Novel Direct Liquid Redox Fuel Cell
Total Page:16
File Type:pdf, Size:1020Kb
NOVEL DIRECT REDOX FUEL CELL: MEMBRANELESS LOW PRECIOUS METAL CATALYST ELECTRODE ASSEMBLY by Mohammad Saad Dara B.A.Sc., University of British Columbia, 2010 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF APPLIED SCIENCE in THE FACULTY OF GRADUATE STUDIES (Chemical and Biological Engineering) THE UNIVERSITY OF BRITISH COLUMBIA (Vancouver) October 2012 © Mohammad Saad Dara, 2012 Abstract The direct fuel redox fuel cell (DFRFC) substitutes the oxygen reduction cathode of low temperature fuel cells such as polymer electrolyte membrane fuel cells (PEMFC) and direct methanol fuel cells (DMFC) with an iron redox cathode of a redox flow battery. This approach helps address many of the issues with low temperature fuel cells. For both the PEMFC and DMFC the iron redox cathode eliminates precious metal content from the cathode. With respect to the PEMFC the inherent liquid nature of the iron redox cathode provides both heat and water management to the system which significantly reduces the balance-of-plant components. On the other hand, the issues of fuel crossover for the DMFC are no longer a concern as methanol is not electrochemically active at the carbon cathode used for the ferric reduction reaction. However, the use of metal redox ions in conjunction with a membrane of the same polarity introduces issues of membrane contamination which significantly reduce membrane conductivity resulting in increased ohmic overpotentials and losses in fuel cell performance. In addition, crossover of the redox catholyte can result in anode depolarization. In this a work a novel membraneless direct liquid redox fuel cell is demonstrated. The membraneless design utilizes 3-D electrode(s), the engineering of which allows control of the reactant concentration gradients. This control of the reactant gradient allows for more complete reactant utilization which mitigate catholyte crossover and allow for the elimination of the PEM. The PEM in the DFRFC used in this work is replaced with an open- spacer and liquid acid electrolyte. In addition, this novel membraneless electrode assembly design is completely scalable and flexible to different platforms, fuels, oxidants and electrolytes. In this work a membraneless direct hydrogen redox fuel cell and membraneless ii direct methanol redox fuel cell based on the 3-D electrode concept and controlled concentration gradient are demonstrated. In addition, the use of the liquid acid electrolyte in the membraneless direct hydrogen redox fuel cell allowed for improved ionic conductivity to the anode catalyst layer. This allowed for significant reductions in precious metal catalyst content to be made from the hydrogen oxidation anode. iii Preface A portion of chapter 6.3 has been published. A. Lam, M. S. Dara, D.P. Wilkinson and K.Fatih (2012). Aerobic and Anaerobic Operation of an Active Direct Methanol Fuel Cell. Electrochemistry Communications 17:22-25. I, Mohammad Saad Dara, performed all the testing for the direct methanol redox fuel cell while a portion of the data for the direct methanol fuel cell was generated by Alfred Lam. I was responsible for writing of most of the transcript. A portion of chapter 6.2 has also been submitted for publication. M. S. Dara, D.P. Wilkinson, A. Lam and K.Fatih (2012). Low Pt-loading Membraneless Hydrogen Redox Fuel Cell. Electrochemical Society Transactions, submitted July 2012. All data and experiments presented in this paper were performed by me. I was also responsible for the entire writing of this paper. iv Table of Contents Abstract .................................................................................................................................... ii Preface .................................................................................................................................... iv Table of Contents ...................................................................................................................... v List of Tables ........................................................................................................................ viii List of Figures ......................................................................................................................... ix Symbols and Nomenclature ................................................................................................... xii Glossary ................................................................................................................................ xiv Acknowledgements................................................................................................................. xv Dedication ............................................................................................................................. xvi 1 Introduction............................................................................................................................ 1 1.1 A Very Brief History of Fuel Cells ................................................................................ 2 1.2 Types of Fuel Cells ........................................................................................................ 4 1.3 Fundamental Principles of Fuel Cell Technology ......................................................... 8 1.4 Fuel Cell Thermodynamics: Effect of Temperature .................................................... 10 1.5 Fuel Cell Thermodynamics: Effect of Pressure ........................................................... 11 1.6 Fuel Cell Thermodynamics: Effect of Concentration .................................................. 12 1.7 Fuel Cell Thermodynamics: Efficiency ............................................................................ 13 1.8 Fuel Cell Operating Fundamentals: Overpotential ...................................................... 15 1.8.1 Activation Overpotential ...................................................................................... 18 1.8.2 Ohmic Overpotential ............................................................................................ 21 1.8.3 Mass-transport Overpotential ............................................................................... 23 1.9 Low Temperature Fuel Cells ....................................................................................... 24 1.9.1 The Polymer Electrolyte Membrane Fuel Cell .................................................... 24 1.9.2 The Direct Methanol Fuel Cell............................................................................. 27 1.9.3 The Membrane Electrode Assembly .................................................................... 30 1.9.4 The Electrodes ...................................................................................................... 31 1.9.5 The Membrane ..................................................................................................... 35 1.10 Redox Flow Batteries ................................................................................................. 36 1.10.1 Electrolyte Requirements for Use in the Redox Flow Battery ........................... 39 v 1.10.2 Redox Flow Battery Electrodes.......................................................................... 40 1.10.3 Redox Flow Battery Membrane ......................................................................... 41 1.10.4 The Iron Chromium Redox Flow Battery .......................................................... 42 1.11 The Hybrid Redox Fuel Cell ...................................................................................... 46 2 Thesis Research Context...................................................................................................... 50 3 Objectives ............................................................................................................................ 51 4 Background to Thesis Research Approach .......................................................................... 52 5 Experimental Approach and Methods ................................................................................. 62 5.1 Fuel Cell Gaskets Fabrication ...................................................................................... 63 5.2 Electrode and Electrode Assembly Fabrication and Treatment ................................... 64 5.3 Electrolyte Preparation ................................................................................................. 66 5.4 Fuel Cell Testing System ............................................................................................. 67 6 Results and Discussions ....................................................................................................... 72 6.1 Development of a Membraneless Electrode Assembly for an Active Fuel Cell System ............................................................................................................................................ 72 6.1.1 Cell Architecture and Components ...................................................................... 74 6.2 The Membraneless Direct Hydrogen Redox Fuel Cell ................................................ 78 6.2.1 Effect of Iron Redox Catholyte Flow Rate........................................................... 78 6.2.2 Repeatability of Experiments ............................................................................... 82 6.2.3 Effect of Temperature .......................................................................................... 84 6.2.4 Effect of 3-D Cathode Thickness