Hurricane Forecasting in Canada: a Partnership Between Research and Operations

Total Page:16

File Type:pdf, Size:1020Kb

Hurricane Forecasting in Canada: a Partnership Between Research and Operations Hurricane Forecasting in Canada: a partnership between research and operations J.D. Abraham Director General Weather and Environmental Monitoring Meteorological Service of Canada IWET IV May 24 2012 Creation and evolution of the CHC: 25th Anniversary September 25-28, 1985 – Hurricane Gloria affected the Maritime provinces. Canadians had to rely largely on U.S. forecasts concerning this intense storm. When the storm's effects on Canada were much less than predicted, there was considerable confusion in the media and the general public. This eventually lead to the creation of the CHC. 1980’s CNN – Growth in cable news and live coverage August 31, 1987 – Environment Canada established hurricane centres on each coast: at the then Maritimes Weather Centre (Bedford, N.S.), and at the then Pacific Weather Centre (Vancouver, B.C.). 2000 – The Canadian Hurricane Centre was established in Dartmouth, N.S., to serve all of Canada. Canadian Hurricane Centre Ops 1987: First hurricane forecasting specialists were identified: Jim Abraham, Peter Bowyer, Al MacAfee, Ken MacDonald, John Merrick CHC issues first bulletins on Hurricane Emily 1989: First Environment Canada meteorologist attends the WMO-NHC Hurricane Workshop 1991: First hurricane-forecasting training delivered in Canada by a U.S. National Hurricane Centre specialist (Hal Gerrish) 1994: Development and implementation of hurricane workstation software that prepares tracks and bulletins (Al MacAfee) TC (not ET) Training 4 ET: a collaborative R&D and forecaster challenge 1989: Tropical Storm Hugo hits Ontario; this storm marks the first time Doppler images of a tropical cyclone are captured over Canada: Paul Joe 1993: First CHC member attends the International Workshop on Tropical Cyclones (IWTC-III, Mexico) 1996 McGill University: Peter Yau and John Gyakum 1998: IWTC-IV Haikou : Special session on ET 1999: IWET I: Kaufbeuren DE (Sarah Jones and Roger Smith) 1999: AEPRI 2001: COMET partnership established 2003: IWET II and Hurricane Juan Halifax NS 2004: National Lab in each Storm Prediction Centre 2005: IWET III Perth AU 2012: IWET IV Montreal QC 6 . Our knowledge and understanding First International Workshop on of extratropical transition could be Extratropical Transition enhanced through a field Kaufbeuren, Germany, 10 - 14 May 1999 experiment with Intensive Observation Periods. Scientific objectives must be developed for such an experiment. The possibility of using existing resources should be considered, e.g. WWRP/WMO and Typhoon Committee in the Pacific, USWRP and the HRD field programme in the Atlantic. The participation of both forecasters and researchers is essential for the success of a field programme. Outcome: Improved understanding, and better prediction through: – Knowledge transfer (training and development, conceptual models, techniques) – Technology transfer (numerical models, tools) – Data (aircraft, remote sensing, impacts) Training: COMET Courses and Modules Parametric Wind and Wave modeling HURRICANE Wave Field at LUIS Sept.11 - 01Z Sept. 10-11, 1995 11 / 06Z 105 knots 2 Max Reported 3 Sig. Waves QEII 11 / 00Z * 17+ metres 95 knots 4 5 10 / 18Z 85 knots 10 6 9 10 / 12Z 85 knots 7 8 10 / 06Z 85 knots Numerical Weather Prediction • Coupled Modeling strategies • Ocean and atmospheric data assimilation • High resolution simulations • Vortex insertions • Improved operational modeling suite 12 Storm surge prediction and water level alert system • The first project to be brought to fruition through AEPRI, with collaborators: • Natacha Bernier, Janya Humble, Josko Bobanovic and Keith Thompson (Dal) • George Parkes, Serge Desjardins, and Al MacAfee (MTs, MSC - Atlantic) 13 Storm Surge Prediction System • Predicts sea level changes caused by weather systems • Based on Dal coastal ocean model • Driven by CMC regional forecast model surface pressures and winds • Alerts forecasters of flooding risk from combination of high tide and large surge 14 The January 21st 2000 Storm • Powerful storm hit Maritimes • Significant flooding in Charlottetown • Successful prediction by forecast model • Forecast “Helene” barotropic waves Numerical Simulation Large Atmospheric Computation on the Earth Simulator • 40 clusters of 16 full SX-6 nodes • 8 vector processors per node Total 5120 PEs • Peak performance 40 Tflops/sec • Memory: 16 Gbytes/node Total: 10 TB • NEC IXS Xbar Interconnec Collaboration RPN: ESC: McGill University: Michel Desgagné Wataru Ohfuchi Peter Yau Gilbert Brunet John Gyakum Robert Benoit Ron McTaggart-Cowan Claude Girard Yosvany Martinez Pierre Pellerin Michel Valin CSU: Mike Montgomery LACES: A Grand Challenge project on the Earth Simulator 964 hPa ET Phase 985 hPa Modelling the Full Lifecycle of Hurricane Earl (Sept 1998) Tropical Phase at 1km Resolution with the Canadian Class2 Hurricane MC2 Model September 1998: Classified as a very active TC period Observations •Doppler Radar •Additional buoys •Aircraft flights CV580 • Michael 2000 • Karen 2001 • Isabel and Juan 2003 • Ophelia 2006 •Synthetic Aperture Radar Hugo through King City radar 1989 21 Bouys: Trapped Fetch Resonant Waves Defense Research: AXBT/AXCTD “Michael” Aircraft Investigations Cross-section of wind speeds Key findings from the flights • Highly asymmetric wind field • Deep wind region again on right-hand side (as in Michael 2000) • Drying-out above 900 mb (1000 m) on south side • Tilted eyewall - stadium effect or ET tilt? • High degree of variability in wind profiles in different sectors of the storm: • Near 50% wind reduction in BL on east side outside RMW • Near 20% (only) wind reduction near RMW and on south side (downward momentum mixing more efficient; BL rolls seen in doppler may be helping?) • This has significant implications for wind forecasting • Challenges: • Isabel (GPS) winds, icing buildup • Juan some lingering GPS issues in high wind region Another opportunistic SAR scan capturing wind field early in the ET process Page 27 CHC Outcomes • Very good relationship with research community and other operational centres (facilitated by WMO TMP, National Marine Lab and a wonderful TC community) • Trained and motivated forecasters • Credibility with Canadian media and public • Demonstrated public response to protect lives and property Courtesy, Newton Pritchett Courtesy, Newton Pritchett Courtesy, CBC SPECIAL STATEMENT FOR • EASTERN NEWFOUNDLAND: WITH THE PASSAGE OF HURRICANE KATIA WELL OFFSHORE OF NEWFOUNDLAND, ITS RAPID FORWARD SPEED OF TRAVEL OVER THE SOUTHERN GRAND BANKS MAY TRIGGER RAPID TIDE-LIKE CHANGES IN HARBOUR WATER LEVELS OVER EASTERN NEWFOUNDLAND. THE MOST PROBABLE PERIOD FOR THIS WOULD BE THIS AFTERNOON OR EARLY EVENING, AND AREAS MOST PRONE TO THIS RANGE FROM THE SOUTHERN AVALON TO THE BONAVISTA PENINSULA. TROPICAL STORMS THAT HAVE RACED ACROSS THE GRAND BANKS (MOVING OVER 100 KM/H) IN THE PAST HAVE CAUSED WATER LEVELS IN HARBOURS TO RISE AND FALL 2 OR 3 TIMES OVER THE SPAN OF AN HOUR AND FLUCTUATE BY AS MUCH AS 2 OR 3 METRES (6 TO 10 FEET). THIS IS AN ADVISORY THAT THIS MAY - REPEAT MAY - OCCUR AND INTERESTS ALONG THE COAST SHOULD BE ON THE WATCH FOR THIS POSSIBILITY. PREDICTING THE ACTUAL WATER LEVEL CHANGES FOR VARIOUS HARBOURS IS VERY DIFFICULT. THE HIGH (NATURAL) TIDE IN THE REGION WILL BE IN THE 7:30 TO 8:30 PM TIME FRAME TODAY, WHEN SUCH EFFECTS WOULD HAVE MORE OF AN IMPACT IF THEY OCCUR. 34 Research-operational partnerships: Benefit to public safety • International partnerships facilitated by IWTC and IWET • Substantial benefit from forecaster-researcher interaction – Knowledge transfer (understanding, conceptual models, training and development) – Technology transfer (models, tools and techniques) – Data (aircraft, remote sensing, impacts) • Recruitment, retention and succession planning 35 Thanks Merci! 36 .
Recommended publications
  • Aerial Rapid Assessment of Hurricane Damages to Northern Gulf Coastal Habitats
    8786 ReportScience Title and the Storms: the USGS Response to the Hurricanes of 2005 Chapter Five: Landscape5 Changes The hurricanes of 2005 greatly changed the landscape of the Gulf Coast. The following articles document the initial damage assessment from coastal Alabama to Texas; the change of 217 mi2 of coastal Louisiana to water after Katrina and Rita; estuarine damage to barrier islands of the central Gulf Coast, especially Dauphin Island, Ala., and the Chandeleur Islands, La.; erosion of beaches of western Louisiana after Rita; and the damages and loss of floodplain forest of the Pearl River Basin. Aerial Rapid Assessment of Hurricane Damages to Northern Gulf Coastal Habitats By Thomas C. Michot, Christopher J. Wells, and Paul C. Chadwick Hurricane Katrina made landfall in southeast Louisiana on August 29, 2005, and Hurricane Rita made landfall in southwest Louisiana on September 24, 2005. Scientists from the U.S. Geological Survey (USGS) flew aerial surveys to assess damages to natural resources and to lands owned and managed by the U.S. Department of the Interior and other agencies. Flights were made on eight dates from August Introduction 27 through October 4, including one pre-Katrina, three post-Katrina, The USGS National Wetlands and four post-Rita surveys. The Research Center (NWRC) has a geographic area surveyed history of conducting aerial rapid- extended from Galveston, response surveys to assess Tex., to Gulf Shores, hurricane damages along the Ala., and from the Gulf coastal areas of the Gulf of of Mexico shoreline Mexico and Caribbean inland 5–75 mi Sea. Posthurricane (8–121 km).
    [Show full text]
  • Florida Hurricanes and Tropical Storms
    FLORIDA HURRICANES AND TROPICAL STORMS 1871-1995: An Historical Survey Fred Doehring, Iver W. Duedall, and John M. Williams '+wcCopy~~ I~BN 0-912747-08-0 Florida SeaGrant College is supported by award of the Office of Sea Grant, NationalOceanic and Atmospheric Administration, U.S. Department of Commerce,grant number NA 36RG-0070, under provisions of the NationalSea Grant College and Programs Act of 1966. This information is published by the Sea Grant Extension Program which functionsas a coinponentof the Florida Cooperative Extension Service, John T. Woeste, Dean, in conducting Cooperative Extensionwork in Agriculture, Home Economics, and Marine Sciences,State of Florida, U.S. Departmentof Agriculture, U.S. Departmentof Commerce, and Boards of County Commissioners, cooperating.Printed and distributed in furtherance af the Actsof Congressof May 8 andJune 14, 1914.The Florida Sea Grant Collegeis an Equal Opportunity-AffirmativeAction employer authorizedto provide research, educational information and other servicesonly to individuals and institutions that function without regardto race,color, sex, age,handicap or nationalorigin. Coverphoto: Hank Brandli & Rob Downey LOANCOPY ONLY Florida Hurricanes and Tropical Storms 1871-1995: An Historical survey Fred Doehring, Iver W. Duedall, and John M. Williams Division of Marine and Environmental Systems, Florida Institute of Technology Melbourne, FL 32901 Technical Paper - 71 June 1994 $5.00 Copies may be obtained from: Florida Sea Grant College Program University of Florida Building 803 P.O. Box 110409 Gainesville, FL 32611-0409 904-392-2801 II Our friend andcolleague, Fred Doehringpictured below, died on January 5, 1993, before this manuscript was completed. Until his death, Fred had spent the last 18 months painstakingly researchingdata for this book.
    [Show full text]
  • FLORIDA HAZARDOUS WEATHER by DAY (To 1994) OCTOBER 1 1969
    FLORIDA HAZARDOUS WEATHER BY DAY (to 1994) OCTOBER 1 1969 - 1730 - Clay Co., Orange Park - Lightning killed a construction worker who was working on a bridge. A subtropical storm spawned one weak tornado and several waterspouts in Franklin Co. in the morning. 2 195l - south Florida - The center of a Tropical Storm crossed Florida from near Fort Myers to Vero Beach. Rainfall totals ranged from eight to 13 inches along the track, but no strong winds occurred near the center. The strong winds of 50 to 60 mph were all in squalls along the lower east coast and Keys, causing minor property damage. Greatest damage was from rains that flooded farms and pasture lands over a broad belt extending from Naples, Fort Myers, and Punta Gorda on the west coast to Stuart, Fort Pierce, and Vero Beach on the east. Early fall crops flooded out in rich Okeechobee farming area. Many cattle had to be moved out of flooded area, and quite a few were lost by drowning or starvation. Roadways damaged and several bridges washed out. 2-4 1994 - northwest Florida - Flood/Coastal Flood - The remnants of Tropical Depression 10 moved from the northeast Gulf of Mexico, across the Florida Panhandle, and into Georgia on the 2nd. High winds produced rough seas along west central and northwest Florida coasts causing minor tidal flooding and beach erosion. Eighteen people had to be rescued from sinking boats in the northeast Gulf of Mexico. Heavy rains in the Florida Big Bend and Panhandle accompanied the system causing extensive flooding to roadways, creeks and low lying areas and minor flooding of rivers.
    [Show full text]
  • Hurricane Igor Off Newfoundland
    Observing storm surges from space: Hurricane Igor off Newfoundland SUBJECT AREAS: Guoqi Han1, Zhimin Ma2, Dake Chen3, Brad deYoung2 & Nancy Chen1 CLIMATE SCIENCES OCEAN SCIENCES 1Biological and Physical Oceanography Section, Fisheries and Oceans Canada, Northwest Atlantic Fisheries Centre, St. John’s, NL, PHYSICAL OCEANOGRAPHY Canada, 2Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St. John’s, NL, Canada, APPLIED PHYSICS 3State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Hangzhou, China. Received Coastal communities are becoming increasingly more vulnerable to storm surges under a changing climate. 10 October 2012 Tide gauges can be used to monitor alongshore variations of a storm surge, but not cross-shelf features. In this study we combine Jason-2 satellite measurements with tide-gauge data to study the storm surge caused Accepted by Hurricane Igor off Newfoundland. Satellite observations reveal a storm surge of 1 m in the early morning 30 November 2012 of September 22, 2010 (UTC) after the passage of the storm, consistent with the tide-gauge measurements. The post-storm sea level variations at St. John’s and Argentia are associated with free Published equatorward-propagating continental shelf waves (with a phase speed of ,10 m/s and a cross-shelf decaying 20 December 2012 scale of ,100 km). The study clearly shows the utility of satellite altimetry in observing and understanding storm surges, complementing tide-gauge observations for the analysis of storm surge characteristics and for the validation and improvement of storm surge models. Correspondence and requests for materials urricanes and tropical storms can cause damage to properties and loss of life in coastal communities and should be addressed to drastically change the ocean environment1–3.
    [Show full text]
  • Lecture 17 Ahrens: Chapter 14
    Hurricanes GEOG/ENST 2331 Lecture 17 Ahrens: Chapter 14 Figure to right Atlantic Hurricanes: 2018 Hurricanes Tropical cyclones Dynamics Formation Structure Movement Dissipation Ahrens: Fig. 1, p. 466 Hurricane Rita (Sept. 2005) Tropical cyclones The most powerful of all storms* Lesser intensity than tornadoes but larger size and longer life span makes hurricanes much more devastating Average diameters are approximately 600 km and central pressures average about 950 hPa but may be as low as 870 hPa Below 920 hPa is a Category 5 Tropical cyclone terminology Hurricane North American term Taino language “god of evil” Typhoon Western Pacific term “Tai fung” (Chinese) “Tai-fu” (Japanese) “Great wind” Severe Tropical Cyclone Southern Hemisphere and Ahrens: Fig. 3, p. 471 Indian Ocean Hurricane Juan, 2003 Tropical cyclone genesis areas and storm tracks Tropical related to surface sea temperatures Cyclones Ahrens: Fig. 14.11 SST Distribution All regions of tropical cyclone development frequently exceed 27°C (80°F). Definitions Tropical depression Low pressure system in tropical ocean Tropical storm (Named storm) Sustained winds of 60-120 km/h (18-33 m/s) Hurricane/Typhoon/Severe Tropical Cyclone Sustained winds of 120-180 km/h (33-50 m/s) Categories 1-2 Major Hurricane/Typhoon/Cyclone Sustained winds exceedinG 180 km/h (50 m/s) Categories 3-5 Saffir-Simpson Scale for Hurricane Strength Herbert Saffir and Robert Simpson A&B: Table 12-2 Hurricane-strength storms: 2015 compared to average Basin 1 an 2 3 to 5 Total Average Atlantic 2 2 4 5.9 NH East Pacific* 5 10 15 9.0 NH West Pacific* 4 18 22 16.9 NH Indian 0 2 2 2.2 SH Indian 3 2 5 10.3 SH West Pacific 3 2 5 4.8 * Active TS Global 17 36 53 48.3 To Nov.
    [Show full text]
  • ANNUAL SUMMARY Atlantic Hurricane Season of 2003
    1744 MONTHLY WEATHER REVIEW VOLUME 133 ANNUAL SUMMARY Atlantic Hurricane Season of 2003 MILES B. LAWRENCE,LIXION A. AVILA,JOHN L. BEVEN,JAMES L. FRANKLIN,RICHARD J. PASCH, AND STACY R. STEWART Tropical Prediction Center, National Hurricane Center, NOAA/NWS, Miami, Florida (Manuscript received 30 April 2004, in final form 8 November 2004) ABSTRACT The 2003 Atlantic hurricane season is described. The season was very active, with 16 tropical storms, 7 of which became hurricanes. There were 49 deaths directly attributed to this year’s tropical cyclones. 1. Introduction hurricane, and Isabel’s category-2 landfall on the Outer There were 16 named tropical cyclones of at least Banks of North Carolina brought hurricane conditions tropical storm strength in the Atlantic basin during to portions of North Carolina and Virginia and record 2003, 7 of which became hurricanes. Table 1 lists these flood levels to the upper Chesapeake Bay. Elsewhere, tropical storms and hurricanes, along with their dates, Erika made landfall on the northeastern Mexico’s Gulf maximum 1-min wind speeds, minimum central sea Coast as a category-1 hurricane, Fabian was the most level pressures, deaths, and U.S. damage. Figure 1 destructive hurricane to hit Bermuda in over 75 yr, and shows the “best tracks” of this season’s storms. Juan was the worst hurricane to hit Halifax, Nova The numbers of tropical storms and hurricanes dur- Scotia, in over 100 yr. ing 2003 are above the long-term (1944–2003) averages This season’s tropical cyclones took 49 lives in the of 10 named storms, of which 6 become hurricanes.
    [Show full text]
  • Florida Hurricanes and Tropical Storms, 1871-1993: an Historical Survey, the Only Books Or Reports Exclu- Sively on Florida Hurricanes Were R.W
    3. 2b -.I 3 Contents List of Tables, Figures, and Plates, ix Foreword, xi Preface, xiii Chapter 1. Introduction, 1 Chapter 2. Historical Discussion of Florida Hurricanes, 5 1871-1900, 6 1901-1930, 9 1931-1960, 16 1961-1990, 24 Chapter 3. Four Years and Billions of Dollars Later, 36 1991, 36 1992, 37 1993, 42 1994, 43 Chapter 4. Allison to Roxanne, 47 1995, 47 Chapter 5. Hurricane Season of 1996, 54 Appendix 1. Hurricane Preparedness, 56 Appendix 2. Glossary, 61 References, 63 Tables and Figures, 67 Plates, 129 Index of Named Hurricanes, 143 Subject Index, 144 About the Authors, 147 Tables, Figures, and Plates Tables, 67 1. Saffir/Simpson Scale, 67 2. Hurricane Classification Prior to 1972, 68 3. Number of Hurricanes, Tropical Storms, and Combined Total Storms by 10-Year Increments, 69 4. Florida Hurricanes, 1871-1996, 70 Figures, 84 l A-I. Great Miami Hurricane 2A-B. Great Lake Okeechobee Hurricane 3A-C.Great Labor Day Hurricane 4A-C. Hurricane Donna 5. Hurricane Cleo 6A-B. Hurricane Betsy 7A-C. Hurricane David 8. Hurricane Elena 9A-C. Hurricane Juan IOA-B. Hurricane Kate 1 l A-J. Hurricane Andrew 12A-C. Hurricane Albert0 13. Hurricane Beryl 14A-D. Hurricane Gordon 15A-C. Hurricane Allison 16A-F. Hurricane Erin 17A-B. Hurricane Jerry 18A-G. Hurricane Opal I9A. 1995 Hurricane Season 19B. Five 1995 Storms 20. Hurricane Josephine , Plates, X29 1. 1871-1880 2. 1881-1890 Foreword 3. 1891-1900 4. 1901-1910 5. 1911-1920 6. 1921-1930 7. 1931-1940 These days, nothing can escape the watchful, high-tech eyes of the National 8.
    [Show full text]
  • Skill of Synthetic Superensemble Hurricane Forecasts for the Canadian Maritime Provinces Heather Lynn Szymczak
    Florida State University Libraries Electronic Theses, Treatises and Dissertations The Graduate School 2004 Skill of Synthetic Superensemble Hurricane Forecasts for the Canadian Maritime Provinces Heather Lynn Szymczak Follow this and additional works at the FSU Digital Library. For more information, please contact [email protected] THE FLORIDA STATE UNIVERSITY COLLEGE OF ARTS AND SCIENCES SKILL OF SYNTHETIC SUPERENSEMBLE HURRICANE FORECASTS FOR THE CANADIAN MARITIME PROVINCES By HEATHER LYNN SZYMCZAK A Thesis submitted to the Department of Meteorology in partial fulfillment of the requirements for the degree of Master of Science Degree Awarded: Fall Semester, 2004 The members of the Committee approve the Thesis of Heather Szymczak defended on 26 October 2004. _________________________________ T.N. Krishnamurti Professor Directing Thesis _________________________________ Philip Cunningham Committee Member _________________________________ Robert Hart Committee Member Approved: ____________________________________________ Robert Ellingson, Chair, Department of Meteorology ____________________________________________ Donald Foss, Dean, College of Arts and Science The Office of Graduate Studies has verified and approved the above named committee members. ii I would like to dedicate my work to my parents, Tom and Linda Szymczak, for their unending love and support throughout my long academic career. iii ACKNOWLEDGEMENTS First and foremost, I would like to extend my deepest gratitude to my major professor, Dr. T.N. Krishnamurti, for all his ideas, support, and guidance during my time here at Florida State. I would like to thank my committee members, Drs. Philip Cunningham and Robert Hart for all of their valuable help and suggestions. I would also like to extend my gratitude to Peter Bowyer at the Canadian Hurricane Centre for his help with the Canadian Hurricane Climatology.
    [Show full text]
  • New Storm Signals
    Houston/Galveston National Weather Service Office St rm Signals Volume 66 Winter 2003 2003 Southeast Texas Climate Review By Charles Roeseler The weather regime over Southeast Texas during the first five months of the year was drier than normal. Rainfall was a little heavier over the northern half of the region and temperatures were cooler than normal during the winter months and a little warmer than normal during the spring months. Severe weather episodes were less frequent than normal. The summer months were generally on the wet side as conditions favored sea breeze activity and an occasional tropical wave. Temperatures during the summer months were near to slightly below normal. The big story of the summer was the development of Hurricane Claudette. This hurricane moved somewhat erratically as she churned north across the Gulf of Mexico and then headed west toward the middle Texas coast. Claudette crossed Matagorda Island and Matagorda Bay and eventually moved into south-central Texas. The summer ended with a bit of a bang as Tropical Storm Grace developed over Labor Day weekend and moved inland. Autumn was been wetter and slightly cooler than normal. A brief summary of each month will now be provided. A table with the actual temperatures and rainfall for each automated site will appear at the end of this article. January A trend of wetter than normal conditions came to a rather abrupt end in January. Rainfall was one to three inches below normal across the region. In addition to being dry, January was also very cool. Average temperatures were one to three degrees cooler than normal over inland areas and three to four degrees cooler than normal near the coast.
    [Show full text]
  • Annual Volume and Area Variations in Tropical Cyclone Rainfall Over the Eastern United States
    15 AUGUST 2010 N OGUEIRA AND KEIM 4363 Annual Volume and Area Variations in Tropical Cyclone Rainfall over the Eastern United States RICARDO C. NOGUEIRA AND BARRY D. KEIM Louisiana Office of State Climatology, Department of Geography and Anthropology, Louisiana State University, Baton Rouge, Louisiana (Manuscript received 22 September 2009, in final form 1 April 2010) ABSTRACT This paper examines tropical cyclone (TC) rainfall in the eastern United States from the perspective of documenting accumulated annual water volumes and areas of the precipitation. Volume is a value that merges both rainfall depth and rainfall area into a single metric for each year that can be directly compared between individual years. Area represents the total land area affected by tropical rains. These TC rainfall metrics were then compared to the ENSO and the Atlantic multidecadal oscillation (AMO). Time series of annual TC water volumes show an annual average of 107 km3. The maximum volume was produced in 1985 with 405.8 km3, driven by Hurricanes Bob, Claudette, Danny, Elena, Gloria, Henri, Juan, and Kate as well as by Tropical Storms Henri and Isabel. The lowest TC volume occurred in 1978 with 8.9 km3. ENSO phases did not show any statistical correlation with TC frequency in the eastern United States. However, AMO showed a significant correlation with volume and the number of storms affecting the region. TC rainfall volume and area in the eastern United States showed a strong correlation. However, there are exceptions, whereby 1985 stands out as an exceptional volume year though the area affected is not as impressive.
    [Show full text]
  • HURRICANE JUAN: the TERRIBLE STORM Introduction
    HURRICANE JUAN: THE TERRIBLE STORM YV Introduction The year 2003 will definitely go down their wharves, sheds and gear; some lost Focus in history as a challenging one for their boats. Of the estimated $100- This News in Re- Canada. British Columbia faced two million dollar loss in Nova Scotia, $40- view module looks at the impact of different natural disasters: the most million was to farms and fisheries. Hurricane Juan, destructive forest fires in its history At the height of the storm, approxi- which came ashore during the summer, and severe floods in mately 300 000 Nova Scotia homes near Halifax, Nova western portions of the province in the were without power. Nova Scotia Scotia, shortly after fall. The Prairies dealt with another year Power did not fully restore hydro until midnight on Sep- of drought or near-drought, grasshopper October 12, adding to the frustration for tember 29, 2003. We examine the infestations, and the severe economic many residents. preparedness of fallout of a single case of mad cow Once again, as during the B.C. forest Nova Scotia for the disease. Ontario was shaken by not one fires, Canadian Forces personnel were storm, and the but two outbreaks of SARS in its hospi- brought in to assist local officials with physical and eco- tals. And, at the end of September, to the clean-up. The federal government nomic effects of its devastation. We make sure that no one felt left out, the provided 1000 members of the army also look at how Maritimes—especially Nova Scotia and and navy to aid in clearing downed hurricanes are Prince Edward Island—were battered trees to enable hydro crews to do their formed, and look by the most damaging hurricane to hit job.
    [Show full text]
  • U.S. Billion-Dollar Weather & Climate Disasters 1980-2021
    U.S. Billion-Dollar Weather & Climate Disasters 1980-2021 https://www.ncdc.noaa.gov/billions/ The U.S. has sustained 298 weather and climate disasters since 1980 in which overall damages/costs reached or exceeded $1 billion. Values in parentheses represent the 2021 Consumer Price Index cost adjusted value (if different than original value). The total cost of these 298 events exceeds $1.975 trillion. Drought Flooding Freeze Severe Storm Tropical Cyclone Wildfire Winter Storm 2021 Western Drought and Heatwave - June 2021: Western drought expands and intensifies across many western states. A historic heat wave developed for many days across the Pacific Northwest shattering numerous all-time high temperature records across the region. This prolonged heat dome was maximized over the states of Oregon and Washington and also extended well into Canada. These extreme temperatures impacted several major cities and millions of people. For example, Portland reached a high of 116 degrees F while Seattle reached 108 degrees F. The count for heat-related fatalities is still preliminary and will likely rise further. This combined drought and heat is rapidly drying out vegetation across the West, impacting agriculture and contributing to increased Western wildfire potential and severity. Total Estimated Costs: TBD; 138 Deaths Louisiana Flooding and Central Severe Weather - May 2021: Torrential rainfall from thunderstorms across coastal Texas and Louisiana caused widespread flooding and resulted in hundreds of water rescues. Baton Rouge and Lake Charles experienced flood damage to thousands of homes, vehicles and businesses, as more than 12 inches of rain fell. Lake Charles also continues to recover from the widespread damage caused by Hurricanes Laura and Delta less than 9 months before this flood event.
    [Show full text]