Moths of Vietnam
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Vol. 16, No. 2 Summer 1983 the GREAT LAKES ENTOMOLOGIST
MARK F. O'BRIEN Vol. 16, No. 2 Summer 1983 THE GREAT LAKES ENTOMOLOGIST PUBLISHED BY THE MICHIGAN EN1"OMOLOGICAL SOCIErry THE GREAT LAKES ENTOMOLOGIST Published by the Michigan Entomological Society Volume 16 No.2 ISSN 0090-0222 TABLE OF CONTENTS Seasonal Flight Patterns of Hemiptera in a North Carolina Black Walnut Plantation. 7. Miridae. J. E. McPherson, B. C. Weber, and T. J. Henry ............................ 35 Effects of Various Split Developmental Photophases and Constant Light During Each 24 Hour Period on Adult Morphology in Thyanta calceata (Hemiptera: Pentatomidae) J. E. McPherson, T. E. Vogt, and S. M. Paskewitz .......................... 43 Buprestidae, Cerambycidae, and Scolytidae Associated with Successive Stages of Agrilus bilineatus (Coleoptera: Buprestidae) Infestation of Oaks in Wisconsin R. A. Haack, D. M. Benjamin, and K. D. Haack ............................ 47 A Pyralid Moth (Lepidoptera) as Pollinator of Blunt-leaf Orchid Edward G. Voss and Richard E. Riefner, Jr. ............................... 57 Checklist of American Uloboridae (Arachnida: Araneae) Brent D. Ope II ........................................................... 61 COVER ILLUSTRATION Blister beetles (Meloidae) feeding on Siberian pea-tree (Caragana arborescens). Photo graph by Louis F. Wilson, North Central Forest Experiment Station, USDA Forest Ser....ice. East Lansing, Michigan. THE MICHIGAN ENTOMOLOGICAL SOCIETY 1982-83 OFFICERS President Ronald J. Priest President-Elect Gary A. Dunn Executive Secretary M. C. Nielsen Journal Editor D. C. L. Gosling Newsletter Editor Louis F. Wilson The Michigan Entomological Society traces its origins to the old Detroit Entomological Society and was organized on 4 November 1954 to " ... promote the science ofentomology in all its branches and by all feasible means, and to advance cooperation and good fellowship among persons interested in entomology." The Society attempts to facilitate the exchange of ideas and information in both amateur and professional circles, and encourages the study of insects by youth. -
A Major Locus Controls a Biologically Active Pheromone Component in Heliconius Melpomene
bioRxiv preprint doi: https://doi.org/10.1101/739037; this version posted August 19, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 1 A major locus controls a biologically active pheromone component in Heliconius melpomene 2 Kelsey J.R.P. Byers1,2,9, Kathy Darragh1,2,9, Jamie Musgrove2, Diana Abondano Almeida2,3, Sylvia Fernanda 3 Garza2,4, Ian A. Warren1, Pasi Rastas5, Marek Kucka6, Yingguang Frank Chan6, Richard M. Merrill7, Stefan 4 Schulz8, W. Owen McMillan2, Chris D. Jiggins1,2,10 5 6 1 Department of Zoology, University of Cambridge, Cambridge, United Kingdom 7 2 Smithsonian Tropical Research Institute, Panama, Panama 8 3 Present address: Institute for Ecology, Evolution and Diversity, Goethe Universität, Frankfurt, Germany 9 4 Present address: Department of Collective Behaviour, Max Planck Institute of Animal Behaviour, 10 Konstanz, Germany & Centre for the Advanced Study of Collective Behaviour, University of Konstanz, 11 Konstanz, Germany 12 5 Institute of Biotechnology, University of Helsinki, Helsinki, Finland 13 6 Friedrich Miescher Laboratory of the Max Planck Society, Tuebingen, Germany 14 7 Division of Evolutionary Biology, Ludwig-Maximilians-Universität München, Munich, Germany 15 8 Institute of Organic Chemistry, Department of Life Sciences, Technische Universität Braunschweig, 16 Braunschweig, Germany 17 9 These authors contributed equally to this work 18 10 To whom correspondence should be addressed: [email protected] 19 Running title: Genetics of bioactive pheromones in Heliconius 20 1 bioRxiv preprint doi: https://doi.org/10.1101/739037; this version posted August 19, 2019. -
Arthropod IGF, Relaxin and Gonadulin, Putative Orthologs of Drosophila
bioRxiv preprint doi: https://doi.org/10.1101/2020.05.11.088476; this version posted June 10, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Arthropod IGF, Relaxin and Gonadulin, putative 2 orthologs of Drosophila insulin-like peptides 6, 7 and 3 8, likely originated from an ancient gene triplication 4 5 6 Jan A. Veenstra1, 7 8 1 INCIA UMR 5287 CNRS, University of Bordeaux, Bordeaux, Pessac, France 9 10 Corresponding Author: 11 Jan A. Veenstra1 12 INCIA UMR 5287 CNRS, Université de Bordeaux, allée Geoffroy St Hillaire, CS 50023, 33 615 13 Pessac Cedex, France 14 Email address: [email protected] 15 16 Abstract 17 Background. Insects have several genes coding for insulin-like peptides and they have been 18 particularly well studied in Drosophila. Some of these hormones function as growth hormones 19 and are produced by the fat body and the brain. These act through a typical insulin receptor 20 tyrosine kinase. Two other Drosophila insulin-like hormones are either known or suspected to act 21 through a G-protein coupled receptor. Although insulin-related peptides are known from other 22 insect species, Drosophila insulin-like peptide 8, one that uses a G-protein coupled receptor, has 23 so far only been identified from Drosophila and other flies. However, its receptor is widespread 24 within arthropods and hence it should have orthologs. Such putative orthologs were recently 25 identified in decapods and have been called gonadulins. -
Molecular Phylogeny of Indonesian Zeuzera(Lepidoptera: Cossidae
Journal of Species Research 4(1):49-56, 2015 Molecular phylogeny of Indonesian Zeuzera (Lepidoptera: Cossidae) wood borer moths based on CO I gene sequence Hari Sutrisno* Laboratory of Entomology, Division of Zoology, Research Center for Biology, The Indonesian Institute of Sciences, Jl. Raya Bogor Km 46 Cibinong 16911 *Correspondent: [email protected] Zeuzera is one of the most important wood borer pests in South East Asia. Like of most other genera of moths, the systematic of this genus is still in dispute, especially on the monophyly and the relationship within this genus due to the fact that genus is very varied. This genus was defined based on external characters only such as cross vein Sc-Rs present, humeral plate approximately triangular in shape and anal plate moderately long to moderately short. Therefore, the monophyly of this genus need to be evaluated based on more com- prehensive data. To clarify the monophyly of the genus Zeuzera, to reveal the phylogenetic relationships among the Indonesian species, and to establish the genetic characters of Indonesian Zeuzera, we analyzed seven species of Indonesian Zeuzera including three other species distributed around the world based on nucleotide sequence variation across a 580-bp region in the CO I gene. The results showed that the mono- phyly of Zeuzera was supported by bootstrap tests at the MP and ML tree building methods (¤95%). Genus Zeuzera was divided into two groups (A and B) with Z. borneana was excluded from the two groups and occupied at the basal node. Indonesian species was distributed into two different clades. -
Chapter 15. Central and Eastern Africa: Overview
Chapter 15 Chapter 15 CENTRAL AND EASTERN AFRICA: OVERVIEW The region as treated here is comprised mainly of Angola, Cameroon, Central African Republic, Congo (Brazzaville), Congo (Kinshasa) (formerly Zaire), Kenya, Malawi, Tanzania, Uganda, and Zambia. The wide variety of insects eaten includes at least 163 species, 121 genera, 34 families and 10 orders. Of this group the specific identity is known for 128 species, only the generic identity for another 21, only the family identity of another 12 and only the order identity of one. Gomez et al (1961) estimated that insects furnished 10% of the animal proteins produced annually in Congo (Kinshasa). Yet, in this region, as in others, insect use has been greatly under-reported and under-studied. Until recently, for example, the specific identity was known for fewer than twenty species of insects used in Congo (Kinshasa), but, in a careful study confined only to caterpillars and only to the southern part of the country, Malaisse and Parent (1980) distinguished 35 species of caterpillars used as food. The extent of insect use throughout the region is probably similar to that in Congo (Kinshasa) and Zambia, the best-studied countries. Research is needed. Caterpillars and termites are the most widely marketed insects in the region, but many others are also important from the food standpoint, nutritionally, economically or ecologically. As stated by this author (DeFoliart 1989): "One can't help but wonder what the ecological and nutritional maps of Africa might look like today if more effort had been directed toward developing some of these caterpillar, termite, and other food insect resources." The inclusion of food insects in the Africa-wide Exhibition on Indigenous Food Technologies held in Nairobi, Kenya, in 1995 is indicative of the resurgence of interest in this resource by the scientific community of the continent. -
Lepidoptera, Endromidae) in China
A peer-reviewed open-access journal ZooKeys 127: 29–42 (2011)The genusAndraca (Lepidoptera, Endromidae) in China... 29 doi: 10.3897/zookeys.127.928 RESEARCH artICLE www.zookeys.org Launched to accelerate biodiversity research The genus Andraca (Lepidoptera, Endromidae) in China with descriptions of a new species Xing Wang1,†, Ling Zeng2,‡, Min Wang2,§ 1 Department of Entomology, South China Agricultural University, Guangzhou, Guangdong 510640, P.R. China. Present address: Institute of Entomology, College of Biosafety Science and Technology, Hunan Agricul- tural University, Changsha 410128 Hunan, China; and Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Changsha 410128, Hunan, China 2 Department of Entomology, South China Agricultural University, Guangzhou, Guangdong 510640, P.R. China † urn:lsid:zoobank.org:author:F8727887-0014-42D4-BA68-21B3009E8C7F ‡ urn:lsid:zoobank.org:author:7981BF0E-D1F8-43CA-A505-72DBBA140023 § urn:lsid:zoobank.org:author:D683614E-1F58-4CA8-9D80-B23BD41947A2 Corresponding author: Ling Zeng ([email protected]) Academic editor: N. Wahlberg | Received 21 January 2011 | Accepted 15 August 2011 | Published 8 September 2011 urn:lsid:zoobank.org:pub:33D4BBFB-4B7D-4BBC-B34C-17D2E7F99F67 Citation: Wang X, Zeng L, Wang M (2011) The genus Andraca (Lepidoptera, Endromidae) in China with descriptions of a new species. ZooKeys 127: 29–42. doi: 10.3897/zookeys.127.928 Abstract The six species of the genus Andraca Walker hitherto known from China are reviewed, and a new species, A. gongshanensis, sp. n., described from Yunnan Province, China. Adults and male genitalia of all exam- ined species are illustrated, together with a distributional map. A key to all seven Chinese Andraca species is provided. -
BIO 313 ANIMAL ECOLOGY Corrected
NATIONAL OPEN UNIVERSITY OF NIGERIA SCHOOL OF SCIENCE AND TECHNOLOGY COURSE CODE: BIO 314 COURSE TITLE: ANIMAL ECOLOGY 1 BIO 314: ANIMAL ECOLOGY Team Writers: Dr O.A. Olajuyigbe Department of Biology Adeyemi Colledge of Education, P.M.B. 520, Ondo, Ondo State Nigeria. Miss F.C. Olakolu Nigerian Institute for Oceanography and Marine Research, No 3 Wilmot Point Road, Bar-beach Bus-stop, Victoria Island, Lagos, Nigeria. Mrs H.O. Omogoriola Nigerian Institute for Oceanography and Marine Research, No 3 Wilmot Point Road, Bar-beach Bus-stop, Victoria Island, Lagos, Nigeria. EDITOR: Mrs Ajetomobi School of Agricultural Sciences Lagos State Polytechnic Ikorodu, Lagos 2 BIO 313 COURSE GUIDE Introduction Animal Ecology (313) is a first semester course. It is a two credit unit elective course which all students offering Bachelor of Science (BSc) in Biology can take. Animal ecology is an important area of study for scientists. It is the study of animals and how they related to each other as well as their environment. It can also be defined as the scientific study of interactions that determine the distribution and abundance of organisms. Since this is a course in animal ecology, we will focus on animals, which we will define fairly generally as organisms that can move around during some stages of their life and that must feed on other organisms or their products. There are various forms of animal ecology. This includes: • Behavioral ecology, the study of the behavior of the animals with relation to their environment and others • Population ecology, the study of the effects on the population of these animals • Marine ecology is the scientific study of marine-life habitat, populations, and interactions among organisms and the surrounding environment including their abiotic (non-living physical and chemical factors that affect the ability of organisms to survive and reproduce) and biotic factors (living things or the materials that directly or indirectly affect an organism in its environment). -
ILLUSTRATIONS of MOTHS in TAIWAN, 1-5 by B. S. Chang
142 BOOK REVIEW TROPICAL LEPIDOPTERJ Tropical Lepidoptera, 4(2): 142 BOOK REVIEW ILLUSTRATIONS OF MOTHS IN TAIWAN, 1-5 by B. S. Chang Vol. 1: Sphingidae, Ratardidae. Epipyropidae, Drepanidae, Cyclidiidae, Thyatiridae, Epicopeiidae, Callidulidae. Lasiocampidae. EupterotidJ Bombycidae, Brahmaeidae, Agaristidae [Noctuidae, part]. 242 pp, 271 col. fig., col. cover. 1989. (paper only) Vol. 2: Arctiidae, Hypsidae [Noctuidae, part], Limacodidae, Notodontidae. 310 pp, 356 col. fig., col. cover. 1989. Vol. 3: Geometridae [1]. Oenochrominae, Geometrinae, Sterrhinae, Larentiinae. 350 pp, 405 col. fig., col. cover. 1989. Vol. 4: Geometridae [2]. Ennominae. 480 pp, 684 col. fig., col. cover. 1990. Vol. 5: Noctuidae [1]. 366 pp. 572 col. fig., col. cover. 1991. (paper only) 1989-91. Taiwan Museum, Taipei. All are 21 x 18.5 cm. (elongate) In Chinese; Latin names. Price for each is S35.00 paper, S42.00 cloth. Available from Flora & Fauna Books, P. O. Box 15718, Gainesville, FL 32604 (plus S2 shipping each, or 55 per set). This series of small, full-color books is the result of a lifetime of with 706 species illustrated out of the 791 recorded for Taiwan. TlJ collecting by retired Taiwan high school teacher B. S. Chang. Until color figures are all excellent but many of the wing venation drawing 1991, 5 volumes were completed, but the second part of the Noctuidae are very faintly reproduced in the books. has unfortunately been halted by the untimely death of the author. It is Overall, the books are one of the unique treatments of Lepidoptera ii not known if a manuscript is available for the eventual completion of the world. -
The Mcguire Center for Lepidoptera and Biodiversity
Supplemental Information All specimens used within this study are housed in: the McGuire Center for Lepidoptera and Biodiversity (MGCL) at the Florida Museum of Natural History, Gainesville, USA (FLMNH); the University of Maryland, College Park, USA (UMD); the Muséum national d’Histoire naturelle in Paris, France (MNHN); and the Australian National Insect Collection in Canberra, Australia (ANIC). Methods DNA extraction protocol of dried museum specimens (detailed instructions) Prior to tissue sampling, dried (pinned or papered) specimens were assigned MGCL barcodes, photographed, and their labels digitized. Abdomens were then removed using sterile forceps, cleaned with 100% ethanol between each sample, and the remaining specimens were returned to their respective trays within the MGCL collections. Abdomens were placed in 1.5 mL microcentrifuge tubes with the apex of the abdomen in the conical end of the tube. For larger abdomens, 5 mL microcentrifuge tubes or larger were utilized. A solution of proteinase K (Qiagen Cat #19133) and genomic lysis buffer (OmniPrep Genomic DNA Extraction Kit) in a 1:50 ratio was added to each abdomen containing tube, sufficient to cover the abdomen (typically either 300 µL or 500 µL) - similar to the concept used in Hundsdoerfer & Kitching (1). Ratios of 1:10 and 1:25 were utilized for low quality or rare specimens. Low quality specimens were defined as having little visible tissue inside of the abdomen, mold/fungi growth, or smell of bacterial decay. Samples were incubated overnight (12-18 hours) in a dry air oven at 56°C. Importantly, we also adjusted the ratio depending on the tissue type, i.e., increasing the ratio for particularly large or egg-containing abdomens. -
Notes on South-East Asian Limacodidae (Lepidoptera, Zygaenoidea) with One New Genus and Eleven New Species
Notes on South-East Asian Limacodidae (Lepidoptera, Zygaenoidea) with one new genus and eleven new species Alexey V. Solovyev Eleven new species of Limacodidae from South-East Asia are described here as new: Barisania honeyi sp. n. from central Myanmar, northern and central Vietnam and central Thailand, Pseudaltha eboris sp. n., from northern Thailand, P. sapa sp. n., from northern Vietnam and northern Thailand, Austrapoda seres sp. n. from China (Chekiang and Shaanxi), Euphlyctinides indi sp. n. from India, E. aeneola sp. n. from northern and western Thailand, Pseudonagoda siniaevi sp. n. from southern Andaman, Atosioides accola sp. n. from western Sumatra and southern Thailand, Pseudidonauton siamica sp. n. from northern Thailand and central Vietnam, P. chihpyh sp. n. from Taiwan and P. vexa sp. n. from central Vietnam and south- eastern Thailand. The genus Atosioides Solovyev is erected here with type-species Atosia rochei Holloway, 1986. Brief morphological reviews of all examined genera are given. All diagnostic features are illustrated. Alexey V. Solovyev, Zoology Department, Ulyanovsk State Pedagogical University, Ulyanovsk, RUS-432700, Russia. E-mail: [email protected] Introduction recognition of a new genus, Atosioides Solovyev, This article is devoted to the description and mor- gen. n. with type-species Atosia rochei Holloway, phological review of seven small and poorly known 1986. limacodid genera from South-East Asia: Barisania Holloway, 1990, Pseudaltha Hering, 1931, Austrap- oda Inoue, 1982, Euphlyctinides Hering, 1931, Pseu- Material and methods donagoda Holloway, 1990, Pseudidonauton Hering, The material from the MWM is the basis for this 1931, and Atosioides Solovyev, gen. n. (Figs 1–24). -
Bulletin Number / Numéro 3 Entomological Society of Canada Société D’Entomologie Du Canada September / Septembre 2021
............................................................ Volume 53 Bulletin Number / numéro 3 Entomological Society of Canada Société d’entomologie du Canada September / septembre 2021 Published quarterly by the Entomological Society of Canada Publication trimestrielle par la Société d’entomologie du Canada ...................................................................................................... ..................................................................................................................................................................................................................... ................................ ............................................................................................................................................................................................. ..................................................................................................... List of Contents / Table des matières Volume 53(3), September / septembre 2021 Up front / Avant-propos ..........................................................................................................114 Joint Annual Meeting 2021 / Reunion annuelle conjointe 2021...............................................118 STEP Corner / Le coin de la relève.........................................................................................120 News from the Regions / Nouvelles des régions.............................................................122 People in the News: Matt Muzzatti..........................................................................................124 -
Far Eastern Entomologist Number 408: 13-20 June 2020
Far Eastern Entomologist ISSN 1026-051X (print edition) Number 408: 13-20 ISSN 2713-2196 (online edition) June 2020 https://doi.org/10.25221/fee.408.2 http://zoobank.org/References/84DCB2B9-FB96-4E13-A6BB-9C9166A2586C COSSOIDEA (LEPIDOPTERA) OF SIBERUT ISLAND (WEST SUMATRA PROVINCE, INDONESIA) R. V. Yakovlev1,2), E. S. Koshkin3), V. G. Bezborodov4), A. E. Kostyunin5) 1) Altai State University, pr. Lenina 61, Barnaul 656049, Russia. 2) Tomsk State University, Laboratory of Biodiversity and Ecology, Lenin pr. 36, Tomsk 634050, Russia. E-mail: [email protected] 3) Institute of Water and Ecology Problems, Far Eastern Branch, Russian Academy of Sciences, Dikopoltsev St. 56, Khabarovsk 680000, Russia. E-mail: [email protected] 4) Amur Branch of Botanical Garden-Institute, FEB RAS, Ignatevskoye Shosse 2-d km, Blagoveshchensk 675000 Russia. E-mail: [email protected] 5) Research Institute for Complex Issues of Cardiovascular Diseases, Sosnoviy blvd 6, Kemerovo 650002, Russia. E-mail: [email protected] Summary. The annotated list of the superfamily Cossoidea from the island of Siberut, belonging to the Mentawai Archipelago to the south-west of Sumatra, is given for the first time. Thirteenth species belonging to 12 genera of two families, Cossidae and Metarbelidae, are revealed. All the species are reported for the island of Siberut for the first time. Key words: carpenter moths, Cossidae, Metarbelidae, Cossinae, Zeuzerinae, fauna, new records, South-Eastern Asia. Р. В. Яковлев, Е. С. Кошкин, В. Г. Безбородов, А. Е. Костюнин. Cossoidea (Lepidoptera) острова Сиберут (провинция Западная Суматра, Индонезия) // Дальневосточный энтомолог. 2020. N 408. С. 13-20. Резюме. В статье впервые приводится аннотированный список представителей надсемейства Cossoidea острова Сиберут, относящегося к архипелагу Ментавай к юго- западу от о.