CAASE20 Agenda & Content Line-Up

Total Page:16

File Type:pdf, Size:1020Kb

CAASE20 Agenda & Content Line-Up Want to be Part of the Largest Independent Conference on Analysis and Simulation in Engineering in 2020? 200 Presentations CAASE 2020 will bring together the leading visionaries, developers, and practitioners of CAE-related technologies in an open forum, unlike any other, to share experiences, discuss relevant trends, discover common themes and explore future issues. 13 Presentations at this event will be centered on four key themes: Training Courses 1 Driving the Design of Physical Systems, Components & Products 2 Implementing Simulation Governance & Democratization 3 Advancing Manufacturing Processes & Additive Manufacturing 4 Addressing Business Strategies & Challenges 4 Workshops nafems.org/CAASE20 We greatly appreciate the support of our sponsors! Platinum Sponsors Event Sponsors Supporting Sponsors: The CAASE20 Virtual Conference Will Feature: 3 full-days of ground-breaking content 7 parallel tracks 63 sessions 200 presentations, 17 training courses, and workshops 4 incredible keynotes 25 industry-leading sponsors virtually exhibiting ...all at your fingertips with... search (title and speaker) & 75 filter tags SIMULATION FOCUS Conference Preview DigitalEngineering247.com The Conference on Advancing Analysis & Simulation in Engineering Contents Join Us Online .........................................................................................................................3 Welcome to CAASE20 ............................................................................................................4 CAASE By the Numbers ........................................................................................................5 CAASE20 Conference Goes Virtual .........................................................................................6 Disruption and Innovation ........................................................................................................7 A New Engineering Paradigm ..................................................................................................8 Working in the Post-COVID World ...........................................................................................9 Boosting Diversity in Computer Science and Engineering ......................................................11 Make the Case for CAASE20..................................................................................................12 Digital Engineering Editorial Staff NAFEMS Americas Staff Tom Cooney Matthew Ladzinski Publisher Vice President, Americas Brian Albright Andrew Wood Editorial Director Regional Manager, Americas Polly Chevalier Ian Lewis Art Director Sales Manager, Americas Kenneth Wong Senior Editor Americas Office Stephanie Skernivitz 130 N Prospect St., Suite K Associate Editor Granville, OH 43023 Phone: 1-614-360-1922 Kelly Jones [email protected] Production Manager NAFEMS Ltd. Peerless Media, LLC Tim Morris Brian Ceraolo Chief Executive President and Group Publisher NAFEMS Ltd. Editorial Office Global Headquarters 46 Campbell St. 50 Speen Street, Suite 302 Hamilton, Scotland ML3 6AS Framingham, MA 01701-2000 Phone: +44 1355 22 56 88 Phone: 1-800-375-8015 2 DE | Technology for Optimal Engineering Design DigitalEngineering247.com The Conference on Advancing Analysis & Simulation in Engineering The Conference on Advancing Analysis & Simulation in Engineering Join Us Why You Should Attend CAASE20 lthough many states are slowly easing some of the restrictions put in place to stem the spread forced to adopt new technologies to enable remote de- A of COVID-19, many parts of our lives are still sign, simulation and collaboration. Design engineers are on hold. Students aren’t returning to school this year. more tuned in than ever to discovering new and better There will be no pools to swim in this summer for many ways to work. communities. Sports fans have had to get their live- To help facilitate this discovery, DE has teamed up sports fix watching Korean baseball and German soccer, with NAFEMS, the international association for the en- played in eerily empty stadiums. gineering modeling, analysis and simulation community. NAFEMS has a proven track record of bringing experts In-person technology conferences are also off the cal- from industry, government and academia together at endar for the foreseeable future, and nearly every major its NAFEMS World Congress and its regional events, design and engineering conference has either been can- including in the Americas. CAASE20 marks the third celled, postponed or transitioned to digital experiences. event (one live and two virtual) that DE and NAFEMS This virtual approach is likely to be the norm for quite have created to showcase the latest advances in simula- some time, as large events as far out as November have tion. been turned into online conferences. CAASE20 will feature more than 240 conference The same is true for the Conference on Advancing presentations and training sessions. For simulation new- Analysis & Simulation in Engineering (CAASE20) event bies, there’s plenty of content directed at design engi- June 16-18, co-presented by NAFEMS Americas and neers who are not simulation experts. In addition to the Digital Engineering. Originally created as a live event technical presentations, there are many that focus on the to be held in Indianapolis, the organizers at NAFEMS business benefits and challenges of simulation that can made the difficult decision to transition the conference help you build a return-on-investment case for imple- to a virtual event. As it turns out, it was a wise move. menting simulation more fully into your product design And the transition, although it happened very quickly, and development process. was successful. The event has more than 200 conference For veterans of the space, there is advanced training sessions and training sessions, and the vast majority of and content available to help improve your productivity the presenters and keynotes originally scheduled for the and the quality of your simulation results. You can dive event have pitched in to provide virtual versions of their into the specifics of particular processes, such as fatigue presentations and speeches. That highlights the impor- analysis, composite finite element analysis (FEA), non- tance of these events. As we’ve seen from the content and linear FEA, turbulence modeling or the physics involved attendance at other online industry events since the shut- in joints and connections, for example. We look forward down began, engineers and designers still want access to to “seeing” you virtually at CAASE20. We will also pro- this type of high-level content and training, along with vide live coverage of the event via Twitter (@DEeditor) an opportunity to make personal and professional con- and follow up with articles on DigitalEngineering247. nections. That’s critical, particularly in an environment com and in upcoming editions of Digital Engineering. that has been incredibly isolating in many ways. Please feel free to share your feedback about the As simulation becomes a more integral part of the CAASE20 conference, tell us what topics you’d like to design process, the challenges of democratization have cover and share how we can help you learn about the become more apparent. Technology providers have re- technologies that are transforming design engineering sponded by creating a variety of innovative ways to both today. DE enable simulation earlier in the design process, and pro- vide greater access to simulation tools for non-experts across the value chain. Brian Albright The importance of access has never been more appar- Editorial Director, Digital Engineering ent, as engineers, managers and clients alike have been E-mail me at: [email protected] 2 DE | Technology for Optimal Engineering Design DigitalEngineering247.com DigitalEngineering247.com DE | Technology for Optimal Engineering Design 3 The Conference on Advancing Analysis & Simulation in Engineering Welcome to t is our great pleasure to welcome you to CAASE20, the (now virtual) Conference on Advancing Analysis & Simulation in leading minds in our industry. I Engineering, which will be held June 16-18 online! In addition to nine NAFEMS-accredited training courses, we decided to expand the opportunity for attendees to gain CAASE, which now represents a four-year effort, began as additional learning opportunities. This resulted in the com- a discussion between Digital Engineering (DE) and NAFEMS mittee accepting an additional eight community-developed to explore how they could better collaborate and support training courses and workshops. those working with engineering analysis and simulation. Based Furthermore, CAASE20 attendees will be treated to six on the overwhelmingly positive feedback and support we have amazing keynote speakers: received over the years, it is clearly a partnership that is valued • On Tuesday (June 16), Geoffrey Moore, author of by both organizations and the community. “Crossing the Chasm” will discuss high-tech adoption in the For those who are new to the NAFEMS community, we 21st century. (See page 8.) We will also hear from Monica welcome you! Our mission is to provide knowledge, interna- Schnitger on simulation in the enterprise. (See page 7.) tional collaboration and educational opportunities for the use • On Wednesday (June 17), Marc Halpern, P.E., Ph.D. and validation of engineering simulation. (Gartner), and Peter Langsten, Ph.D. (Predict Change), will NAFEMS, a not-for-profit organization established in share their research on the
Recommended publications
  • Metamaterial Design Antenna for Biomedical Application Integrated with Solar Panel
    METAMATERIAL DESIGN ANTENNA FOR BIOMEDICAL APPLICATION INTEGRATED WITH SOLAR PANEL G. Jeevagan Navukarasu Lenin1*, R. Vimala2, R. Dhanasekaran3, S. Arun Prakash4 and K. Baskaran5 1Department of ECE, Anna University- University College of Engineering, Ramanathapuram, India. 2Department of EEE, PSNA College of Engineering and Technology, Dindigul, India. 3Department of EEE, Syed Ammal Engineering College, Ramanathapuram, India. 4Department of EEE, Anna University- University College of Engineering, Ramanathapuram, India. 5Department of CSE, Government College of Technology, Coimbatore, India. *Correspondence: [email protected] Abstract: Today biomedical application holds a vital role an increase in antenna bandwidth. This can be in medical diagnosis and treatment and as an academic achieved by loading the radiating element of a patch discipline. In recent days glucose monitoring, insulin with complementary split-ring resonator (CSRR), pumps, deep brain simulations and endoscopy are a few employing a metamaterial superstrate or using CSRR examples of the medical applications through body in the ground plane. The future mobile applications implantable units. Antennas are placed into human bodies or mounted over the torso (skin-fat-muscle) to form a make use of the solar panel for self-power. The biomedical application and exterior instruments can be drawback is the size limitation for antenna in mobile arranged to be used for short range biotelemetry devices. The three main design types of mobile applications. Remote monitoring allows the diagnosis of photovoltaic antenna include the use of solar cells as diseases and can be serving as the application of hospital an RF ground plane, as a radiating element and as RF at home, this installation of instruments reduces the stacked parasitic patch element suspended above the hospitalization period.
    [Show full text]
  • Material Data & Design Workstation Reviews Biomimicry
    January 2019 FOCUS ON: New Vehicle Lightweighting Design Meshless Simulation Simulate Additive Manufacturing DigitalEngineering247.com A Touch of AR MATERIAL DATA & DESIGN WORKSTATION REVIEWS BIOMIMICRY DE_0119_Cover.indd 2 12/13/18 4:41 PM ANSYS.indd 1 12/10/18 3:56 PM @XI_Computer.indd 1 12/10/18 3:54 PM //////////////////////////////////////////////////////////////// | DEGREES OF FREEDOM | by Jamie J. Gooch Hack Your New Year’s Resolution T’S THAT TIME of year when we reflect on the past to go back to school to get another degree, maybe resolve to and look ahead to the future. On one hand, this makes take a course in programming, finite element analysis or design sense: The calendar year ends and a new year begins. for additive manufacturing. Small successes can lead to setting What better time to make resolutions? On the other loftier goals, but the trick is to build on each success to get there, Ihand, it seems a bit arbitrary to make important life and rather than trying to achieve too much too soon. work goals based on a date chosen by the pope in 1582 to Another way to engineer yourself to keep your resolutions be the first day of the year. is to share your goals. Research shows that telling people about your goals can help you stick with them. Committing Research has shown that New Year’s Resolutions don’t to something like professional training, where you tell your work for most people, but just barely. According to a 2002 supervisor your intentions, or improving your standard op- study by John C.
    [Show full text]
  • A Survey on Microstrip Patch Antenna Using Metamaterial Anisha Susan Thomas1, Prof
    ISSN (Print) : 2320 – 3765 ISSN (Online): 2278 – 8875 International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering (An ISO 3297: 2007 Certified Organization) Vol. 2, Issue 12, December 2013 A Survey on Microstrip Patch Antenna using Metamaterial Anisha Susan Thomas1, Prof. A K Prakash2 PG Student [Wireless Technology], Dept of ECE, Toc H Institute of Science and Technology, Cochin, Kerala, India 1 Professor, Dept of ECE, Toc H Institute of Science and Technology, Cochin, Kerala, India 2 ABSTRACT: Microstrip patch antennas are used for mobile phone applications due to their small size, low cost, ease of production etc. The MSA has proved to be an excellent radiator for many applications because of its several advantages, but it also has some disadvantages. Lower gain and narrow bandwidth are the major drawbacks of a patch antenna. In this paper, a survey on the existing solutions for the same which are developed through several years and an evolving technology metamaterial is presented. Metamaterials are artificial materials characterized by parameters generally not found in nature, but can be engineered. They differ from other materials due to the property of having negative permeability as well as permittivity. Metamaterial structure consists of Split Ring Resonators (SRRs) to produce negative permeability and thin wire elements to generate negative permittivity. Performance parameters especially bandwidth, of patch antennas which are usually considered as narrowband antennas can be improved using metamaterial. Metamaterials are also the basis of further miniaturization of microwave antennas. Keywords: Microstrip antenna, Metamaterial, Split Ring Resonator, Miniaturization, Narrowband antennas. I. INTRODUCTION Although the field of antenna engineering has a history of over 80 years it still remains as described in [1] “….
    [Show full text]
  • Multilayered Metamaterial Low Profile Antenna for Iot Applications
    J. ADV. SIMULAT. SCI. ENG. Vol. 6, No. 1, 273-281. © 2019 Japan Society for Simulation Technology MMLPA: Multilayered Metamaterial Low Profile Antenna for IoT Applications Tojoarisoa Rakotoaritina1,*, Megumi Saito1, Zhenni Pan1, Jiang Liu1, Shigeru Shimamoto1 1Department of Computer Science and Communications Engineering, Waseda University ∗[email protected] Received: November 22, 2018; Accepted: July 21, 2019; Published: August 10, 2019 Abstract. Nowadays, within the concept of Internet of Things (IoT), smart homes, smart factory, intelligent transportation among others are infrastructure systems that connect our world to the Internet. However, wireless communications technology are considerably con- strained by complicated structures, and lossy media in complex environments. Fundamental limitations on the transmission range have been treated to connect IoT devices in such Ra- dio Frequency (RF) challenging environments. In order to extend the transmission range in complex environments, Magnetic Induction (MI) communication has been proved to be an efficient solution. In this paper, a Multilayered Metamaterial low profile antenna (MMLPA) using Magnetic Induction communication scheme is proposed for IoT applications. The system model of the MMLPA is analyzed. Then an MMLPA system is designed by using a circular loop antenna backed with isotropic metamaterial which is considered as a Defected Ground Structure (DGS) as well as with anisotropic metamaterial for the purpose of a di- electric uniaxial metamaterial. By using a full-wave finite-element method, the proposed analysis is supported with simulation results where good agreement is achieved compared to the measurement results after realizing four prototypes of the MMLPA antennas. The effect of the presence of metal in the vicinity of the transceivers is also analyzed.
    [Show full text]
  • Analysis of a Waveguide-Fed Metasurface Antenna
    Analysis of a Waveguide-Fed Metasurface Antenna Smith, D., Yurduseven, O., Mancera, L. P., Bowen, P., & Kundtz, N. B. (2017). Analysis of a Waveguide-Fed Metasurface Antenna. Physical Review Applied, 8(5). https://doi.org/10.1103/PhysRevApplied.8.054048 Published in: Physical Review Applied Document Version: Publisher's PDF, also known as Version of record Queen's University Belfast - Research Portal: Link to publication record in Queen's University Belfast Research Portal Publisher rights © 2017 American Physical Society. This work is made available online in accordance with the publisher’s policies. Please refer to any applicable terms of use of the publisher. General rights Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact [email protected]. Download date:02. Oct. 2021 PHYSICAL REVIEW APPLIED 8, 054048 (2017) Analysis of a Waveguide-Fed Metasurface Antenna † † David R. Smith,* Okan Yurduseven, Laura Pulido Mancera, and Patrick Bowen Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27708, USA Nathan B.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 9.232,618 B2 Bourke, Jr
    USOO9232618B2 (12) United States Patent (10) Patent No.: US 9.232,618 B2 Bourke, Jr. et al. (45) Date of Patent: Jan. 5, 2016 (54) UP AND DOWN CONVERSION SYSTEMS (58) Field of Classification Search FOR PRODUCTION OF EMITTED LIGHT CPC .............. H01J9/00; H01J 61/00; A61N 5700; FROM VARIOUS ENERGY SOURCES G01N33/00; G01N 2003/0003; G01N 33/53; INCLUDING RADIO FREQUENCY, G01N 33/551; G01N33/54346; G01N 33/553; MCROWAVE ENERGY AND MAGNETC G01N 23/02; G02B 26/00 USPC ....................................................... 250/458.1 INDUCTION SOURCES FOR UPCONVERSION See application file for complete search history. (56) References Cited (75) Inventors: Frederic A. Bourke, Jr., Greenwich, CT (US); Zakaryae Fathi, Raleigh, NC U.S. PATENT DOCUMENTS (US); Ian Nicholas Stanton, Durham, NC (US); Michael J. Therien, Durham, 4,608.222 A 8, 1986 Brueckner .................... 376/104 NC (US); Paul Rath Stauffer, Durham, 5,118,422 A * 6/1992 Cooper et al. ................ 210,636 NC (US); Paolo MacCarini. Durham, (Continued) NC (US); Katherine Sarah Hansen, Cary, NC (US); Diane Renee Fels, FOREIGN PATENT DOCUMENTS Morrisville, NC (US); Cory Robert EP 2130553 A1 * 12/2009 ............. A61K 41.00 Wyatt, Durham, NC (US); Mark Wesley WO WO 2008, 118234 A2 10/2008 Dewhirst, Durham, NC (US) WO WO 2008118234 A2 * 10, 2008 .............. HOL 31,04 (73) Assignees: IMMUNOLIGHT, LLC, Detroit, MI OTHER PUBLICATIONS (US); DUKE UNIVERSITY, Durham, International Search Report and Written Opinion of the International NC (US) Searching Authority issued Mar. 28, 2011, in Patent Application No. PCT/US 2010/0561.78. *) Notice: Subject to anyy disclaimer, the term of this patent is extended or adjusted under 35 (Continued) U.S.C.
    [Show full text]
  • Development of Wireless Power Transmission System for Transfer Cart with Shortened Track
    applied sciences Article Development of Wireless Power Transmission System for Transfer Cart with Shortened Track Jae Sik Jin 1, Sunghun Jung 2 and Han Joo Kim 3,* 1 Department of Mechanical Design, Chosun College of Science and Technology, Gwangju 61453, Korea; [email protected] 2 Department of Smart Mobile Convergence System, Chosun University, Gwangju 61452, Korea; [email protected] 3 Department of Convergence Technology Engineering, Jeonbuk National University, Jeonju 54896, Korea * Correspondence: [email protected]; Tel.: +82-10-3863-1201 Received: 19 April 2020; Accepted: 7 July 2020; Published: 8 July 2020 Abstract: In this study, a wireless power transmission (WPT) system for high power was developed to supply the wirelessly powered transfer cart for a clean environment (such as liquid crystal display (LCD), semiconductor, and flat panel display (FPD) device industries) to improve the cleanliness of related industrial production lines and save energy. The power transmission method of WPT and the core design were optimized, and a shortened track was fabricated to enable WPT via short power lines for diverse applications in a small space-constrained workshop. In realizing the shortened Litz wire system, the amount of heat generated increased due to the increased resistance in the system, and efforts were made to improve the thermal performance. A simple approach was also proposed to estimate the skin depth caused by the skin effects in a cable made up of multiple strands of multiple wires, validated through thermal analysis by using ANSYS software in terms of heat generation by an electric field. Structure designs were implemented to improve the heat transfer performance, and the experimental results of WPT systems at a power level of 21.54 kW demonstrate that the power transfer distance of WPT was above 15 mm with a charging efficiency above 83.24%.
    [Show full text]
  • Metamaterial Superstrate Antenna Design with Gain Enhancement
    International Journal of Applied Engineering Research ISSN 0973-4562 Volume 13, Number 24 (2018) pp. 16939-16944 © Research India Publications. http://www.ripublication.com Metamaterial Superstrate Antenna Design with Gain Enhancement Dr.K.Kavitha 1,*, K .Seyatha 2 1Associate Professor, Department of Electronics and Communication Engineering, Mepco Schlenk Engineering College, Sivakasi,626005, India 2PG Student, Department of Electronics and Communication Engineering, Mepco Schlenk Engineering College, Sivakasi, 626005, India. *Corresponding author Abstract loss is more. Similarly for size reduction, the monopole multiband metamaterial antenna with complementary split The Metamaterial Superstrate Antenna plays a major role for ring resonator and varicap diode was designed by Ridha improving the gain of the antenna. The main objective of this Salhi.et.al [3] mainly used to reduce losses and limited work is to enhance the gain and directivity of the bandwidth for wireless communication application. But the Metamaterial Microstrip Patch Antenna used for Wireless gain is nearer to 3.8 dB at 8.5 GHz. Likewise the miniaturized Point to Point Communication applications like Dedicated five band metamaterial inspired antenna was discussed by Short Range Communications (DSRC). The operating Tanweer Ali.et.al [4] consists of rectangular CSRR, two L- frequency range of DSRC is 5.85-5.925 GHz. The proposed shaped and one T-shaped slot in the ground plane. To increase antenna uses Roger RT Duroid 5880 Substrate and FR4 the operating ability of the antenna, slots are etched in the Metamaterial Superstrate. In order to improve the gain and ground plane but the gain is lesser. Similarly the directivity of the antenna, the Metamaterial is used as complementary split ring resonator placed horizontally Superstrate along with array of patches.
    [Show full text]
  • Potential Applications of Metamaterials in Antenna Design, Cloaking Devices, Sensors and Solar Cells: a Comprehensive Review
    Journal of Optoelectronic and Biomedical Materials Vol. 13, No. 2, April – June 2021, p. 23 - 31 POTENTIAL APPLICATIONS OF METAMATERIALS IN ANTENNA DESIGN, CLOAKING DEVICES, SENSORS AND SOLAR CELLS: A COMPREHENSIVE REVIEW N.V. Krishna Prasada,*, T. A. Babua, S. Phanidharb, R. S. Singampalli c, B. R.Naikd, M. S. S. R. K. N.Sarmaa, S. Ramesha aDepartment of Physics, G.S.S, GITAM University, Bengaluru, India. bDepartment of EECE ,SoT, GITAM University, Bengaluru, India. cDepartment of Mech.Eng. SoT, GITAM University, Bengaluru, India dDepartment of CSE. SoT, GITAM University, Bengaluru, India This paper reviewed some of the applications of metamaterials in antenna design, cloaking devices, sensors and solar cells in brief. Metamaterials can be used as environment or as part of the antenna. Based on the required parameters, metamaterials while designing antennas are used in various types. They are highly useful in enhancing the power gain, bandwidth, in creating dense and antennas of multiple frequencies. Usage of metamaterial in antenna require proper designing of unit cell. This require creation of cells with special properties at required frequency. Cloaking is a technique of making specific objects invisible. This was achieved by isolating electromagnetic waves in that region. This paper reviewed some of the cloaking devices that use the technique of coordinate transformation and scattering cancellation. Metamaterial sensors which are more efficient than sensors with traditional materials are reviewed. These sensors exhibit enhanced sensitivity. Sensors used in wave guides and liquid chemical detection were reviewed. Solar cells that use metamaterials were reviewed. Usage of these materials reduce the loss in solar radiation making the solar cell more efficient based on the design.
    [Show full text]
  • Binary Meta-Hologram for a Reconfigurable Holographic
    www.nature.com/scientificreports OPEN Binary meta-hologram for a reconfgurable holographic metamaterial antenna Ruey-Bing (Raybeam) Hwang1,2 This research reports a design method for synthesizing the binary meta-hologram pattern implemented in a leaky waveguide that can radiate the feeding signal toward a prescribed direction. In fact, the obtained pattern is not always a uniform array; it is an almost-periodic one. Statistical analysis of the radiation pattern for imperfect array is then conducted to demonstrate that radiating main-beam angle (ensemble average) is dominated by the average period of a non-uniform array subject to a small perturbation. Additionally,the leaky wave of higher-order space harmonic in a periodic structure is employed to accurately predict the directional radiation including main beam as well as grating lobes. In holography, the interference pattern, which is due to the superposition of object- and reference-waves, is recorded in a hologram. Once the reference wave is fed into the hologram, an object wave is emerging out of the structure. In microwave or millimeter wave, the interference pattern can be implemented on dielectric substrate or metal layer using chemical etching1,2. However, the pattern is fxed and cannot be altered. Recently, a physi- cal material, termed as metamaterial or meta-surface3–7 composed of subwavelength unit cell has been studied extensively. Moreover, some of the structures can even dynamically change its electrical properties by electric- or magnetic-bias. To mention a few: a dynamically reconfgurable holographic meta-surface aperture consist- ing of an array of subwavelength slot-shaped meta-elements was reported8,9.
    [Show full text]
  • Loads, Load Factors and Load Combinations
    Overall Outline 1000. Introduction 4000. Federal Regulations, Guides, and Reports Training Course on 3000. Site Investigation Civil/Structural Codes and Inspection 4000. Loads, Load Factors, and Load Combinations 5000. Concrete Structures and Construction 6000. Steel Structures and Construction 7000. General Construction Methods BMA Engineering, Inc. 8000. Exams and Course Evaluation 9000. References and Sources BMA Engineering, Inc. – 4000 1 BMA Engineering, Inc. – 4000 2 4000. Loads, Load Factors, and Load Scope: Primary Documents Covered Combinations • Objective and Scope • Minimum Design Loads for Buildings and – Introduce loads, load factors, and load Other Structures [ASCE Standard 7‐05] combinations for nuclear‐related civil & structural •Seismic Analysis of Safety‐Related Nuclear design and construction Structures and Commentary [ASCE – Present and discuss Standard 4‐98] • Types of loads and their computational principles • Load factors •Design Loads on Structures During • Load combinations Construction [ASCE Standard 37‐02] • Focus on seismic loads • Computer aided analysis and design (brief) BMA Engineering, Inc. – 4000 3 BMA Engineering, Inc. – 4000 4 Load Types (ASCE 7‐05) Load Types (ASCE 7‐05) • D = dead load • Lr = roof live load • Di = weight of ice • R = rain load • E = earthquake load • S = snow load • F = load due to fluids with well‐defined pressures and • T = self‐straining force maximum heights • W = wind load • F = flood load a • Wi = wind‐on‐ice loads • H = ldload due to lllateral earth pressure, ground water pressure,
    [Show full text]
  • A Simple Linear-Type Negative Permittivity Metamaterials Substrate Microstrip Patch Antenna
    materials Article A Simple Linear-Type Negative Permittivity Metamaterials Substrate Microstrip Patch Antenna Wei-Hua Hui, Yao Guo and Xiao-Peng Zhao * Department of Applied Physics, School of Physical Science and Technology, Northwestern Polytechnical University, Xi’an 710129, China; [email protected] (W.-H.H.); [email protected] (Y.G.) * Correspondence: [email protected] Abstract: A microstrip patch antenna (MPA) loaded with linear-type negative permittivity metama- terials (NPMMs) is designed. The simple linear-type metamaterials have negative permittivity at 1–10 GHz. Four groups of antennas at different frequency bands are simulated in order to study the effect of linear-type NPMMs on MPA. The antennas working at 5.0 GHz are processed and measured. The measured results illustrate that the gain is enhanced by 2.12 dB, the H-plane half-power beam width (HPBW) is converged by 14◦, and the effective area is increased by 62.5%. It can be concluded from the simulation and measurements that the linear-type metamaterials loaded on the substrate of MAP can suppress surface waves and increase forward radiation well. Keywords: metamaterials; negative permittivity; microstrip patch antenna; gain 1. Introduction Citation: Hui, W.-H.; Guo, Y.; Zhao, Electromagnetic (EM) metamaterials are composed of periodic, subwavelength arti- X.-P. A Simple Linear-Type Negative ficial structures, which can be resonant or non-resonant units. A two-dimensional form Permittivity Metamaterials Substrate of metamaterials is called a metasurface. According to the uniform effective medium Microstrip Patch Antenna. Materials theory, the properties of these structures can be determined by the effective permittivity 2021, 14, 4398.
    [Show full text]