Innovative Monitoring and Predictive Maintenance Solutions on Lightweight Wagon

Total Page:16

File Type:pdf, Size:1020Kb

Innovative Monitoring and Predictive Maintenance Solutions on Lightweight Wagon Innovative Monitoring and Predictive Maintenance Solutions on Lightweight Wagon Grant Agreement no.: 730863 - S2R-OC-IP5-03-2015 Project Start Date: 01/11/2016 Project End Date: 30/04/2019 DELIVERABLE D1.1 Benchmark and market drivers for an integrated intelligent and lightweight wagon solution Work Package: WP 1 Deliverable type R Dissemination Level: PU Status: Final Leader beneficiary: UNEW Due date of deliverable: 31/03/2017 Actual submission date: 31/03/2017 Prepared by: Cristian Ulianov and Paul Hyde, Newcastle University (UNEW) Contributors: Sian Evans, Newcastle University (UNEW) Liang Cheng, Newcastle University (UNEW) Emmanuel Matsika, Newcastle University (UNEW) Raluca Marin-Perianu, Inertia Technology B.V. (INE) Martin Wischner, Havelländische Eisenbahn AG (HVLE) Daniele Regazzi, Lucchini RS S.p.A. (LRS) Franco Castagnetti, NewOpera Aisbl (NEWO) Giuseppe Rizzi, NewOpera Aisbl (NEWO) David Vincent, Perpetuum Ltd. (PER) Stefano Bruni, Politecnico di Milano (POLIM) Marco Macchi, Politecnico di Milano (POLIM) Dachuan Shi, Technische Universität Berlin (TUB) Philipp Krause, Technische Universität Berlin (TUB) Florentin Barbuceanu, Uzina de Vagoane Aiud S.A. (UVA) Verified by: Cristian Ulianov Deliverable D1.1 Document history Version Date Author(s) Description D1 02/12/2016 Cristian Ulianov [UNEW] Document initiated, draft structure D2 20/12/2016 Cristian Ulianov [UNEW] Document updated, structure and Paul Hyde [UNEW] content proposed D3 24/01/2017 All Update of structure and content D5 23/02/2017 All Content added and revised D6 25/03/2017 All Content added and revised – pre-final version D7 30/03/2017 All Conclusions added and revised D8 31/03/2017 Cristian Ulianov [UNEW] Integration, proof-read, and Sian Evans [UNEW] submission of final version Paul Hyde [UNEW] The INNOWAG project consortium No Partner organisation Short Name Country 1 NEWCASTLE UNIVERSITY UNEW UK 2 INERTIA TECHNOLOGY B.V INE Netherlands HAVELLANDISCHE EISENBAHN 3 HVLE Germany AKTIENGESELLSCHAFT 4 LUCCHINI RS SPA LRS Italy 5 NEW OPERA AISBL NEWO Belgium 6 PERPETUUM LIMITED PER UK 7 POLITECNICO DI MILANO POLIM Italy 8 TECHNISCHE UNIVERSITAET BERLIN TUB Germany UNION DES INDUSTRIES FERROVIAIRES 9 UNIFE Belgium EUROPEENNES 10 UZINA DE VAGOANE AIUD SA UVA Romania 11 VYZKUMNY USTAV ZELEZNICNI VUZ Czech Republic Disclaimer This report was prepared as an account of work funded by Shift2Rail Joint Undertaking. The contents of this document are provided “AS IS”, and no guarantee or warranty is provided that the information is fit for particular purposes. The information, analyses and views set out in this report are those of the author(s) and do not necessarily reflect the official opinion of the European Union. Neither the Community institutions and bodies, nor any person acting on their behalf may be held responsible for the use which may be made of the information contained therein. The user, thereof, uses the information at its sole risk and liability. Copyright notice © 2016 – 2019 INNOWAG Consortium 2 / 169 Deliverable D1.1 Table of Contents Executive Summary ................................................................................................................... 5 List of abbreviations ................................................................................................................ 6 List of figures .......................................................................................................................... 7 List of tables ......................................................................................................................... 10 1. INTRODUCTION ............................................................................................................... 11 2. OVERVIEW OF MARKET DRIVERS AND TRENDS ......................................................... 12 2.1 Freight market drivers ................................................................................................ 12 2.1.1 External freight market drivers ............................................................................. 12 2.1.2 Internal freight market drivers .............................................................................. 14 2.2 Trends and opportunities in railway freight market ..................................................... 18 2.2.1 Global Market Trends .......................................................................................... 18 2.2.2 EU Market trends ................................................................................................ 19 2.3 Concluding remarks ................................................................................................... 26 3. OVERVIEW AND ASSESSMENT OF EXISTING AND EMERGING SOLUTIONS ............ 27 3.1 Sensors ...................................................................................................................... 27 3.1.1 Specific market drivers and trends ...................................................................... 27 3.1.2 Overview of existing and emerging solutions ....................................................... 30 3.1.3 Assessment and recommendations for further work ............................................ 44 3.2 Energy harvesting technologies ................................................................................. 44 3.2.1 Specific market drivers and trends ...................................................................... 44 3.2.2 Overview of existing and emerging solutions ....................................................... 45 3.2.3 Assessment and recommendations for further work ............................................ 51 3.3 Identification and tracing technologies ........................................................................ 52 3.3.1 Specific market drivers and trends ...................................................................... 52 3.3.2 Overview of existing and emerging solutions ....................................................... 54 3.3.3 Assessment and recommendations for further work ............................................ 58 3.4 Data communication technologies .............................................................................. 60 3.4.1 Inside train communication .................................................................................. 60 3.4.2 Outside train communication ............................................................................... 61 3.4.3 Assessment and recommendations for further work ............................................ 65 3.5 Big data management solutions ................................................................................. 65 3.5.1 Specific market drivers and trends ...................................................................... 65 3.5.2 Overview of existing and emerging solutions ....................................................... 66 3.5.3 Assessment and recommendations for further work ............................................ 69 3.6 Design solutions for lightweight vehicles .................................................................... 70 3.6.1 Specific market drivers and trends ...................................................................... 70 3.6.2 Overview of existing and emerging solutions ....................................................... 73 3.6.3 Assessment and recommendations for further work ............................................ 98 3.7 Lightweight materials for vehicle technologies .......................................................... 100 3 / 169 Deliverable D1.1 3.7.1 Specific market drivers and trends .....................................................................100 3.7.2 Overview of existing and emerging solutions .....................................................101 3.7.3 Assessment and recommendations for further work ..........................................108 3.8 Analysis and testing of lightweight railway vehicles ...................................................109 3.8.1 Specific market drivers and trends .....................................................................109 3.8.2 Overview of existing and emerging solutions .....................................................109 3.8.3 Assessment and recommendations for further work ..........................................113 3.9 Simulation tools and predictive models for predictive maintenance ...........................114 3.9.1 Specific market drivers and trends .....................................................................114 3.9.2 Overview of existing and emerging solutions .....................................................115 3.9.3 Assessment and recommendations for further work ..........................................126 3.10 Maintenance management solutions .........................................................................127 3.10.1 Specific market drivers and trends .....................................................................127 3.10.2 Overview of existing and emerging solutions .....................................................128 3.10.3 Assessment and recommendations for further work ..........................................136 4. OVERVIEW AND ASSESSMENT OF INTEGRATED SOLUTIONS .................................137 4.1 Specific market drivers and trends ............................................................................137 4.2 Overview of existing and emerging integrated solutions ............................................137 4.2.1 Condition based maintenance and Condition monitoring
Recommended publications
  • Wireless Technologies for the Next-Generation Train Control and Monitoring System
    Wireless Technologies for the Next-Generation Train Control and Monitoring System Jérôme Härri Aitor Arriola Pedro Aljama Communication Systems Communication Systems Communication Systems EURECOM Ikerlan Ikerlan Sophia-Antipolis, France Arrasate-Mondragón, Spain Arrasate-Mondragón, Spain [email protected] [email protected] [email protected] Igor Lopez Uwe Fuhr Marvin Straub Technology Division TCMS Communcations TCMS Communcations CAF R&D Bombardier Transportation Bombardier Transportation Beasain, Spain Mannheim, Germany Mannheim, Germany [email protected] [email protected] [email protected] Abstract—The Next Generation Train Control and functionalities (e.g. [4]). Yet, a study introducing the global Monitoring System (NG-TCMS) represents a major innovation NG-TCMS requirements and matching with a technology- of the European Railway industry introducing a wireless agnostic survey of various available wireless technologies is architecture as an enabler to enhanced automation, flexible train still missing. management and increased railway capacity. This paper surveys various available and future wireless technologies matching the In this paper, we describe the vision and functionalities of requirements both at train backbone and consist levels. the NG-TCMS, putting into perspective the performance Illustrating the challenges for a single technology to match all requirements of wireless links for the WLTB and WLCN with requirements, this paper also highlights the benefits of the the performance of selected wireless technologies. Our upcoming 5G technology for future NG-TCMS. contributions are threefold: (i) we introduce the future NG- TCMS, in particular the WLTB and WLCN, (ii) we provide a Keywords—5G-V2X, LTE-V2X, Wireless Train Backbone, technology-agnostic comparison of selected technologies Wireless Consist Network, 5G, NG-TCMS.
    [Show full text]
  • Deliverable Title
    Contract No. H2020 – 826098 CONTRIBUTING TO SHIFT2RAIL'S NEXT GENERATION OF HIGH CAPABLE AND SAFE TCMS. PHASE II. D1.1 – Specification of evolved Wireless TCMS Due date of deliverable: 31/12/2019 Actual submission date: 20/12/2019 Leader/Responsible of this Deliverable: Igor Lopez (CAF) Reviewed: Y Project funded from the European Union’s Horizon 2020 research and innovation programme Dissemination Level PU Public X CO Confidential, restricted under conditions set out in Model Grant Agreement Start date: 01/10/2018 Duration: 30 months CTA2-T1.1-D-CAF-005-09 Page 1 of 175 20/12/2019 Contract No. H2020 – 826098 Document status Revision Date Description First issue. Executive summary, Introduction and General 01 27/11/2018 architecture 02 27/06/2019 Contributions of sections 3.1, 3.2, 4.2, 5.2, 5.3, 6.1, 6.2, 6.3, 8 03 03/09/2019 Section 4.1 added. Updated sections 5, 6 and 8 Doc template: corrected footer Abbreviations and Acronyms list: updated Section 3.2: corrected internal references according to CTA2- 04 22/11/2019 T1.1-I-BTD-008-04 Sections 6: updated accoding to CTA2-T1.1-I-BTD-030-09, added new references, corrected internal references 05 05/12/2019 Section 4.2.3: content added 06 06/12/2019 Updated according to CTA2-T1.1-R-SNF-061-01 07 08/12/2019 Section 5.2 and 5.3 added. 08 17/12/2019 Reviews to new contributions applied Whole Document review from CTA2 T1.1 members, TMT and 09 20/12/2019 Safe4RAIL-2 members Disclaimer The information in this document is provided “as is”, and no guarantee or warranty is given that the information is fit for any particular purpose.
    [Show full text]
  • Universidad Nacional De Chimborazo Facultad De Ingeniería Carrera De Electrónica Y Telecomunicaciones
    UNIVERSIDAD NACIONAL DE CHIMBORAZO FACULTAD DE INGENIERÍA CARRERA DE ELECTRÓNICA Y TELECOMUNICACIONES Proyecto de Investigación previo a la obtención del título de Ingeniero en Electrónica y Telecomunicaciones TRABAJO DE TITULACIÓN DISEÑO Y SIMULACIÓN DE UNA RED DE COMUNICACIÓN EN VAGONES DE FERROCARRILES A TRAVÉS DE LA UTILIZACIÓN DE LOS ESTÁNDARES IEC 61375 PARA LA RUTA TREN DEL HIELO I (RIOBAMBA – URBINA – LA MOYA – RIOBAMBA) Autor: Denis Andrés Maigualema Quimbita Tutor: Ing. PhD. Ciro Diego Radicelli García Riobamba - Ecuador Año 2020 I Los miembros del tribunal de graduación del proyecto de investigación de título: “DISEÑO Y SIMULACIÓN DE UNA RED DE COMUNICACIÓN EN VAGONES DE FERROCARRILES A TRAVÉS DE LA UTILIZACIÓN DE LOS ESTÁNDARES IEC 61375 PARA LA RUTA TREN DEL HIELO I (RIOBAMBA – URBINA – LA MOYA – RIOBAMBA)”, presentado por: Denis Andrés Maigualema Quimbita, y dirigido por el Ing. PhD. Ciro Diego Radicelli García. Una vez revisado el informe final del proyecto de investigación con fines de graduación escrito en el cual consta el cumplimento de las observaciones realizadas, remite la presente para uso y custodia en la Biblioteca de la Facultad de Ingeniería de la UNACH. Para constancia de lo expuesto firman. Ing. PhD. Ciro Radicelli Tutor Dr. Marlon Basantes Miembro del tribunal Ing. José Jinez Miembro del tribunal II DECLARACIÓN EXPUESTA DE TUTORÍA En calidad de tutor del tema de investigación: “DISEÑO Y SIMULACIÓN DE UNA RED DE COMUNICACIÓN EN VAGONES DE FERROCARRILES A TRAVÉS DE LA UTILIZACIÓN DE LOS ESTÁNDARES IEC 61375 PARA LA RUTA TREN DEL HIELO I (RIOBAMBA – URBINA – LA MOYA – RIOBAMBA ". Realizado por el Sr.
    [Show full text]
  • Industrielle Bussysteme : Ethernet • Ethernet Link Schicht • Medium Access Control • Logical Link Control – LLC Dr
    Inhalt • Ethernet Übersicht und Protokolle • Ethernet Schicht-1 Industrielle Bussysteme : Ethernet • Ethernet Link Schicht • Medium Access Control • Logical Link Control – LLC Dr. Leonhard Stiegler Automation • Ergänzende LAN Protokolle www.dhbw-stuttgart.de Industrielle Bussysteme , Teil 1 – Ethernet, L.Stiegler , 1 5. Semester, Automation, 2015 Industrielle Bussysteme , Teil 1 – Ethernet, L.Stiegler , 2 5. Semester, Automation, 2015 Definitionen IEEE 802 Standardisierung Ein Computernetz ist eine Zusammenschaltung von Host-Rechnern, die 802.1 LAN/MAN Architecture Informationen austauschen über WGs: Interworking, - Übertragungsverbindungen und Security, Audio/Video Bridging and Netzknoten - Congestion Management. Ein Lokales Netz (LAN) umfasst in der Regel einen begrenzten 802.2 : Logical Link Control (LLC) geografischen Bereich, wie z.B. ein Gebäude, Stockwerk oder einen 802.3 : Ethernet Campus Basic Ethernet 10 Mbit/s Ethernet ist eine weit verbreitete LAN Technologie. Sie definiert Fast Ethernet 100 Mbit/s over copper or fibre Gbit-Ethernet 1 Gbit/s over copper or fibre - das Übertragungsmedium 10G-Ethernet 10 Gbit/s over optical fibres - den Zugang zum Medium 802.11 : WLAN - die physikalischen Übertragungseigensaften und Prozeduren 802.16 : WMAN Ethernet ist Teil der Standardisierungsfamilie 802 802.17 : Resilient Packet Ring Industrielle Bussysteme , Teil 1 – Ethernet, L.Stiegler , 3 5. Semester, Automation, 2015 Industrielle Bussysteme , Teil 1 – Ethernet, L.Stiegler , 4 5. Semester, Automation, 2015 IEEE 802.3 Standards LAN Characteristika
    [Show full text]
  • Contributing to Shift2rail's Next Generation of High Capable and Safe Tcms and Brakes
    Contract No. H2020 – 730539 CONTRIBUTING TO SHIFT2RAIL'S NEXT GENERATION OF HIGH CAPABLE AND SAFE TCMS AND BRAKES. D3.2 – Drive-by-Data Technology Evaluation Report Due date of deliverable: 31/05/2017 Actual submission date: 11/07/2017 Leader/Responsible of this Deliverable: G. Hans, BTG Reviewed: Y Document status Revision Date Description 1 01/02/2017 First issue 2 23/02/2017 Added content to chapter 2 3 13/04/2017 Added content to chapters 2 and 3 4 08/05/2017 All chapters completed, prepared for review 5 24/05/2017 Update after review 6 12/06/2017 TMT review 7 11/07/2017 Final Project funded from the European Union’s Horizon 2020 research and innovation programme Dissemination Level PU Public CO Confidential, restricted under conditions set out in Model Grant Agreement X Start date: 01/09/2016 Duration: 24 months CTA-T3.2-D-BTD-003-07 Page 1 of 91 11/07/2017 Contract No. H2020 – 730539 REPORT CONTRIBUTORS Name Company Details of Contribution Nerea Elorza CAF Chapters: Joana Azketa 2.2.5; 2.4; 4.2 Rainer Mattes Siemens Chapters: 2.2.2 Gernot Hans BTG Chapters: Thomas Gallenkamp 1; 2.1; 2.2 (except 2.2.2); 2.3 (except 2.2.5); 2.5; 3.1; 3.2; 4.1; 4.3; 5 CTA-T3.2-D-BTD-003-07 Page 2 of 91 11/07/2017 Contract No. H2020 – 730539 EXECUTIVE SUMMARY This delivery is a report on technologies which are seen as groundbraking for the definition of a Next-Generation Train Communication Network (NG-TCN).
    [Show full text]
  • Scheduling Optimization of Time-Triggered Cyber-Physical Systems Based on Fuzzy-Controlled QPSO and SMT Solver
    energies Article Scheduling Optimization of Time-Triggered Cyber-Physical Systems Based on Fuzzy-Controlled QPSO and SMT Solver Jie Jian , Lide Wang *, Huang Chen and Xiaobo Nie School of Electrical Engineering, Beijing Jiaotong University, Beijing 100044, China; [email protected] (J.J.); [email protected] (H.C.); [email protected] (X.N.) * Correspondence: [email protected] Received: 9 January 2020; Accepted: 30 January 2020; Published: 4 February 2020 Abstract: The time-triggered communication paradigm is a cost-efficient way to meet the real-time requirements of cyber-physical systems. It is a non-deterministic polynomial NP-complete problem for multi-hop networks and non-strictly periodic traffic. A two-level scheduling approach is proposed to simplify the complexity during optimization. In the first level, a fuzzy-controlled quantum-behaved particle swarm optimization (FQPSO) algorithm is proposed to optimize the scheduling performance by assigning time-triggered frame instances to the basic periods of each link. In order to prevent population from high aggregation, a random mutation mechanism is used to disturb particles at the aggregation point and enhance the diversity at later stages. Fuzzy logic is introduced and well designed to realize a dynamic adaptive adjustment of the contraction–expansion coefficient and mutation rate in FQPSO. In the second level, we use an improved Satisfiability Modulo Theories (SMT) scheduling algorithm to solve the collision-free and temporal constraints. A schedulability ranking method is proposed to accelerate the computation of the SMT-based incremental scheduler. Our approach can co-optimize the jitter and load balance of communication for an off-line schedule.
    [Show full text]
  • Ethernet Rechnerkommunikation Und Vernetzung • Netzwerke: Beispiele, Adressierung Teil 1 - Ethernet • Funktionsweise
    Inhalt Ethernet Rechnerkommunikation und Vernetzung • Netzwerke: Beispiele, Adressierung Teil 1 - Ethernet • Funktionsweise Stephan Rupp • Operationen auf Layer 2 und Layer 3 Nachrichtentechnik • Ethernet Switches • Systeme auf Layer 2 und Layer 3 • Protokolle www.dhbw-stuttgart.de Rechnerkommunikation und Vernetzung, Teil 1, S. Rupp 5. Semester, Nachrichtentechnik, 2013 Rechnerkommunikation und Vernetzung, Teil 1, S. Rupp 2 5. Semester, Nachrichtentechnik, 2013 Netzwerke Beispiel: Heimnetz Host Lokale Netze (Local Area Networks) (2) Datei laden • Arbeitsplatz Host • Zuhause (3) Dokument • Telekommunikationsnetze Switch LAN drucken • Automatisierungstechnik (1) Web-Seite • Transport (Schiene, Luft, Wasser) laden • Medizintechnik Switch/Hub Network Lokales Netz = IP Subnetwork Printer • Teil des Internet bzw. privaten IP-Netzes Router& • Telekommunikationsnetze DSL-Modem • Basis für IP basierte Dienste • Verkehrs-Aggregation über “Carrier Ethernet” Web Internet Wie funktioniert das? Server Rechnerkommunikation und Vernetzung, Teil 1, S. Rupp 3 5. Semester, Nachrichtentechnik, 2013 Rechnerkommunikation und Vernetzung, Teil 1, S. Rupp 4 5. Semester, Nachrichtentechnik, 2013 Adressen im Heimnetz Inhalt 192.168.178.21 Host 192.168.178.22 Ethernet 00:13:02:39:e5:f7 00:0a:95:d1:52:30 Host • Netzwerke IP-Address (L3) LAN • Funktionsweise: vom Hub zum Switch MAC Address (L2) Network Printer • Operationen auf Layer 2 und Layer 3 Switch/Hub 192.168.178.23 • Ethernet Switches 192.168.178.1 00:80:77:31:b6:45 00:04:0e:73:3f:3d Router& • Systeme auf Layer 2 und Layer 3 DSL-Modem • Protokolle • IP Adressen durch den Router dynamisch vergeben (DHCP) • MAC Adressen vom Hertsller fest in die Netzwerkschnittstellen eingebaut Rechnerkommunikation und Vernetzung, Teil 1, S. Rupp 5 5. Semester, Nachrichtentechnik, 2013 Rechnerkommunikation und Vernetzung, Teil 1, S.
    [Show full text]
  • A Study on Development of Low Cost Digital Train Communication Network for Indian Railways
    DTCN - A CONCEPT DESIGN FOR INDIAN RAILWAYS.DOCX KAPURTHALA A study on development of low cost Digital Train Communication Network for Indian Railways Akhilesh Misra, Chief Design Engineer Rail Coach Factory, Kapurthala Government of India - Ministry of Railways Keywords: Abstract Train Communication In this paper, the author has attempted to study the requirements of train control networks and safety Network, TCN, Wired systems for application to high-speed rail travel for Indian Railways and present a concept design of a Train Bus, WTB, Train Train Digital Communication Network based upon common off the shelf (COTS) technologies for lower Communication & costs. Monitoring System, This study for the concept design of the COTS based TCN includes identification of sub-systems requiring TCMS, interoperability, the communication infrastructure, estimating the data loads and the characteristics and briefly explains IEC 61375, CANOpen, how the concept design shall be able to meet the identified requirements. A literature survey of similar Ethernet, TCNOpen, developmental efforts is also included. TCP/IP, Common Off the While the study was initiated, the IEC standard too has undergone revision. Therefore the study further Shelf, COTS, Controller compares the concept model with the guidelines of the revised IEC 61375. Area Network, CAN, For furthering the implementation of the proposed system on the Indian Railways, the author has also CAN Consist Network identified the need of setting up a validation test facility for compliance testing to ensure interoperability. CCN, Ethernet Train The scope, role and requirements of this facility are included as a part of recommendations in the paper. Bus, ETB This paper was originally written in 2013.
    [Show full text]
  • Projet ROLL2RAIL: New Dependable Rolling Stock for a More Sustainable, Intelligent and Comfortable Rail Transport in Europe
    Projet ROLL2RAIL: New dependable rolling stock for a more sustainable, intelligent and comfortable rail transport in Europe. Deliverable D2.2 - Characterisation of the Railway Environment for Radio Transmission Ronald Raulefs, Stephan Sand, Eneko Echeverria, Imanol Baz, Ion Ansoategui, Thomas Jost, Andreas Lehner, Stephan Pfletschinger, Paul Unterhuber, Marion Berbineau, et al. To cite this version: Ronald Raulefs, Stephan Sand, Eneko Echeverria, Imanol Baz, Ion Ansoategui, et al.. Projet ROLL2RAIL: New dependable rolling stock for a more sustainable, intelligent and comfortable rail transport in Europe. Deliverable D2.2 - Characterisation of the Railway Environment for Radio Trans- mission. [Research Report] IFSTTAR - Institut Français des Sciences et Technologies des Transports, de l’Aménagement et des Réseaux. 2016, 186p. hal-01664165 HAL Id: hal-01664165 https://hal.archives-ouvertes.fr/hal-01664165 Submitted on 14 Dec 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Contract No. H2020 – 636032 NEW DEPENDABLE ROLLING STOCK FOR A MORE SUSTAINABLE,
    [Show full text]
  • Functional Distribution Architecture
    D2.1 Report on state-of-the-art of ‘functional distribution architecture’ frameworks and solutions Project number: 730830 Project acronym: Safe4RAIL Safe4RAIL: SAFE architecture for Robust Project title: distributed Application Integration in roLling stock Start date of the project: 1st of October, 2016 Duration: 24 months Programme: H2020-S2RJU-OC-2016-01-2 Deliverable type: Report Deliverable reference number: ICT-730830 / D 2.1/ 1.1 Work package WP2 Due date: December 2016 – M03 Actual submission date: 30th of December, 2016 Responsible organisation: SIE Editor: Hongjie Fang Dissemination level: Public Revision: 1.1 Describes the state-of-the-art of functional distribution architecture frameworks including Abstract: existing solutions from automotive, avionics and railway domains. ARINC 653, AUTOSAR, TCMS, DREAMS, Keywords: Functional distribution architecture framework This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 730830. D2.1 - Report on state-of-the-art of ‘functional distribution architecture’ Frameworks and solutions Editor Hongjie Fang (SIE) Contributors (ordered according to beneficiary numbers) Mirko Jakovljevic (TTT) Azketa Ekain, Iñigo Odriozola (IKL) Hongjie Fang (SIE) Mario Münzer (TEC) Dobromil Nenutil (UNI) Achim Agster, Bernd Löhr (NEW) Donatas Elvikis (IAV) Disclaimer The information in this document is provided “as is”, and no guarantee or warranty is given that the information is fit for any particular purpose. The content of this document reflects only the author’s view – the Joint Undertaking is not responsible for any use that may be made of the information it contains. The users use the information at their sole risk and liability.
    [Show full text]
  • 2. Specifications B) Technical Requirements
    2. SPECIFICATIONS B) TECHNICAL REQUIREMENTS (This page is blank) Table of Contents B) TECHNICAL REQUIREMENTS ..................................................................................................................... 1 1 SYSTEM REQUIREMENTS ........................................................................................................................... 1 1.1 INTRODUCTION............................................................................................................................ 1 1.2 DESIGN REQUIREMENTS ........................................................................................................... 1 1.2.1 Previous Usage ................................................................................................................... 2 1.2.2 Codes, Standards and Requirements .................................................................................. 2 1.2.3 Design and Manufacturing Tolerances .............................................................................. 2 1.2.4 Design Management and Control ....................................................................................... 3 1.2.5 Design Review ................................................................................................................... 3 1.2.6 Special Responsibility of the Contractor ............................................................................ 3 1.2.7 Driver’s Cab and saloon Mock-up ..................................................................................... 3 1.3
    [Show full text]
  • Performance Evaluation of Deterministic Communication in the Railway Domain
    Performance evaluation of deterministic communication in the railway domain Daniel Onwuchekwa Roman Obermaisser Chair for Embedded Systems Chair for Embedded Systems University of Siegen University of Siegen Holderlinstr.¨ 3, 57076 Holderlinstr.¨ 3, 57076 Siegen, Germany Siegen, Germany Abstract—This paper presents an in-depth physical evalu- function vehicle bus (MVB). The initial version of the TCN ation that studies the inclusion of deterministic and mixed- standard (IEC 61375-1, IEC 61375-2-1ff) did not take care criticality features on the train communication networks. Cur- of applications having large bandwidth, such as surveillance rently, the railway industry uses networks with multiple back- bones. The most prominent are communication setups with cameras and onboard entertainment. The data rate of this the WTB/MVB(Wire train bus/ multifunctional vehicle bus) earlier TCN version tops at 1 Mbit/s between the train vehicle and the ETB/ECN (Ethernet Train Backbone/ Ethernet Consist (Train bus) and 1.5Mbit/s within a vehicle (Vehicle bus). network). Where the WTB/MVB is used to host safety-criticality Therefore, this resulted in the development of additional parts applications, the ETB/ECN is used for non-safety criticality to the IEC 61375-family. The improved standard defined a applications, since the ETB/ECN is not able to provide deter- minism. Nevertheless, the main reason for the addition of the faster TCN (IEC61375-2-5) capable of handling over 100 Ethernet-based communication is the high bandwidth availability, Mbits/s, and conformant to IEEE 802.3. This standard is to satisfy the increasing data traffic generated by applications referred herein as the ETB/ECN and is based on a hierarchical on the train.
    [Show full text]