Stresscheck Guide (Getting Started)

Total Page:16

File Type:pdf, Size:1020Kb

Stresscheck Guide (Getting Started) StressCheck GETTING STARTED GUIDE Release 6.0 September, 2001 Revision 1 For Windows Operating Systems Copyright 2001 Engineering Software Research & Development, Inc. COPYRIGHT NOTICE Copyright 2001 by Engineering Software Research & Development, Inc. All rights reserved, worldwide. No part of this manual may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any human or computer language, in any form or by any means, electronic, mechanical, magnetic, optical, chemical, manual, or otherwise, without the expressed written permission from Engineering Software Research & Development, Inc., 10845 Olive Boulevard, Suite 170, St. Louis, MO 63141-7760, U.S.A. StressCheck includes portions of Raima Data Manager version 3.21. Copyright 1984- 1996 by Raima Corporation. 1605 N. W. Sammamish Road, Suite 200, Issaquah, WA 98027. All rights reserved. StressCheck includes portions of FLEXlm license manager version 6.1. Copyright 1997 by Globetrotter Software Inc., 1530 Meridian Avenue, San Jose, GA 95125. All rights reserved. Tech Soft America (www.hoops3d.com) supplied the following core technology: HOOPS 3D Application Framework 1998 HOOPS 3D Graphic System 1998 Portions of StressCheck are owned by UGS, Inc. Copyright 1998. All rights reserved. StressCheck incorporates MeshSim™ a product of Simmetrix Inc. DISCLAIMER Engineering Software Research & Development, Inc. makes no representations or warran- ties with respect to the contents hereof and specifically disclaims any implied warranties of merchantability or fitness for any particular purpose. Further, Engineering Software Research & Development, Inc. reserves the right to revise this publication and to make changes from time to time in the content hereof without obligation of Engineering Soft- ware Research & Development, Inc. to notify any person or organization of such revision or change. Table of Contents 1 Introduction 1 What is StressCheck? 1 Why use StressCheck? 2 Who should use StressCheck? 3 StressCheck features 3 How to use this manual? 3 Frequently asked questions about the p-version and StressCheck 5 2 StressCheck Interface 9 Interface Layout 9 Standard File Extensions 17 File Menu 17 Edit Menu 19 Class Menu 21 View Menu 21 Getting Started Guide Table of Contents i Table of Contents Display Menu 24 Tools Menu 27 General Interface Conventions 27 3 The Handbook 31 Handbook Framework 31 Handbook Library 31 Handbook Interface 32 Solving a handbook problem 36 Handbook Results 44 Handbook Library Expansion 44 4 Tutorial 45 Planar Elasticity problem 45 Extrusion Problem 65 Three-dimensional problem 72 ii Table of Contents Getting Started Guide 1 1 Introduction What is StressCheck? From the perspective of designers, StressCheck is a very advanced handbook that provides reliable solutions quickly and conveniently. From the perspective of analysts, StressCheck is a tool for advanced problem solv- ing and a framework for communicating the results to designers. From the perspective of managers, StressCheck is a tool for increased productivity and better design in less time. StressCheck is the first finite element analysis program to emphasize both advanced technological features and ease of use for everyday design and analysis problems. ESRD founders are pioneers in development of p-version FEA and have built the most advanced features available into StressCheck: advanced representa- tion of surfaces; hierarchic models for structural plates, including plates made of laminated composites; advanced implementation of superconvergent extraction procedures for the computation of stress intensity factors; efficient and reliable treatment of material and geometric nonlinearities in the context of the p- and hp- versions; the option to employ either the trunk space or the product space in p- extensions, and capabilities related to the analysis of fastened connections, includ- ing cold working analysis. Getting Started Guide Chapter 1: Introduction 1 Why use StressCheck? 1 StressCheck improves the reliability of computed information while increasing the productivity of analysts. Recognizing that the analyst’s time is usefully spent only if the computed information is sufficiently accurate and reliable to serve the purposes of engineering decision-making, StressCheck was designed so that the reliability of the data of interest can be readily ascertained. For most analysis tasks the largest cost component, typically more than 90 percent, is the cost of time spent on data preparation and interpretation of the results. Stress- Check was designed so as to minimize this cost. The user interface was designed to permit quick generation of finite element meshes, entry of material properties and boundary conditions. There is an immediate visual feedback confirming that the data is properly entered. Modification and editing tasks can be performed quickly and conve- niently. With StressCheck, the desired information, such as displacements, stresses and stress maxima, stress intensity factors, and stress resultants can be conveniently extracted from finite element solutions. Why use StressCheck? StressCheck delivers the most advanced p-version stress analysis technology in a convenient, easy to use, handbook style interface. With StressCheck, you overcome both the limitations of engineering handbooks and the complexity of conventional FEA. StressCheck provides information that enables its users to verify solution quality in a fraction of the time that would be required for con- ventional FEA. By incorporating your proprietary technology into an everyday handbook style tool for both analysts and design engineers, routine problems can be set up and solved in minutes. The handbook utility makes it possible for users to define frequently occurring problems parametrically which can be recalled quickly and conveniently for analysis, even by non-specialists. Therefore StressCheck provides solutions which are much more representative of the parts that need to be analyzed than handbook solutions. The amount of time required for analysis is about the same as for computerized handbooks but the versatility and reli- ability are much greater. StressCheck’s unique handbook capability is combined with an automated parametric analysis capability making it convenient to investigate the sensitiv- ity of a solution to variations in critical design parameters. 2 Chapter 1: Introduction Getting Started Guide Who should use StressCheck? 1 StressCheck’s unique and advanced post-processing capability allows detailed evaluation of engineering data anywhere in the model without expensive and time consuming re-run of the problem. Who should use StressCheck? StressCheck has been developed to facilitate analysis throughout the design pro- cess, making it a valuable tool for both analysts and design engineers. The hand- book utility provides designers with easy access to advanced finite element technology within an easy-to-use intuitive interface. The handbook library can be expanded by FEA analysts to incorporate commonly encountered parts and designs. The problems can then be executed quickly and easily by design engineers. StressCheck features StressCheck is based on the p-version of the finite element method: The errors of approximation are controlled by increasing the polynomial degree of the elements. The main features of the program are summarized in the table on page 4. How to use this manual? For persons experienced in using finite element analysis programs, StressCheck is easy to learn. For persons who have no experience, or only very limited experience with finite element analysis, detailed step-by-step procedures are provided in this manual. The basic procedures are described and illustrated by examples so as to make self-instruction possible. The Getting Started Guide was designed to explore the basics of the user interface, the Handbook framework, model creation, solution procedures and post-processing operations. An overview of the user interface is presented in the second chapter. The third chapter provides an introduction to the Handbook framework. The fourth chapter was written for first time users who are encouraged to follow the example problems in a step-by-step fashion. This will provide a sense of the “look and feel” of the pro- Getting Started Guide Chapter 1: Introduction 3 How to use this manual? 1 StressCheck features - Elasticity Model Materials Boundary Solution Output Conditions Geometry: Linear: Loads: Reference: Standard: Parasolid Isotropic Tractions Plane-Stress Error Esti- kernel Orthotropic Point Load Plane-Strain mate System Anisotropic Body Force Axisymm. Equilibrium Point Check Fitted Fiber Spring Displ. Plate Bending Line Resultants Temperature- Bearing Extrusion Contour Circle dependent Shear 3D-Solids Plotting Fillet Moment Ellipse Deformed Imposed Dis- Shape Spline Nonlinear: placement Analyses: Min/Max Cylinder Linear Elastic- Thermal Extraction Cone Plastic Nonlinear Formula Point/Line/ Material Plane Bilinear Edge Extrac- Torus Ramberg- Nonlinear tion Geometry Formula Osgood Constraints: Animation Composite Hyperelastic Modal Rigid Body more Prestress Nodal Constr. Modal Advanced: Boundary Gen- Eigenvalue Fracture Elements: Laminated: eral Buckling Mechanics: Beam Face Constr. Cold Working Symmetric SIF Spring Coeff. Margin Fastener Layup Check J-integral Quadrilateral Isotropic Built-In Measurement GSIF Triangular Layer Soft-Simple GFIF Hexahedral Orthotropic Symmetry Pentahedral Layer Antisymmetry TSIF Tetrahedral Fastener to Fas-
Recommended publications
  • Material Data & Design Workstation Reviews Biomimicry
    January 2019 FOCUS ON: New Vehicle Lightweighting Design Meshless Simulation Simulate Additive Manufacturing DigitalEngineering247.com A Touch of AR MATERIAL DATA & DESIGN WORKSTATION REVIEWS BIOMIMICRY DE_0119_Cover.indd 2 12/13/18 4:41 PM ANSYS.indd 1 12/10/18 3:56 PM @XI_Computer.indd 1 12/10/18 3:54 PM //////////////////////////////////////////////////////////////// | DEGREES OF FREEDOM | by Jamie J. Gooch Hack Your New Year’s Resolution T’S THAT TIME of year when we reflect on the past to go back to school to get another degree, maybe resolve to and look ahead to the future. On one hand, this makes take a course in programming, finite element analysis or design sense: The calendar year ends and a new year begins. for additive manufacturing. Small successes can lead to setting What better time to make resolutions? On the other loftier goals, but the trick is to build on each success to get there, Ihand, it seems a bit arbitrary to make important life and rather than trying to achieve too much too soon. work goals based on a date chosen by the pope in 1582 to Another way to engineer yourself to keep your resolutions be the first day of the year. is to share your goals. Research shows that telling people about your goals can help you stick with them. Committing Research has shown that New Year’s Resolutions don’t to something like professional training, where you tell your work for most people, but just barely. According to a 2002 supervisor your intentions, or improving your standard op- study by John C.
    [Show full text]
  • Loads, Load Factors and Load Combinations
    Overall Outline 1000. Introduction 4000. Federal Regulations, Guides, and Reports Training Course on 3000. Site Investigation Civil/Structural Codes and Inspection 4000. Loads, Load Factors, and Load Combinations 5000. Concrete Structures and Construction 6000. Steel Structures and Construction 7000. General Construction Methods BMA Engineering, Inc. 8000. Exams and Course Evaluation 9000. References and Sources BMA Engineering, Inc. – 4000 1 BMA Engineering, Inc. – 4000 2 4000. Loads, Load Factors, and Load Scope: Primary Documents Covered Combinations • Objective and Scope • Minimum Design Loads for Buildings and – Introduce loads, load factors, and load Other Structures [ASCE Standard 7‐05] combinations for nuclear‐related civil & structural •Seismic Analysis of Safety‐Related Nuclear design and construction Structures and Commentary [ASCE – Present and discuss Standard 4‐98] • Types of loads and their computational principles • Load factors •Design Loads on Structures During • Load combinations Construction [ASCE Standard 37‐02] • Focus on seismic loads • Computer aided analysis and design (brief) BMA Engineering, Inc. – 4000 3 BMA Engineering, Inc. – 4000 4 Load Types (ASCE 7‐05) Load Types (ASCE 7‐05) • D = dead load • Lr = roof live load • Di = weight of ice • R = rain load • E = earthquake load • S = snow load • F = load due to fluids with well‐defined pressures and • T = self‐straining force maximum heights • W = wind load • F = flood load a • Wi = wind‐on‐ice loads • H = ldload due to lllateral earth pressure, ground water pressure,
    [Show full text]
  • Stresscheck 10.1 2014
    StressCheck 10.1 2014 RELEASE NOTES JUNE 16, 2014 (BUILD 10615) This document summarizes the new features available in 64-bit StressCheck 10.1 Professional Edition. For more details, please refer to the Master Guide Addendum available in the main menu of StressCheck under Help. FILE MANAGEMENT SYSTEM The StressCheck file system was completely redesigned in version 10.1 to simplify, improve stability, and make its usage intuitive. The input file (*.sci) and database (*.scm) have been replaced with the StressCheck workfile (*.scw) and the StressCheck project (*.scp). The StressCheck project file (*.scp) is designed to be the default file format when saving and opening StressCheck data. This single file solution replaces the database (*.scm), associated files and its dataset folder. The StressCheck workfile (*.scw) replaces the StressCheck input file (*.sci). As solution data can significantly increase the file size of StressCheck projects, the workfile exists as a smaller alternative that does not contain solution data. It is a snapshot of the model in its current state. The most significant feature of the project file is that StressCheck does not write to it during a session unless the user selects the save option. All temporary files are kept in a separate location which can be changed by the user in the Options dialog. TLAP LOADING Several improvements were made in the way StressCheck handles imported TLAP points. The Status column of the Case Definitions window now reflects the current point assignment status for TLAP points. If a point is assigned in a load, the Status column is updated with “Assigned(x)” where the number in parenthesis (x) is the number of times the point has been assigned in a load record.
    [Show full text]
  • Manage Engineering Data Complex Models and Simulations Yield a Torrent
    NX 8 for Design. Smarter decisions, better products. Learn more on page 11 DtopEng_banner_NXCAD_MAR2012.indd 1 3/8/12 11:02 AM April 2012 / deskeng.com Origin 8.6 Overview P.22 Direct Modeling and FEA P.24 TECHNOLOGY FOR DESIGN ENGINEERING Manage Engineering Data Complex models and simulations yield a torrent of data to seize and control. P.16 RACING AHEAD WITH CLUSTERS P.35 REVIEW: HP Z10 WORKSTATION P.38 P.40 PREPARING 3D MODELS de0412_Cover_Darlene.indd 1 3/15/12 12:20 PM Objet.indd 1 3/14/12 11:17 AM DTE_0412_Layout 1 2/28/12 4:36 PM Page 1 Data Loggers & Data Acquisition Systems iNET-400 Series Expandable Modular Data Acquisition System • Directly Connects to Thermocouple, RTD, Thermistor, Strain Gage, Load Complete Cell, Voltage, Current, Resistance Starter and Accelerometer Inputs System $ • USB 2.0 High Speed Data Acquisition 990 Hardware for Windows® ≥XP SP2, Vista or 7 (XP/VS/7) • Analog and Digital Input and Outputs • Free instruNet World Software Visit omega.com/inet-400_series © Kutt Niinepuu / Dreamstime.com Stand-Alone, High-Speed, 8-Channel High Speed Voltage Multifunction Data Loggers Input USB Data Acquisition Modules OM-USB-1208HS Series Starts at $499 High Performance Multi-Function I/O USB Data Acquisition Modules OMB-DAQ-2416 Series OM-LGR-5320 Series Starts at Starts at $1100 $1499 Visit omega.com/om-lgr-5320_series Visit omega.com/om-usb-1208hs_series Visit omega.com/omb-daq-2416 ® omega.com ® © COPYRIGHT 2012 OMEGA ENGINEERING, INC. ALL RIGHTS RESERVED Omega.indd 1 3/14/12 10:54 AM Degrees of Freedom by Jamie J.
    [Show full text]
  • Rapid Modeling and Analysis Tools
    NASA/CR-2002-211751 Rapid Modeling and Analysis Tools Evolution, Status, Needs and Directions Norman F. Knight, Jr., and Thomas J. Stone Veridian Systems Division, Chantilly, Virginia July 2002 The NASA STI Program Office... in Profile Since its founding, NASA has been dedicated to the CONFERENCE PUBLICATION. advancement of aeronautics and space science. The Collected papers from scientific and NASA Scientific and Technical Information (STI) technical conferences, symposia, Program Office plays a key part in helping NASA seminars, or other meetings sponsored or maintain this important role. co-sponsored by NASA. The NASA STI Program Office is operated by SPECIAL PUBLICATION. Scientific, Langley Research Center, the lead center for NASA's technical, or historical information from scientific and technical information. The NASA STI NASA programs, projects, and missions, Program Office provides access to the NASA STI often concerned with subjects having Database, the largest collection of aeronautical and substantial public interest. space science STI in the world. The Program Office is also NASA's institutional mechanism for TECHNICAL TRANSLATION. English- disseminating the results of its research and language translations of foreign scientific development activities. These results are and technical material pertinent to published by NASA in the NASA STI Report NASA's mission. Series, which includes the following report types: Specialized services that complement the STI Program Office's diverse offerings include TECHNICAL PUBLICATION. Reports of creating custom thesauri, building customized completed research or a major significant databases, organizing and publishing phase of research that present the results research results.., even providing videos. of NASA programs and include extensive data or theoretical analysis.
    [Show full text]
  • Vysoké Učení Technické V Brně Brno University of Technology
    VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV MECHANIKY TĚLES, MECHATRONIKY A BIOMECHANIKY FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF SOLID MECHANICS, MECHATRONICS AND BIOMECHANICS DEFORMAČNĚ-NAPĚŤOVÁ ANALÝZA PRUTOVÝCH SOUSTAV METODOU KONEČNÝCH PRVKŮ STRESS-STRAIN ANALYSIS OF A BAR SYSTEMS USING FINITE ELEMENT METHOD BAKALÁŘSKÁ PRÁCE BACHELOR´S THESIS AUTOR PRÁCE JÁN FODOR AUTHOR VEDOUCÍ PRÁCE Ing. TOMÁŠ NÁVRAT, Ph.D SUPERVISOR BRNO 2015 Vysoké učení technické v Brně, Fakulta strojního inženýrství Ústav mechaniky těles, mechatroniky a biomechaniky Akademický rok: 2014/2015 ZADÁNÍ BAKALÁŘSKÉ PRÁCE student(ka): Ján Fodor který/která studuje v bakalářském studijním programu obor: Základy strojního inženýrství (2341R006) Ředitel ústavu Vám v souladu se zákonem č.111/1998 o vysokých školách a se Studijním a zkušebním řádem VUT v Brně určuje následující téma bakalářské práce: Deformačně-napěťová analýza prutových soustav metodou konečných prvků v anglickém jazyce: Stress-strain analysis of a bar systems using finite element method Stručná charakteristika problematiky úkolu: Cílem práce je naprogramovat algoritmus metody konečných prvků pro řešení prutových soustav. Pro řešení primárně využít volně dostupné prostředky (Python, knihovny NumPy, SciPy, překladač Fortranu, apod.). Ověření funkčnosti realizovat výpočtem v programu ANSYS. Cíle bakalářské práce: 1. Přehled používaných MKP programů se stručným popisem jejich možností. 2. Možnost využití volně dostupných prostředků pro vědecké výpočty. 3. Naprogramovat algoritmus MKP pro prutovou soustavu. 4. Verifikovat vypočtené výsledky s výsledky získanými v programu ANSYS. Seznam odborné literatury: 1. Zienkiewicz, O., C., Taylor, R. L.: The finite element method, 5th ed., Arnold Publishers, London, 2000 2. Kolář, V., Kratochvíl, J., Leitner, F., Ženíšek, A.: Výpočet plošných a prostorových konstrukcí metodou konečných prvků, SNTL Praha, 1979 3.
    [Show full text]
  • Master Document Template
    PARALLEL IMPLEMENTATION OF FIELD VISUALIZATIONS WITH HIGH ORDER TETRAHEDRAL FINITE ELEMENTS MOHAMMAD HAFIFI HAFIZ BIN ISHAK UNIVERSITI SAINS MALAYSIA 2013 PARALLEL IMPLEMENTATION OF FIELD VISUALIZATIONS WITH HIGH ORDER TETRAHEDRAL FINITE ELEMENTS by MOHAMMAD HAFIFI HAFIZ BIN ISHAK Thesis submitted in fulfillment of the requirements for the Degree of Master of Science APRIL 2013 ACKNOWLEDGEMENTS First and foremost, I owe my deepest gratitude to Dr. Razi Abdul Rahman, my thesis advisor and project supervisor, who has introduced me to the subject. His serious attitude to research has always been a reference model for me. He inspired me greatly to work in this project. His willingness to motivate me contributed tremendously to my project. I also would like to thank him for showing me some example that related to the topic of my project. His guidance and patience throughout the tumultuous time of conducting scientific investigations related to this project are much appreciated. Besides, his invaluable support and insightful suggestions, not to mention all the hard work and extra time poured in has resulted in the completion of this project. I also would like to express my deepest gratitude to Ministry of Higher Education (MOHE) that provides me with MyBrain scheme throughout my candidature period. Last but not least, my heartfelt gratitude to my family especially my mother,for her continuous support in my pursuit of this master degree and endless love in my life. iii TABLE OF CONTENT PAGE ACKNOWLEDGEMENTS III LIST OF TABLES VII LIST OF FIGURES
    [Show full text]
  • Vysoké Učení Technické V Brně Brno University of Technology
    VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ FACULTY OF MECHANICAL ENGINEERING ÚSTAV MECHANIKY TĚLES, MECHATRONIKY A BIOMECHANIKY INSTITUTE OF SOLID MECHANICS, MECHATRONICS AND BIOMECHANICS VYUŽITÍ VÝPOČTOVÉHO PROSTŘEDÍ SALOME MECA PŘI ŘEŠENÍ ÚLOH MECHANIKY TĚLES THE USAGE OF SALOME MECA WORKBENCH FOR TASK SOLUTION IN THE FIELD OF SOLID MECHANICS BAKALÁŘSKÁ PRÁCE BACHELOR'S THESIS AUTOR PRÁCE Tomáš Anděl AUTHOR VEDOUCÍ PRÁCE Ing. Petr Vosynek, Ph.D. SUPERVISOR BRNO 2016 Zadání bakalářské práce Ústav: Ústav mechaniky těles, mechatroniky a biomechaniky Student: Tomáš Anděl Studijní program: Strojírenství Studijní obor: Základy strojního inženýrství Vedoucí práce: Ing. Petr Vosynek, Ph.D. Akademický rok: 2015/16 Ředitel ústavu Vám v souladu se zákonem č.111/1998 o vysokých školách a se Studijním a zkušebním řádem VUT v Brně určuje následující téma bakalářské práce: Využití výpočtového prostředí Salome Meca při řešení úloh mechaniky těles Stručná charakteristika problematiky úkolu: Práce je zaměřena na řešení úloh mechaniky těles pomocí metody konečných prvků v programovém prostředí Salome Meca. Student v práci využije dosavadní znalosti z předmětů mechaniky těles a bude je moci dále rozšířit tak, aby byl schopen posuzovat složitější geometrie nejen na úrovni prutů, ale i skořepin a objemů. Výstupem práce pak bude porovnání získaných výsledků s analytickým řešením z doporučené literatury, případně s výsledky jiného výpočtového prostředí (ANSYS nebo ANSYS Workbench). Cíle bakalářské práce: - základní orientace v prostřední Salome Meca - tvorba výpočtových modelů základních úloh mechaniky těles - analýza získaných výsledků s následnou verifikací - popis tvorby výpočtových modelů a diskuze nad výsledky Seznam literatury: Aubury, J. P. (2013): Beginning with Code_Aster. A Practical Introduction to Finite Element Method Using Code_Aster, Gmsh and Salome.
    [Show full text]
  • List of Finite Element Software Packages ­ Wikipedia, the Free Encyclopedia List of Finite Element Software Packages from Wikipedia, the Free Encyclopedia
    12/15/2015 List of finite element software packages ­ Wikipedia, the free encyclopedia List of finite element software packages From Wikipedia, the free encyclopedia This is a list of software packages that implement the finite element method for solving partial differential equations or aid in the pre­ and post­processing of finite element models. Free/Open source https://en.wikipedia.org/wiki/List_of_finite_element_software_packages 1/8 12/15/2015 List of finite element software packages ­ Wikipedia, the free encyclopedia Operating Name Description License System Multiplatform open source application for the solution of Linux, Agros2D GNU GPL physical problems Windows based on the Hermes library It is an Open Source FEA project. The solver uses a partially compatible ABAQUS Linux, CalculiX file format. The GNU GPL Windows pre/post­processor generates input data for many FEA and CFD applications is an Open Source software package for Civil and Structural Engineering finite Linux, Code Aster element analysis and GNU GPL FreeBSD numeric simulation in structural mechanics which is written in Python and Fortran is an Open Source software package C/C++ hp­ Mac OS X, Concepts GNU GPL FEM/DGFEM/BEM Windows library for elliptic equations Comprehensive set of tools for finite QPL up to element codes, release 7.2, Linux, Unix, deal.II scaling from laptops LGPL after Mac OS X, to clusters with that Windows 10,000+ cores. Written in C++. GPL Distributed and Version 2 Unified Numerics Linux, Unix, DUNE with Run­ Environment, written Mac OS X Time
    [Show full text]
  • CAASE20 Agenda & Content Line-Up
    Want to be Part of the Largest Independent Conference on Analysis and Simulation in Engineering in 2020? 200 Presentations CAASE 2020 will bring together the leading visionaries, developers, and practitioners of CAE-related technologies in an open forum, unlike any other, to share experiences, discuss relevant trends, discover common themes and explore future issues. 13 Presentations at this event will be centered on four key themes: Training Courses 1 Driving the Design of Physical Systems, Components & Products 2 Implementing Simulation Governance & Democratization 3 Advancing Manufacturing Processes & Additive Manufacturing 4 Addressing Business Strategies & Challenges 4 Workshops nafems.org/CAASE20 We greatly appreciate the support of our sponsors! Platinum Sponsors Event Sponsors Supporting Sponsors: The CAASE20 Virtual Conference Will Feature: 3 full-days of ground-breaking content 7 parallel tracks 63 sessions 200 presentations, 17 training courses, and workshops 4 incredible keynotes 25 industry-leading sponsors virtually exhibiting ...all at your fingertips with... search (title and speaker) & 75 filter tags SIMULATION FOCUS Conference Preview DigitalEngineering247.com The Conference on Advancing Analysis & Simulation in Engineering Contents Join Us Online .........................................................................................................................3 Welcome to CAASE20 ............................................................................................................4 CAASE By the Numbers ........................................................................................................5
    [Show full text]
  • Emi Simulation Advances P.35 Review: Lenovo Mobile Workstation P.41 Esrd Cae Handbook Walkthrough P.31
    May 2018 ////// FOCUS ON: AutoCAD 2019 IoT Review P.28 P.12 The Digital Twin Divide P.24 digitaleng.news Deep Learning for Engineers P.38 EMI SIMULATION ADVANCES P.35 REVIEW: LENOVO MOBILE WORKSTATION P.41 ESRD CAE HANDBOOK WALKTHROUGH P.31 de0518_Cover.indd 2 4/13/18 4:07 PM ANSYS.indd 1 4/13/18 9:33 AM THE ALL NEW S3 Ultimate performance. Maximum productivity. Featuring a compact design, up to three GPUs, and an 8th Generation Intel® Core™ i7 processor overclocked to 4.8GHz, the new APEXX S3 is optimized for the applications you rely on most. ® 888-984-7589 Intel Core™ i7 processor Intel Inside®. Extraordinary Performance Outside. 512-835-0400 ® Intel, the Intel Logo, Intel Inside, Intel Core, and Core Inside are trademarks of Intel Corporation in the U.S. and/or other countries. www.boxx.com/des3 BOXX.indd 1 4/13/18 9:37 AM //////////////////////////////////////////////////////////////// | DEGREES OF FREEDOM | by Jamie J. Gooch Making Connections RE YOU TIRED OF HEARING about the in- work with the Walter Reed National Military Medical Center ternet of things (IoT)? If so, you’re out of luck. in Washington, D.C., but knew there were many wounded ci- Forecasts from industry experts vary a bit, but vilians in Iraq who could also benefit from the technology. they all predict the billions of “things” con- He contacted Doctors Without Borders, but the organiza- Anected to the internet will grow to tens of billions in just a tion was already pulling out of Iraq for safety. Through his few years.
    [Show full text]
  • Tochnog Professional Fea
    08/05/2020 User:RoddemanDennis/sandbox - Wikipedia TOCHNOG PROFESSIONAL FEA Tochnog Professional is a Finite Element Analysis (FEA) solver Tochnog Professional FEA developed and distributed by Tochnog Professional Company. It can be used Original author(s) User:RoddemanDennis for free, both for academic work and commercially. The source is not made Developer(s) Tochnog Professional publicly available however. The software is specializes in geotechnical Company applications, but also has options for civil engineering and mechanical Initial release 1997 engineering. Input data is provided by means of an input file, containing all Stable release current date information that is needed for Operating system Microsoft Windows performing a calculation. Parts of the input file can be generated by external Linux pre-processors. Output is generated by several generated output files. These Platform Windows/x86-64 can either be used in external post- processors, or the files can directly be Linux x86-64 used for interpretation of calculation Type Computer-aided results. engineering, Finite Element Analysis Contents Website tochnogprofessional.nl History Tochnog Professional (http://tochnogprofessi functionality onal.nl) Example calculations Tochnog Professional Company Supported platforms References External links History Development of the Tochnog Professional program started 1997 by Dennis Roddeman. The programming is done completely in the c++ programming language. The program is setup as a batch program, and should be started from the command line. In 2019 Dennis Roddeman started Tochnog Professional Company (https://www.tochnogprofessional.nl), which presently is the owner of the Tochnog Professional program. Since 2019 the program is listed on the soilmodels research site (http s://www.soilmodels.com)[1][2] with over 2000 research members both as generic purpose program and also as incremental driver.
    [Show full text]