Hurricanes Juan
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Hurricane Forecasting in Canada: a Partnership Between Research and Operations
Hurricane Forecasting in Canada: a partnership between research and operations J.D. Abraham Director General Weather and Environmental Monitoring Meteorological Service of Canada IWET IV May 24 2012 Creation and evolution of the CHC: 25th Anniversary September 25-28, 1985 – Hurricane Gloria affected the Maritime provinces. Canadians had to rely largely on U.S. forecasts concerning this intense storm. When the storm's effects on Canada were much less than predicted, there was considerable confusion in the media and the general public. This eventually lead to the creation of the CHC. 1980’s CNN – Growth in cable news and live coverage August 31, 1987 – Environment Canada established hurricane centres on each coast: at the then Maritimes Weather Centre (Bedford, N.S.), and at the then Pacific Weather Centre (Vancouver, B.C.). 2000 – The Canadian Hurricane Centre was established in Dartmouth, N.S., to serve all of Canada. Canadian Hurricane Centre Ops 1987: First hurricane forecasting specialists were identified: Jim Abraham, Peter Bowyer, Al MacAfee, Ken MacDonald, John Merrick CHC issues first bulletins on Hurricane Emily 1989: First Environment Canada meteorologist attends the WMO-NHC Hurricane Workshop 1991: First hurricane-forecasting training delivered in Canada by a U.S. National Hurricane Centre specialist (Hal Gerrish) 1994: Development and implementation of hurricane workstation software that prepares tracks and bulletins (Al MacAfee) TC (not ET) Training 4 ET: a collaborative R&D and forecaster challenge 1989: Tropical Storm Hugo -
Guidelines for Storm Preparedness
Eleven Days after Hurricane Carol slammed the Island in August 1964, Hurricane Edna struck on September 11, flooding Edgartown (Vineyard Gazette Archive) Guidelines for Storm Preparedness West Tisbury Climate Action Committee May 2020 May 3-9, 2020: Hurricane Preparedness Week National Weather Service 1 of 11 Storm Preparedness It should come as no surprise that Martha’s Vineyard is vulnerable Nor’easter storms formed over the cold Atlantic between September and April; and hurricanes formed over warm tropical waters from June to November. The absence of hurricanes in recent years have lulled some into thinking they are no longer a serious threat to the Vineyard. The truth is that storms and hurricanes will lash the Vineyard, flooding low-lying portions of our villages, uprooting trees, bringing down power lines, snatching boats from their moorings, and disruption ferry service to the mainland. It is not a question of if; it is a matter of when and with what degree of severity. What is equally sure is that with a modicum of preparedness, your chances of riding out a storm and coping with the inevitable disruptions in the aftermath — the loss of power, telephone and internet connections, and delayed resupplying from the mainland — increase substantially. This manual breaks down emergency preparedness into stages; What you can do immediately without a storm in sight. What you can do when you know a storm is on its way. And, what you can do to make your surroundings as safe as possible when the storm hits. Storm risk varies by the size and path of the storm and by the population of the Vineyard. -
Hurricane and Tropical Storm
State of New Jersey 2014 Hazard Mitigation Plan Section 5. Risk Assessment 5.8 Hurricane and Tropical Storm 2014 Plan Update Changes The 2014 Plan Update includes tropical storms, hurricanes and storm surge in this hazard profile. In the 2011 HMP, storm surge was included in the flood hazard. The hazard profile has been significantly enhanced to include a detailed hazard description, location, extent, previous occurrences, probability of future occurrence, severity, warning time and secondary impacts. New and updated data and figures from ONJSC are incorporated. New and updated figures from other federal and state agencies are incorporated. Potential change in climate and its impacts on the flood hazard are discussed. The vulnerability assessment now directly follows the hazard profile. An exposure analysis of the population, general building stock, State-owned and leased buildings, critical facilities and infrastructure was conducted using best available SLOSH and storm surge data. Environmental impacts is a new subsection. 5.8.1 Profile Hazard Description A tropical cyclone is a rotating, organized system of clouds and thunderstorms that originates over tropical or sub-tropical waters and has a closed low-level circulation. Tropical depressions, tropical storms, and hurricanes are all considered tropical cyclones. These storms rotate counterclockwise in the northern hemisphere around the center and are accompanied by heavy rain and strong winds (National Oceanic and Atmospheric Administration [NOAA] 2013a). Almost all tropical storms and hurricanes in the Atlantic basin (which includes the Gulf of Mexico and Caribbean Sea) form between June 1 and November 30 (hurricane season). August and September are peak months for hurricane development. -
Aerial Rapid Assessment of Hurricane Damages to Northern Gulf Coastal Habitats
8786 ReportScience Title and the Storms: the USGS Response to the Hurricanes of 2005 Chapter Five: Landscape5 Changes The hurricanes of 2005 greatly changed the landscape of the Gulf Coast. The following articles document the initial damage assessment from coastal Alabama to Texas; the change of 217 mi2 of coastal Louisiana to water after Katrina and Rita; estuarine damage to barrier islands of the central Gulf Coast, especially Dauphin Island, Ala., and the Chandeleur Islands, La.; erosion of beaches of western Louisiana after Rita; and the damages and loss of floodplain forest of the Pearl River Basin. Aerial Rapid Assessment of Hurricane Damages to Northern Gulf Coastal Habitats By Thomas C. Michot, Christopher J. Wells, and Paul C. Chadwick Hurricane Katrina made landfall in southeast Louisiana on August 29, 2005, and Hurricane Rita made landfall in southwest Louisiana on September 24, 2005. Scientists from the U.S. Geological Survey (USGS) flew aerial surveys to assess damages to natural resources and to lands owned and managed by the U.S. Department of the Interior and other agencies. Flights were made on eight dates from August Introduction 27 through October 4, including one pre-Katrina, three post-Katrina, The USGS National Wetlands and four post-Rita surveys. The Research Center (NWRC) has a geographic area surveyed history of conducting aerial rapid- extended from Galveston, response surveys to assess Tex., to Gulf Shores, hurricane damages along the Ala., and from the Gulf coastal areas of the Gulf of of Mexico shoreline Mexico and Caribbean inland 5–75 mi Sea. Posthurricane (8–121 km). -
Town of Kent Hazard Mitigation Plan
TOWN OF KENT HAZARD MITIGATION PLAN DECEMBER 2014 MMI #3843-04 Prepared for the: TOWN OF KENT, CONNECTICUT Kent Town Hall 41 Kent Green Boulevard Kent, Connecticut (860) 927-3433 www.townofkentct.com Prepared by: MILONE & MACBROOM, INC. 99 Realty Drive Cheshire, Connecticut 06410 (203) 271-1773 www.miloneandmacbroom.com The preparation of this report has been financed in part through funds provided by the Connecticut Department of Emergency Services and Public Protection (DESPP) Division of Emergency Management and Homeland Security (DEMHS) under a grant from the Federal Emergency Management Agency. The contents of this report reflect the views of the Town of Kent and do not necessarily reflect the official views of DEMHS. The report does not constitute a specification or regulation. Copyright 2014 Milone & MacBroom, Inc. ACKNOWLEDGEMENTS & CONTACT INFORMATION This plan was prepared under the direction of the Town of Kent. The following individual should be contacted with questions or comments regarding the plan: Mr. Bruce Adams First Selectman Town of Kent 41 Kent Green Boulevard Kent, CT 06757 (860) 927-4627 This Natural Hazard Mitigation Plan could not have been completed without the time and dedication of the following individuals at the local level: Mr. Rick Osborne, Highway Department Mr. Bruce Adams, First Selectman The consulting firm of Milone & MacBroom, Inc. (MMI) prepared the subject plan. The following individuals at MMI may be contacted prior to plan adoption with questions or comments using the contact information on the title page or the electronic mail addresses below: Mr. David Murphy, P.E., CFM Associate, Water Resources [email protected] Copyright 2014 Milone & MacBroom, Inc. -
Hurricane & Tropical Storm
5.8 HURRICANE & TROPICAL STORM SECTION 5.8 HURRICANE AND TROPICAL STORM 5.8.1 HAZARD DESCRIPTION A tropical cyclone is a rotating, organized system of clouds and thunderstorms that originates over tropical or sub-tropical waters and has a closed low-level circulation. Tropical depressions, tropical storms, and hurricanes are all considered tropical cyclones. These storms rotate counterclockwise in the northern hemisphere around the center and are accompanied by heavy rain and strong winds (NOAA, 2013). Almost all tropical storms and hurricanes in the Atlantic basin (which includes the Gulf of Mexico and Caribbean Sea) form between June 1 and November 30 (hurricane season). August and September are peak months for hurricane development. The average wind speeds for tropical storms and hurricanes are listed below: . A tropical depression has a maximum sustained wind speeds of 38 miles per hour (mph) or less . A tropical storm has maximum sustained wind speeds of 39 to 73 mph . A hurricane has maximum sustained wind speeds of 74 mph or higher. In the western North Pacific, hurricanes are called typhoons; similar storms in the Indian Ocean and South Pacific Ocean are called cyclones. A major hurricane has maximum sustained wind speeds of 111 mph or higher (NOAA, 2013). Over a two-year period, the United States coastline is struck by an average of three hurricanes, one of which is classified as a major hurricane. Hurricanes, tropical storms, and tropical depressions may pose a threat to life and property. These storms bring heavy rain, storm surge and flooding (NOAA, 2013). The cooler waters off the coast of New Jersey can serve to diminish the energy of storms that have traveled up the eastern seaboard. -
Florida Hurricanes and Tropical Storms
FLORIDA HURRICANES AND TROPICAL STORMS 1871-1995: An Historical Survey Fred Doehring, Iver W. Duedall, and John M. Williams '+wcCopy~~ I~BN 0-912747-08-0 Florida SeaGrant College is supported by award of the Office of Sea Grant, NationalOceanic and Atmospheric Administration, U.S. Department of Commerce,grant number NA 36RG-0070, under provisions of the NationalSea Grant College and Programs Act of 1966. This information is published by the Sea Grant Extension Program which functionsas a coinponentof the Florida Cooperative Extension Service, John T. Woeste, Dean, in conducting Cooperative Extensionwork in Agriculture, Home Economics, and Marine Sciences,State of Florida, U.S. Departmentof Agriculture, U.S. Departmentof Commerce, and Boards of County Commissioners, cooperating.Printed and distributed in furtherance af the Actsof Congressof May 8 andJune 14, 1914.The Florida Sea Grant Collegeis an Equal Opportunity-AffirmativeAction employer authorizedto provide research, educational information and other servicesonly to individuals and institutions that function without regardto race,color, sex, age,handicap or nationalorigin. Coverphoto: Hank Brandli & Rob Downey LOANCOPY ONLY Florida Hurricanes and Tropical Storms 1871-1995: An Historical survey Fred Doehring, Iver W. Duedall, and John M. Williams Division of Marine and Environmental Systems, Florida Institute of Technology Melbourne, FL 32901 Technical Paper - 71 June 1994 $5.00 Copies may be obtained from: Florida Sea Grant College Program University of Florida Building 803 P.O. Box 110409 Gainesville, FL 32611-0409 904-392-2801 II Our friend andcolleague, Fred Doehringpictured below, died on January 5, 1993, before this manuscript was completed. Until his death, Fred had spent the last 18 months painstakingly researchingdata for this book. -
FLORIDA HAZARDOUS WEATHER by DAY (To 1994) OCTOBER 1 1969
FLORIDA HAZARDOUS WEATHER BY DAY (to 1994) OCTOBER 1 1969 - 1730 - Clay Co., Orange Park - Lightning killed a construction worker who was working on a bridge. A subtropical storm spawned one weak tornado and several waterspouts in Franklin Co. in the morning. 2 195l - south Florida - The center of a Tropical Storm crossed Florida from near Fort Myers to Vero Beach. Rainfall totals ranged from eight to 13 inches along the track, but no strong winds occurred near the center. The strong winds of 50 to 60 mph were all in squalls along the lower east coast and Keys, causing minor property damage. Greatest damage was from rains that flooded farms and pasture lands over a broad belt extending from Naples, Fort Myers, and Punta Gorda on the west coast to Stuart, Fort Pierce, and Vero Beach on the east. Early fall crops flooded out in rich Okeechobee farming area. Many cattle had to be moved out of flooded area, and quite a few were lost by drowning or starvation. Roadways damaged and several bridges washed out. 2-4 1994 - northwest Florida - Flood/Coastal Flood - The remnants of Tropical Depression 10 moved from the northeast Gulf of Mexico, across the Florida Panhandle, and into Georgia on the 2nd. High winds produced rough seas along west central and northwest Florida coasts causing minor tidal flooding and beach erosion. Eighteen people had to be rescued from sinking boats in the northeast Gulf of Mexico. Heavy rains in the Florida Big Bend and Panhandle accompanied the system causing extensive flooding to roadways, creeks and low lying areas and minor flooding of rivers. -
Hurricane Igor Off Newfoundland
Observing storm surges from space: Hurricane Igor off Newfoundland SUBJECT AREAS: Guoqi Han1, Zhimin Ma2, Dake Chen3, Brad deYoung2 & Nancy Chen1 CLIMATE SCIENCES OCEAN SCIENCES 1Biological and Physical Oceanography Section, Fisheries and Oceans Canada, Northwest Atlantic Fisheries Centre, St. John’s, NL, PHYSICAL OCEANOGRAPHY Canada, 2Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St. John’s, NL, Canada, APPLIED PHYSICS 3State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Hangzhou, China. Received Coastal communities are becoming increasingly more vulnerable to storm surges under a changing climate. 10 October 2012 Tide gauges can be used to monitor alongshore variations of a storm surge, but not cross-shelf features. In this study we combine Jason-2 satellite measurements with tide-gauge data to study the storm surge caused Accepted by Hurricane Igor off Newfoundland. Satellite observations reveal a storm surge of 1 m in the early morning 30 November 2012 of September 22, 2010 (UTC) after the passage of the storm, consistent with the tide-gauge measurements. The post-storm sea level variations at St. John’s and Argentia are associated with free Published equatorward-propagating continental shelf waves (with a phase speed of ,10 m/s and a cross-shelf decaying 20 December 2012 scale of ,100 km). The study clearly shows the utility of satellite altimetry in observing and understanding storm surges, complementing tide-gauge observations for the analysis of storm surge characteristics and for the validation and improvement of storm surge models. Correspondence and requests for materials urricanes and tropical storms can cause damage to properties and loss of life in coastal communities and should be addressed to drastically change the ocean environment1–3. -
Lecture 17 Ahrens: Chapter 14
Hurricanes GEOG/ENST 2331 Lecture 17 Ahrens: Chapter 14 Figure to right Atlantic Hurricanes: 2018 Hurricanes Tropical cyclones Dynamics Formation Structure Movement Dissipation Ahrens: Fig. 1, p. 466 Hurricane Rita (Sept. 2005) Tropical cyclones The most powerful of all storms* Lesser intensity than tornadoes but larger size and longer life span makes hurricanes much more devastating Average diameters are approximately 600 km and central pressures average about 950 hPa but may be as low as 870 hPa Below 920 hPa is a Category 5 Tropical cyclone terminology Hurricane North American term Taino language “god of evil” Typhoon Western Pacific term “Tai fung” (Chinese) “Tai-fu” (Japanese) “Great wind” Severe Tropical Cyclone Southern Hemisphere and Ahrens: Fig. 3, p. 471 Indian Ocean Hurricane Juan, 2003 Tropical cyclone genesis areas and storm tracks Tropical related to surface sea temperatures Cyclones Ahrens: Fig. 14.11 SST Distribution All regions of tropical cyclone development frequently exceed 27°C (80°F). Definitions Tropical depression Low pressure system in tropical ocean Tropical storm (Named storm) Sustained winds of 60-120 km/h (18-33 m/s) Hurricane/Typhoon/Severe Tropical Cyclone Sustained winds of 120-180 km/h (33-50 m/s) Categories 1-2 Major Hurricane/Typhoon/Cyclone Sustained winds exceedinG 180 km/h (50 m/s) Categories 3-5 Saffir-Simpson Scale for Hurricane Strength Herbert Saffir and Robert Simpson A&B: Table 12-2 Hurricane-strength storms: 2015 compared to average Basin 1 an 2 3 to 5 Total Average Atlantic 2 2 4 5.9 NH East Pacific* 5 10 15 9.0 NH West Pacific* 4 18 22 16.9 NH Indian 0 2 2 2.2 SH Indian 3 2 5 10.3 SH West Pacific 3 2 5 4.8 * Active TS Global 17 36 53 48.3 To Nov. -
ANNUAL SUMMARY Atlantic Hurricane Season of 2003
1744 MONTHLY WEATHER REVIEW VOLUME 133 ANNUAL SUMMARY Atlantic Hurricane Season of 2003 MILES B. LAWRENCE,LIXION A. AVILA,JOHN L. BEVEN,JAMES L. FRANKLIN,RICHARD J. PASCH, AND STACY R. STEWART Tropical Prediction Center, National Hurricane Center, NOAA/NWS, Miami, Florida (Manuscript received 30 April 2004, in final form 8 November 2004) ABSTRACT The 2003 Atlantic hurricane season is described. The season was very active, with 16 tropical storms, 7 of which became hurricanes. There were 49 deaths directly attributed to this year’s tropical cyclones. 1. Introduction hurricane, and Isabel’s category-2 landfall on the Outer There were 16 named tropical cyclones of at least Banks of North Carolina brought hurricane conditions tropical storm strength in the Atlantic basin during to portions of North Carolina and Virginia and record 2003, 7 of which became hurricanes. Table 1 lists these flood levels to the upper Chesapeake Bay. Elsewhere, tropical storms and hurricanes, along with their dates, Erika made landfall on the northeastern Mexico’s Gulf maximum 1-min wind speeds, minimum central sea Coast as a category-1 hurricane, Fabian was the most level pressures, deaths, and U.S. damage. Figure 1 destructive hurricane to hit Bermuda in over 75 yr, and shows the “best tracks” of this season’s storms. Juan was the worst hurricane to hit Halifax, Nova The numbers of tropical storms and hurricanes dur- Scotia, in over 100 yr. ing 2003 are above the long-term (1944–2003) averages This season’s tropical cyclones took 49 lives in the of 10 named storms, of which 6 become hurricanes. -
New England Hurricanes of Note (PDF)
THE COMMONWEALTH OF MASSACHUSETTS EXECUTIVE OFFICE OF PUBLIC SAFETY _____________________________ MASSACHUSETTS EMERGENCY MANAGEMENT AGENCY 400 Worcester Road Framingham, MA 01702-5399 Cristine McCombs Mitt Romney Director Governor Tel: 508-820-2000 Fax: 508-820-2030 Website: www.mass.gov/mema Kerry Healey Lieutenant Governor Robert C. Haas Secretary FOR IMMEDIATE RELEASE CONTACT: Peter Judge June 1, 2006 (508) 820-2002 NEW ENGLAND HURRICANES OF NOTE FRAMINGHAM, MA – Although the approaching Hurricane Season in New England is defined as June 1st through November 30th, the vast majority of the 40 tropical systems that have impacted our region over the past century have struck during the months of August and September. Because Massachusetts is such a relatively small state, it is important to realize that these are not just ‘coastal events’, but, in fact, everyone in the Commonwealth can be severely impacted by a major storm. “New England is in the unenviable position of receiving all three types of Hurricane Threats,” states Massachusetts Emergency Management Agency Director Cristine McCombs. “Depending upon the storm’s track and landfall location, we can experience coastal inundation from storm surge, widespread inland river flooding, and widespread wind damage.” To best prepare ourselves for the future, it is important to revisit the past, and examine a dozen of the most notable New England Hurricanes and their catastrophic impact upon our region. The Great Colonial Hurricane of 1635 August 25, 1635 This was the first historical record of an intense hurricane striking New England. The highest winds have been estimated at Category 3 or greater, with winds of 115-plus mph.