Virtual environments today lack realism. Real-time display of visually rich scenery is encumbered by the demand of rendering excessive amounts of information. This problem is especially severe in virtual reality. To minimize refresh latency, image quality is often sacrificed for speed. What’s missing is knowledge of the participant’s locus of visual attention, and an understanding of how an individual scans the visual field. Neurophysiological and psychophysical literature on the human visual system suggests the field of view is inspected minutatim through brief fixations over small regions of interest. Significant savings in scene pro- cessing can be realized if fine detail information is presented “just in time” in a gaze-contingent manner, delivering only as much information as required by the viewer. An attentive model of vision is proposed where Volumes Of Interest (VOIs) represent fixations through time.
    [Show full text]
  • Analysis of the Mechanisms of Human Visual Processing
    Christopher W . Tyler, Ph.D. Analysis of the Mechanisms of Human Visual Processing Christopher W. Tyler, Ph.D. Smith-Kettlewell Eye Research Institute 2318 Fillmore Street San Francisco, CA 94115, USA. Application for the degree of Doctor of Science University of Keele 1 Christopher W . Tyler, Ph.D. Education: Institution Degree Conferred Field of Study University of Leicester, U.K. B.A. 1966 Psychology University of Aston, U.K. M.Sc. 1967 Applied Psychology University of Keele, U.K. Ph.D. 1970 Communications Reseach and Professional Experience: 1990-2003 Associate Director, Smith-Kettlewell Eye Res. Institute, San Francisco, CA. 1981- Senior Scientist, Smith-Kettlewell Eye Res. Institute, San Francisco, CA. 1977- External Doctoral Thesis Advisor, Dept. of Psychology, University of California, Berkeley. 1986-87 Adjunct Professor, School of Optometry, University of California, Berkeley. 1985-89 Visiting Professor, UCLA Medical Center, Jules Stein Institute. 1978-80 External Doctoral Thesis Advisor, Dept. of Psychology, Stanford University, Stanford, CA. 1978-82 Honorary Res. Associate, Institute of Ophthalmology, London, U.K. 1975-81 Scientist, Smith-Kettlewell Eye Res. Institute, San Francisco, CA. 1974-75 Res. Fellow, Dept. of Sensory and Perceptual Processes, Bell Laboratories, Murray Hill, NJ. 1973-74 Res. Fellow, Dept. of Psychology, University of Bristol, U.K. 1972-73 Assistant Professor, Northeastern University, Boston, MA. (Psychology Courses: Experimental, Introductory, History, Social Issues, Vision). 1972 Visiting Assistant Professor, Dept. of Psychology, University of California, Los Angeles, CA. (Course: Perception). 1970-72 Res. Fellow, Dept. of Psychology, Northeastern University, Boston, MA. Dissertations M.Sc. A study of the electrical activity of the brain in a simple decision task.
    [Show full text]
  • Content-Prioritised Video Coding for British Sign Language Communication
    CONTENT-PRIORITISED VIDEO CODING FOR BRITISH SIGN LANGUAGE COMMUNICATION LAURA JOY MUIR A thesis submitted in partial fulfilment of the requirements of The Robert Gordon University for the degree of Doctor of Philosophy October 2007 Abstract Video communication of British Sign Language (BSL) is important for remote interpersonal communication and for the equal provision of services for deaf people. However, the use of video telephony and video conferencing applications for BSL communication is limited by inadequate video quality. BSL is a highly structured, linguistically complete, natural language system that expresses vocabulary and grammar visually and spatially using a complex combination of facial expressions (such as eyebrow movements, eye blinks and mouth/lip shapes), hand gestures, body movements and finger-spelling that change in space and time. Accurate natural BSL communication places specific demands on visual media applications which must compress video image data for efficient transmission. Current video compression schemes apply methods to reduce statistical redundancy and perceptual irrelevance in video image data based on a general model of Human Visual System (HVS) sensitivities. This thesis presents novel video image coding methods developed to achieve the conflicting requirements for high image quality and efficient coding. Novel methods of prioritising visually important video image content for optimised video coding are developed to exploit the HVS spatial and temporal response mechanisms of BSL users (determined by Eye Movement Tracking) and the characteristics of BSL video image content. The methods implement an accurate model of HVS foveation, applied in the spatial and temporal domains, at the pre-processing stage of a current standard-based system (H.264).
    [Show full text]
  • Free-Energy and Illusions: the Cornsweet Effect 058 002 059 003 060 004 Harriet Brown* and Karl J
    ORIGINAL RESEARCH ARTICLE published: xx February 2012 doi: 10.3389/fpsyg.2012.00043 001 Free-energy and illusions: the Cornsweet effect 058 002 059 003 060 004 Harriet Brown* and Karl J. Friston 061 005 The Wellcome Trust Centre for Neuroimaging, University College London Queen Square, London, UK 062 006 063 007 064 Edited by: 008 In this paper, we review the nature of illusions using the free-energy formulation of Bayesian 065 Lars Muckli, University of Glasgow, perception. We reiterate the notion that illusory percepts are, in fact, Bayes-optimal and 009 UK 066 010 represent the most likely explanation for ambiguous sensory input. This point is illustrated 067 Reviewed by: 011 Gerrit W. Maus, University of using perhaps the simplest of visual illusions; namely, the Cornsweet effect. By using 068 012 California at Berkeley, USA plausible prior beliefs about the spatial gradients of illuminance and reflectance in visual 069 013 Peter De Weerd, Maastricht scenes, we show that the Cornsweet effect emerges as a natural consequence of Bayes- 070 University, Netherlands 014 optimal perception. Furthermore, we were able to simulate the appearance of secondary 071 015 *Correspondence: illusory percepts (Mach bands) as a function of stimulus contrast. The contrast-dependent 072 Harriet Brown, Wellcome Trust Centre 016 073 for Neuroimaging, Institute of emergence of the Cornsweet effect and subsequent appearance of Mach bands were 017 Neurology Queen Square, London simulated using a simple but plausible generative model. Because our generative model 074 018 WC1N 3BG, UK. was inverted using a neurobiologically plausible scheme, we could use the inversion as a 075 019 e-mail: [email protected] simulation of neuronal processing and implicit inference.
    [Show full text]
  • Typical Lateral Interactions, but Increased Contrast Sensitivity, in Migraine-With-Aura
    vision Article Typical Lateral Interactions, but Increased Contrast Sensitivity, in Migraine-With-Aura Jordi M. Asher 1,* ID , Louise O’Hare 2 ID , Vincenzo Romei 1,3 and Paul B. Hibbard 1 1 Department of Psychology, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK; [email protected] (V.R.); [email protected] (P.B.H.) 2 Faculty of Health and Social Sciences, Lincoln University, Brayford Way, Brayford Pool, Lincoln LN6 7TS, UK; [email protected] 3 Dipartimento di Psicologia and Centro studi e Ricerche in Neuroscienze Cognitive, Università di Bologna, Campus di Cesena, 47521 Cesena, Italy * Correspondence: [email protected] Received: 19 December 2017; Accepted: 7 February 2018; Published: 9 February 2018 Abstract: Individuals with migraine show differences in visual perception compared to control groups. It has been suggested that differences in lateral interactions between neurons might account for some of these differences. This study seeks to further establish the strength and spatial extent of excitatory and inhibitory interactions in migraine-with-aura using a classic lateral masking task. Observers indicated which of two intervals contained a centrally presented, vertical Gabor target of varying contrast. In separate blocks of trials, the target was presented alone or was flanked by two additional collinear, high contrast Gabors. Flanker distances varied between 1 and 12 wavelengths of the Gabor stimuli. Overall, contrast thresholds for the migraine group were lower than those in the control group. There was no difference in the degree of lateral interaction in the migraine group. These results are consistent with the previous work showing enhanced contrast sensitivity in migraine-with-aura for small, rapidly presented targets, and they suggest that impaired performance in global perceptual tasks in migraine may be attributed to difficulties in segmenting relevant from irrelevant features, rather than altered local mechanisms.
    [Show full text]
  • Do Illiterates Have Illusions? a Conceptual (Non)Replication of Luria (1976)
    J Cult Cogn Sci (2021) 5:143–158 https://doi.org/10.1007/s41809-021-00080-x (0123456789().,-volV)( 0123456789().,-volV) RESEARCH PAPER Do illiterates have illusions? A conceptual (non)replication of Luria (1976) Mrudula Arunkumar . Jeroen van Paridon . Markus Ostarek . Falk Huettig Received: 17 February 2021 / Revised: 17 February 2021 / Accepted: 21 May 2021 / Published online: 1 June 2021 Ó The Author(s) 2021 Abstract Luria (Luria, Cognitive development: Its Keywords Culture Á Literacy Á Visual perception Á cultural and social foundations, Harvard University Visual illusions Press, 1976) famously observed that people who never learnt to read and write do not perceive visual illusions. We conducted a conceptual replication of the Luria study of the effect of literacy on the Introduction processing of visual illusions. We designed two carefully controlled experiments with 161 participants Psychology, the study of human behavior, is not with varying literacy levels ranging from complete immune to the influences of Zeitgeist and the domi- illiterates to high literates in Chennai, India. Accuracy nant political movements and ideologies of the time. and reaction time in the identification of visual shape The history of psychology in the 1920s and 30 s and color illusions and the identification of appropriate includes dark chapters such as the eugenic movement, control images were measured. Separate statistical which aimed to provide (pseudo)scientific explana- analyses of Experiments 1 and 2 as well as pooled tions for the claim that desirable qualities are hered- analyses of both experiments do not provide any itary traits to justify white supremacy and scientific support for the notion that literacy affects the percep- racism.
    [Show full text]
  • Polarity Selectivity of Spatial Interactions in Perceived Contrast
    Journal of Vision (2012) 12(2):3, 1–10 http://www.journalofvision.org/content/12/2/3 1 Polarity selectivity of spatial interactions in perceived contrast Department of Psychology, The University of Tokyo, Japan,& Human and Information Science Laboratory, Hiromi Sato NTT Communication Science Laboratories, NTT, Japan Human and Information Science Laboratory, Isamu Motoyoshi NTT Communication Science Laboratories, NTT, Japan Department of Psychology, Takao Sato The University of Tokyo, Japan The apparent contrast of a texture is reduced when surrounded by another texture with high contrast. This contrast–contrast phenomenon has been thought to be a result of spatial interactions between visual channels that encode contrast energy. In the present study, we show that contrast–contrast is selective to luminance polarity by using texture patterns composed of sparse elongated blobs. The apparent contrast of a texture of bright (dark) elements was substantially reduced only when it was surrounded by a texture of elements with the same polarity. This polarity specificity was not evident for textures with high element densities, which were similar to those used in previous studies, probably because such stimuli should inevitably activate both on- and off-type sensors. We also found that polarity-selective suppression decreased as the difference in orientation between the center and surround elements increased but remained for orthogonally oriented elements. These results suggest that the contrast–contrast illusion largely depends on spatial interactions between visual channels that are selective to on–off polarity and only weakly selective to orientation. Keywords: polarity selectivity, spatial interactions, perceived contrast Citation: Sato, H., Motoyoshi, I., & Sato, T.
    [Show full text]