Hurricanes in Maine: Past, Present, & Future
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Guidelines for Storm Preparedness
Eleven Days after Hurricane Carol slammed the Island in August 1964, Hurricane Edna struck on September 11, flooding Edgartown (Vineyard Gazette Archive) Guidelines for Storm Preparedness West Tisbury Climate Action Committee May 2020 May 3-9, 2020: Hurricane Preparedness Week National Weather Service 1 of 11 Storm Preparedness It should come as no surprise that Martha’s Vineyard is vulnerable Nor’easter storms formed over the cold Atlantic between September and April; and hurricanes formed over warm tropical waters from June to November. The absence of hurricanes in recent years have lulled some into thinking they are no longer a serious threat to the Vineyard. The truth is that storms and hurricanes will lash the Vineyard, flooding low-lying portions of our villages, uprooting trees, bringing down power lines, snatching boats from their moorings, and disruption ferry service to the mainland. It is not a question of if; it is a matter of when and with what degree of severity. What is equally sure is that with a modicum of preparedness, your chances of riding out a storm and coping with the inevitable disruptions in the aftermath — the loss of power, telephone and internet connections, and delayed resupplying from the mainland — increase substantially. This manual breaks down emergency preparedness into stages; What you can do immediately without a storm in sight. What you can do when you know a storm is on its way. And, what you can do to make your surroundings as safe as possible when the storm hits. Storm risk varies by the size and path of the storm and by the population of the Vineyard. -
Hurricane and Tropical Storm
State of New Jersey 2014 Hazard Mitigation Plan Section 5. Risk Assessment 5.8 Hurricane and Tropical Storm 2014 Plan Update Changes The 2014 Plan Update includes tropical storms, hurricanes and storm surge in this hazard profile. In the 2011 HMP, storm surge was included in the flood hazard. The hazard profile has been significantly enhanced to include a detailed hazard description, location, extent, previous occurrences, probability of future occurrence, severity, warning time and secondary impacts. New and updated data and figures from ONJSC are incorporated. New and updated figures from other federal and state agencies are incorporated. Potential change in climate and its impacts on the flood hazard are discussed. The vulnerability assessment now directly follows the hazard profile. An exposure analysis of the population, general building stock, State-owned and leased buildings, critical facilities and infrastructure was conducted using best available SLOSH and storm surge data. Environmental impacts is a new subsection. 5.8.1 Profile Hazard Description A tropical cyclone is a rotating, organized system of clouds and thunderstorms that originates over tropical or sub-tropical waters and has a closed low-level circulation. Tropical depressions, tropical storms, and hurricanes are all considered tropical cyclones. These storms rotate counterclockwise in the northern hemisphere around the center and are accompanied by heavy rain and strong winds (National Oceanic and Atmospheric Administration [NOAA] 2013a). Almost all tropical storms and hurricanes in the Atlantic basin (which includes the Gulf of Mexico and Caribbean Sea) form between June 1 and November 30 (hurricane season). August and September are peak months for hurricane development. -
Town of Kent Hazard Mitigation Plan
TOWN OF KENT HAZARD MITIGATION PLAN DECEMBER 2014 MMI #3843-04 Prepared for the: TOWN OF KENT, CONNECTICUT Kent Town Hall 41 Kent Green Boulevard Kent, Connecticut (860) 927-3433 www.townofkentct.com Prepared by: MILONE & MACBROOM, INC. 99 Realty Drive Cheshire, Connecticut 06410 (203) 271-1773 www.miloneandmacbroom.com The preparation of this report has been financed in part through funds provided by the Connecticut Department of Emergency Services and Public Protection (DESPP) Division of Emergency Management and Homeland Security (DEMHS) under a grant from the Federal Emergency Management Agency. The contents of this report reflect the views of the Town of Kent and do not necessarily reflect the official views of DEMHS. The report does not constitute a specification or regulation. Copyright 2014 Milone & MacBroom, Inc. ACKNOWLEDGEMENTS & CONTACT INFORMATION This plan was prepared under the direction of the Town of Kent. The following individual should be contacted with questions or comments regarding the plan: Mr. Bruce Adams First Selectman Town of Kent 41 Kent Green Boulevard Kent, CT 06757 (860) 927-4627 This Natural Hazard Mitigation Plan could not have been completed without the time and dedication of the following individuals at the local level: Mr. Rick Osborne, Highway Department Mr. Bruce Adams, First Selectman The consulting firm of Milone & MacBroom, Inc. (MMI) prepared the subject plan. The following individuals at MMI may be contacted prior to plan adoption with questions or comments using the contact information on the title page or the electronic mail addresses below: Mr. David Murphy, P.E., CFM Associate, Water Resources [email protected] Copyright 2014 Milone & MacBroom, Inc. -
Hurricane & Tropical Storm
5.8 HURRICANE & TROPICAL STORM SECTION 5.8 HURRICANE AND TROPICAL STORM 5.8.1 HAZARD DESCRIPTION A tropical cyclone is a rotating, organized system of clouds and thunderstorms that originates over tropical or sub-tropical waters and has a closed low-level circulation. Tropical depressions, tropical storms, and hurricanes are all considered tropical cyclones. These storms rotate counterclockwise in the northern hemisphere around the center and are accompanied by heavy rain and strong winds (NOAA, 2013). Almost all tropical storms and hurricanes in the Atlantic basin (which includes the Gulf of Mexico and Caribbean Sea) form between June 1 and November 30 (hurricane season). August and September are peak months for hurricane development. The average wind speeds for tropical storms and hurricanes are listed below: . A tropical depression has a maximum sustained wind speeds of 38 miles per hour (mph) or less . A tropical storm has maximum sustained wind speeds of 39 to 73 mph . A hurricane has maximum sustained wind speeds of 74 mph or higher. In the western North Pacific, hurricanes are called typhoons; similar storms in the Indian Ocean and South Pacific Ocean are called cyclones. A major hurricane has maximum sustained wind speeds of 111 mph or higher (NOAA, 2013). Over a two-year period, the United States coastline is struck by an average of three hurricanes, one of which is classified as a major hurricane. Hurricanes, tropical storms, and tropical depressions may pose a threat to life and property. These storms bring heavy rain, storm surge and flooding (NOAA, 2013). The cooler waters off the coast of New Jersey can serve to diminish the energy of storms that have traveled up the eastern seaboard. -
Hurricanes: a Century of Scientific Progress
Hurricanes: A Century of Scientific Progress Kerry Emanuel Program in Atmospheres, Oceans, and Climate Massachusetts Institute of Technology 1. Introduction In the early 20th century, at the same time that the theories of relativity and quantum mechanics were being developed, there was essentially no basic understanding of the physics of hurricanes. The energy cycle that sustains such storms was not known, nor were the factors that controlled their movement. What was known about the structure and behavior of hurricanes was inferred largely from visual observations of clouds and damage patterns, and it was widely believed that the storm circulation extended upward only a few kilometers. By the end of the century, the structure and behavior of hurricanes had been thoroughly quantified, thanks to rapid technological progress that brought about such wonders as aircraft, radar and satellites, and the basic physics of the storms themselves as well as their intricate substructure had come to be well understood. This new understanding, coupled with the invention and rapid development of the computer, made it possible to forecast the motion of hurricanes with such accuracy that, given modern communications and transportation, loss of life from hurricanes has been virtually eliminated in the developed world. This chapter chronicles the extraordinary progress in the scientific understanding of hurricanes through the 20th century. We begin with a brief review of progress through World War II, which marked an important turning point in the science of meteorology, and continue with an account of the rapid progress made in the first two decades after the war. Section 4 discusses the very influential CISK theory that was developed in the 1960s. -
New England Hurricanes of Note (PDF)
THE COMMONWEALTH OF MASSACHUSETTS EXECUTIVE OFFICE OF PUBLIC SAFETY _____________________________ MASSACHUSETTS EMERGENCY MANAGEMENT AGENCY 400 Worcester Road Framingham, MA 01702-5399 Cristine McCombs Mitt Romney Director Governor Tel: 508-820-2000 Fax: 508-820-2030 Website: www.mass.gov/mema Kerry Healey Lieutenant Governor Robert C. Haas Secretary FOR IMMEDIATE RELEASE CONTACT: Peter Judge June 1, 2006 (508) 820-2002 NEW ENGLAND HURRICANES OF NOTE FRAMINGHAM, MA – Although the approaching Hurricane Season in New England is defined as June 1st through November 30th, the vast majority of the 40 tropical systems that have impacted our region over the past century have struck during the months of August and September. Because Massachusetts is such a relatively small state, it is important to realize that these are not just ‘coastal events’, but, in fact, everyone in the Commonwealth can be severely impacted by a major storm. “New England is in the unenviable position of receiving all three types of Hurricane Threats,” states Massachusetts Emergency Management Agency Director Cristine McCombs. “Depending upon the storm’s track and landfall location, we can experience coastal inundation from storm surge, widespread inland river flooding, and widespread wind damage.” To best prepare ourselves for the future, it is important to revisit the past, and examine a dozen of the most notable New England Hurricanes and their catastrophic impact upon our region. The Great Colonial Hurricane of 1635 August 25, 1635 This was the first historical record of an intense hurricane striking New England. The highest winds have been estimated at Category 3 or greater, with winds of 115-plus mph. -
Birds of Brier Island
PROCEEDINGS of the Nova Scotian Institute of Science HALIFAX, NOVA SCOTIA Volume 46 2011 Part 1 SPECIAL ISSUE BIRDS OF BRIER ISLAND By Eric L. Mills and Lance Laviolette © Nova Scotian Institute of Science Affiliated with Access Copyright, The Canadian Copyright Licensing Agency http://www.accesscopyright.ca Date of Publication, September 2011 The Proceedings of the Nova Scotian Institute of Science are supported in part by a grant from the Department of Tourism Culture and Heritage, Government of Nova Scotia, with the support of the Nova Scotia Museum. Publication of articles, principally but not exclusively in the area of natural and engineering science, will be considered as well as papers emanating from studies in the health professions. Both regular issues and special issues devoted to topics of current Nova Scotian or Maritime interest are published. EDITORIAL BOARD Peter G. Wells (Dalhousie University) ................................. Editor David H.S. Richardson (Saint Mary’s University) ............... Associate Editor Sarah Stevenson (Dalhousie University).............................. Production Editor Gail LeBlanc ........................................................................ Layout and Production Halcraft ................................................................................. Printing Roby Austin (Saint Mary’s University) ................................ Physics Nola Etkin (UPEI) ................................................................ Chemistry Mike Dadswell (Acadia University) ................................... -
P3.4 the Distribution of Precipitation Over the Northeast Accompanying Landfalling and Transitioning Tropical Cyclones
20th Conf. on Weather Analysis and Forecasting Seattle, WA, 11–15 January 2004 P3.4 The Distribution of Precipitation over the Northeast Accompanying Landfalling and Transitioning Tropical Cyclones David P. DeLuca*, Lance F. Bosart, Daniel Keyser University at Albany, State University of New York, Albany, New York and David R. Vallee National Weather Service Forecast Office, Taunton, Massachusetts 1. INTRODUCTION United States. Approximately 3500 surface stations were analyzed for each storm period (currently: 1950– Landfalling and transitioning tropical cyclones 1991) by Ron Horwood of NWS WFO Taunton, MA. pose a significant heavy precipitation forecast challenge Obvious erroneous data were removed to obtain the most over the northeastern United States. The forecast accurate analyses possible. challenge is heightened because the heavy rainfall distribution associated with these tropical cyclones can A subset of eight storms (Fig. 1) where the be modulated significantly when the poleward-moving precipitation distribution is possibly influenced by storms interact with mobile midlatitude upper-level coastal frontogenesis was chosen from well–documented troughs and coastal fronts over regions of complex or famous cases. Detailed analyses were conducted terrain. The purpose of this paper is to document the using the four times daily (0000, 0600, 1200 and 1800 large spatial and temporal variability of heavy UTC) NCEP/NCAR reanalysis dataset (Kalnay et al. precipitation that accompanies landfalling and 1996; Kistler et al. 2001) and archived DIFAX surface transitioning tropical cyclones, and to determine the charts in an attempt to elucidate both synoptic and physical basis for the observed rainfall distribution. mesoscale processes. 2. METHODOLOGY 3. RESULTS A 38-storm dataset (Fig. -
Town of Washington Hazard Mitigation Plan
TOWN OF WASHINGTON HAZARD MITIGATION PLAN 2014 MMI #3843-04 Prepared For: Town of Washington 2 Bryan Plaza Washington Depot, Connecticut 06794 (860) 868-2259 Prepared By: Milone & MacBroom, Inc. 99 Realty Drive Cheshire, Connecticut 06410 (203) 271-1773 The preparation of this report has been financed in part through funds provided by the Connecticut Department of Emergency Services and Public Protection (DESPP) Division of Emergency Management and Homeland Security (DEMHS) under a grant from the Federal Emergency Management Agency. The contents of this report reflect the views of the Town of Washington and do not necessarily reflect the official views of DEMHS. The report does not constitute a specification or regulation. ACKNOWLEDGEMENTS & CONTACT INFORMATION This plan update was prepared under the direction of the Town of Washington. The following individual should be contacted with questions or comments regarding the plan: Mark Lyon First Selectman 2 Bryan Plaza Washington, Connecticut 06794 (860) 868-3103 [email protected] This Hazard Mitigation Plan could not have been completed without the time and dedication of the additional following individuals at the local level: Mr. Mike Ajello, Zoning Enforcement Officer Mr. RJ Rocky Tomlinson, Emergency Management Mr. Kevin Smith, Highway Department Ms. Janet Hill, Land Use Administrator The consulting firm of Milone & MacBroom, Inc. (MMI) prepared the subject plan. The following individuals at MMI may be contacted with questions or comments regarding the plan update using the contact information on the title page or the electronic mail addresses below: Mr. David Murphy, P.E., CFM Associate, Water Resources [email protected] TABLE OF CONTENTS EXECUTIVE SUMMARY ...................................................................................................... -
The Situational Small World of a Post-Disaster Community: Insights Into Information Behaviors After the Devastation of Hurricane
THE SITUATIONAL SMALL WORLD OF A POST-DISASTER COMMUNITY: INSIGHTS INTO INFORMATION BEHAVIORS AFTER THE DEVASTATION OF HURRICANE KATRINA IN SLIDELL, LOUISIANA Tisha Anne Slagle, B.S., M.S., M.S. Dissertation Prepared for the Degree of DOCTOR OF PHILOSOPHY UNIVERSITY OF NORTH TEXAS December 2010 APPROVED: Brian O’Connor, Major Professor David McEntire, Committee Member Herman L. Totten, Committee Member Herman L. Totten, Dean of the College of Information James D. Meernik, Acting Dean of the Robert B. Toulouse School of Graduate Studies Slagle, Tisha Anne. The Situational Small World of a Post-disaster Community: Insights into Information Behaviors after the Devastation of Hurricane Katrina in Slidell, Louisiana. Doctor of Philosophy (Information Science), December 2010, 165 pp., 17 tables, 48 illustrations, references, 156 titles. Catastrophes like Katrina destroy a community’s critical infrastructure—a situation that instigates several dilemmas. Immediately, the community experiences information disruption within the community, as well as between the community and the outside world. The inability to communicate because of physical or virtual barriers to information instigates instant isolation. Prolonged, this scarcity of information becomes an information poverty spell, placing hardship on a community accustomed to easily accessible and applicable information. Physical devastation causes the scarcity of what Abraham Maslow calls basic survival needs— physiological, security, and social—a needs regression from the need to self-actualize, to meet intellectual and aesthetic needs. Because needs regress, the type of information required to meet the needs, also changes—regresses to information regarding survival needs. Regressed information needs requires altered information behaviors—altered methods and means to meet the information needs of the post-disaster situation. -
Commonwealth of Massachusetts 2013 State Hazard Mitigation Plan
Commonwealth of Massachusetts 2013 State Hazard Mitigation Plan Section 11. Hurricanes and Tropical Storms ....................................................................................... 11-1 11.1 General Background .................................................................................................................. 11-1 11.1.1 Tropical Storms ............................................................................................................ 11-1 11.1.2 Hurricanes .................................................................................................................... 11-1 11.1.3 Saffir/Simpson Hurricane Scale ................................................................................... 11-3 11.1.4 SLOSH Mapping .......................................................................................................... 11-4 11.2 Hazard Profile ......................................................................................................................... 11-10 11.2.1 Location...................................................................................................................... 11-10 11.2.2 Previous Occurrences ................................................................................................. 11-12 11.2.3 Frequency ................................................................................................................... 11-18 11.2.4 Probability of Future Occurrences ............................................................................. 11-19 -
Forest Ecosystem Classification for Nova Scotia Part I: Vegetation Types (2010)
Forest Ecosystem Classification for Nova Scotia Part I: Vegetation Types (2010) prepared by Nova Scotia Department of Natural Resources REPORT FOR 2011-1 Tourism, Culture and Heritage Forest Ecosystem Classification for Nova Scotia Part I: Vegetation Types (2010) prepared by Nova Scotia Department of Natural Resources Peter Neily, Sean Basquill, Eugene Quigley, Bruce Stewart, Kevin Keys Nova Scotia Department of Natural Resources Renewable Resources Branch REPORT FOR 2011-1 Tourism, Culture and Heritage © Crown Copyright, Province of Nova Scotia, 2011. Forest Ecosystem Classification for Nova Scotia, Part I: Vegetation Types (2010) Prepared by the Nova Scotia Department of Natural Resources authors: Peter Neily1, Sean Basquill2, Eugene Quigley1, Bruce Stewart1, Kevin Keys1 Nova Scotia Department of Natural Resources, Renewable Resources Branch 1Forestry Division, Truro 2Wildlife Division, Kentville ISBN 978-1-55457-411-7 Photo credits All photos used in this guide unless credited were provided by the authors. Acknowledgements The authors wish to thank Susan Corning (Susan Corning Communications & Graphic Design) for her expertise and many hours spent bringing our field work and ideas to publishable form. We are indebted to Lawrence Benjamin and Pamela Mills (NSDNR Wildlife Division) for their assistance in VT fact sheet preparation. A special thanks goes to Catherine Turner-Robert (NSDNR Forestry Division) for her preparation of the distribution maps. Finally, we thank all our forestry colleagues inside and outside of NSDNR who have contributed to field work, promotion and use of FEC throughout the province. Your enthusiasm and support is very much appreciated. REPORT FOR 2011-1 Table of Contents Photo credits . 2 Acknowledgements . 2 List of Tables & Figures .