Coastal and Marine Resource Condition Monitoring

Total Page:16

File Type:pdf, Size:1020Kb

Coastal and Marine Resource Condition Monitoring Fisheries Research Report No. 197, 2009 Coastal and Marine Resource Condition Monitoring – Scoping Project Final NRM Report – Project 073007 Part 1– Knowledge review and gap analysis: Resource condition monitoring in the Pilbara and Kimberley regions of Western Australia Brett A Human and Justin I McDonald Fisheries Research Division Western Australian Fisheries and Marine Research Laboratories PO Box 20 NORTH BEACH, Western Australia 6920 Correct citation: Human, B. A. and McDonald, J. I. 2009. Knowledge review and gap analysis: Resource condition monitoring in the Pilbara and Kimberley regions of Western Australia. Coastal and Marine Resource Condition Monitoring - Scoping Project. Final NRM Report, Project 073007 - Part 1. Department of Fisheries, Government of Western Australia. 192pp. Enquiries: WA Fisheries and Marine Research Laboratories, PO Box 20, North Beach, WA 6920 Tel: +61 8 9203 0111 Email: [email protected] Website: www.fish.wa.gov.au ABN: 55 689 794 771 A complete list of Fisheries Research Reports is available online at www.fish.wa.gov.au This work is copyright. Except as permitted under the Copyright Act 1968, no part of this publication may be reproduced by any process, electronic or otherwise, without specific written permission of the copyright owners. Neither may information be stored electronically in any form whatsoever without such permission. The Fisheries Research and Development Corporation plans, invests in, and manages fisheries research and development throughout Australia. It is a federal statutory authority jointly funded by the Australian Government and the fishing industry. Cover image: Cable Beach, Broome. Photo: Brett Human. © Department of Fisheries, Western Australia. December 2009. ISSN: 1035 - 4549 ISBN: 1 921258 74 8 ii Fisheries Research Report [Western Australia] No. 197, 2009 Contents Abbreviations ....................................................................................................................... 1 Executive summary .............................................................................................................. 2 Key findings ................................................................................................................... 3 Project aims and background ......................................................................................... 4 This document ................................................................................................................ 4 Literature search limitations ........................................................................................... 4 1.0 Introduction .................................................................................................................. 5 2.0 Knowledge review......................................................................................................... 6 2.1 The target regions – what we currently know ........................................................ 7 2.1.1 The Pilbara region ........................................................................................ 7 2.2 The Kimberley region ............................................................................................. 9 2.2.1 The Kimberley and environment ................................................................. 9 3.0 Research knowledge review ......................................................................................... 12 3.1 Marine water and sediment quality ........................................................................ 12 3.1.1 The Pilbara region ........................................................................................ 12 3.1.2 The Kimberley region .................................................................................. 13 3.2 Marine primary production ..................................................................................... 13 3.2.1 The Pilbara region ........................................................................................ 13 3.2.2 The Kimberley region .................................................................................. 13 3.3 Marine vegetation communities ............................................................................. 14 3.3.1 Mangroves .................................................................................................... 14 3.3.2 Seagrass meadows and algal beds ............................................................... 14 3.3.3 The Pilbara region ........................................................................................ 14 3.3.4 The Kimberley region .................................................................................. 15 3.4 Marine invertebrate communities ........................................................................... 15 3.4.1 The Pilbara region ........................................................................................ 15 3.4.2 The Kimberley region .................................................................................. 17 3.5 Marine fish species ................................................................................................. 18 3.5.1 The Pilbara region ........................................................................................ 19 3.5.2 The Kimberley region .................................................................................. 20 3.6 Marine reptile species ............................................................................................. 21 3.6.1 The Pilbara region ........................................................................................ 21 3.6.2 The Kimberley region .................................................................................. 21 3.7 Marine mammal species ......................................................................................... 22 3.7.1 The Pilbara region ........................................................................................ 22 3.7.2 The Kimberley region .................................................................................. 22 3.8 Analysis and implications of the research knowledge review ............................... 23 Fisheries Research Report [Western Australia] No. 197, 2009 iii 3.9 Gap analysis ............................................................................................................ 24 3.10 Identified major knowledge gaps ........................................................................... 24 3.11 Overview of the knowledge gaps ........................................................................... 25 3.12 Gap analysis workshops ......................................................................................... 29 3.12.1 Stakeholder consultation .............................................................................. 29 3.12.2 Comments and questions from stakeholders ............................................... 34 3.12.3 Voting process .............................................................................................. 35 3.12.4 Principle vote ............................................................................................... 35 3.12.5 Survey .......................................................................................................... 39 3.12.6 Stakeholder priority areas for research ........................................................ 41 4.0 Monitoring knowledge review ..................................................................................... 42 4.1 Who ......................................................................................................................... 42 4.2 Quality .................................................................................................................... 43 4.3 When ....................................................................................................................... 46 4.4 Where ...................................................................................................................... 46 4.5 What ........................................................................................................................ 46 5.0 Conclusions ................................................................................................................... 48 6.0 Recommendations ........................................................................................................ 49 7.0 Acknowledgements ....................................................................................................... 50 8.0 Reference ....................................................................................................................... 51 8.1 Literature cited in the research review ................................................................... 51 8.2 Literature cited in the monitoring review ............................................................... 54 8.3 Miscellaneous MEST records for the Pilbara and Kimberley regions (with no further details) .................................................................................................. 63 8.4 Supporting references for the Pilbara and Kimberley regions ............................... 66 9.0 Appendices .................................................................................................................... 141 Figures Figure 1. The Pilbara coastal region as defined in the current review, from 114°50'E to 120°E. This map does not show the terrestrial political boundaries of
Recommended publications
  • ENL 12.Pdf (2.8
    , . THE ECHINODERMS NEWSLETTER •I No. 12. Ju1Yt 1982 JIIH B 3 35 PM'63 Distributed by the Department of Invertebrate Zoology, 1 .., ,~ National Museum of Natural History MAl L S E i~VI C L .:;, Smithsonian Institution CEl-iTER Washington, D. C.t U. S. A. " Editor: .fohn M. La'tlTrence ~epartment of Biology Vniversity of South Florida tampat Florida 33620 U. S. A. / / Assistants: Chang-Po Chen, Walter Diehl, Adam Marsh, James McClintockt Stephen Watts ) The Echi~oderms Newsletter was founded in 1968 by David L. Pawson and Maureen E. Downey o~ th~ Smithsonian Institution. They were responsible for the preVious eleven i~sues. Workers with echinoderms, and indeed those who work with fl1 invertebfates, owe them a tremendous debt for the contribution which the #ewsletter has made/to the field. c' "., The neWs~etter generally contains information concerning meetings and conferences and publtcations of interest to echinoderm biologists, titles of theses a,d "-disserta~ions on echinoderms, and research interests and addresses of echlnoderm biologists. To insure inclU$~on~~ journal articles in the newsletter, a~thors are -.requeste4 to send titles or"reprints to the editor. }, ..,.. / SuggestiOns and request,s'from individuals can be addressed to the entire !chinoderm biology ~ommunity th~ough the newsletter. /'~. ," The news~etter ,;f:'s'~~otintendedto be a part of the scientific literature,' and should n~t be/c:ited, abstracted, or reprinted as a published document. •..., " ---- ..•..,->.--------------~--------------------." ./ .' -'. ~:-/.;, Internat+onal Echinoderms Conference--Tampa Bay (1981) /', '.--:. The inte{nati6~al echinoderms conferences began with the Smithsonian meet~ng In 1972. At that conference, participants voted to have subsequent internat!ona1 /lIleetingsevet'! three years, with the site to be changed.between the Ap1eri~as, Europe? fil-ndjtheEast.
    [Show full text]
  • A Life on the Ocean Wave
    Queensland Maritime Museum Education Module A Life on the Ocean Wave A Queensland Maritime Museum Education module addressing multiple-outcomes across Key Learning Areas for Middle Primary students (Level 3) Key Learning Areas by Strands: Key Learning Area Strands Studies of Society and Environment Culture and Identity Systems, Resources and Power Technology Technology Practice Materials Table of Contents About the Queensland Maritime Museum................................................................... 2 Purpose................................................................................................................................... 3 Overview of activities........................................................................................................ 4 Core learning outcomes.................................................................................................... 4 Planning, teaching and assessing with multiple outcomes across a number of key learning areas ......................................................................................................... 5 Background information ................................................................................................... 6 Activities ................................................................................................................................9 Resource 1........................................................................................................................... 16 Resource 2..........................................................................................................................
    [Show full text]
  • The Sea Stars (Echinodermata: Asteroidea): Their Biology, Ecology, Evolution and Utilization OPEN ACCESS
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/328063815 The Sea Stars (Echinodermata: Asteroidea): Their Biology, Ecology, Evolution and Utilization OPEN ACCESS Article · January 2018 CITATIONS READS 0 6 5 authors, including: Ferdinard Olisa Megwalu World Fisheries University @Pukyong National University (wfu.pknu.ackr) 3 PUBLICATIONS 0 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Population Dynamics. View project All content following this page was uploaded by Ferdinard Olisa Megwalu on 04 October 2018. The user has requested enhancement of the downloaded file. Review Article Published: 17 Sep, 2018 SF Journal of Biotechnology and Biomedical Engineering The Sea Stars (Echinodermata: Asteroidea): Their Biology, Ecology, Evolution and Utilization Rahman MA1*, Molla MHR1, Megwalu FO1, Asare OE1, Tchoundi A1, Shaikh MM1 and Jahan B2 1World Fisheries University Pilot Programme, Pukyong National University (PKNU), Nam-gu, Busan, Korea 2Biotechnology and Genetic Engineering Discipline, Khulna University, Khulna, Bangladesh Abstract The Sea stars (Asteroidea: Echinodermata) are comprising of a large and diverse groups of sessile marine invertebrates having seven extant orders such as Brisingida, Forcipulatida, Notomyotida, Paxillosida, Spinulosida, Valvatida and Velatida and two extinct one such as Calliasterellidae and Trichasteropsida. Around 1,500 living species of starfish occur on the seabed in all the world's oceans, from the tropics to subzero polar waters. They are found from the intertidal zone down to abyssal depths, 6,000m below the surface. Starfish typically have a central disc and five arms, though some species have a larger number of arms. The aboral or upper surface may be smooth, granular or spiny, and is covered with overlapping plates.
    [Show full text]
  • Assessing Population Collapse of Drupella Spp. (Mollusca: Gastropoda) 2 Years After a Coral Bleaching Event in the Republic of Maldives
    Hydrobiologia https://doi.org/10.1007/s10750-021-04546-5 (0123456789().,-volV)( 0123456789().,-volV) PRIMARY RESEARCH PAPER Assessing population collapse of Drupella spp. (Mollusca: Gastropoda) 2 years after a coral bleaching event in the Republic of Maldives L. Saponari . I. Dehnert . P. Galli . S. Montano Received: 4 March 2020 / Revised: 14 December 2020 / Accepted: 4 February 2021 Ó The Author(s) 2021 Abstract Corallivory causes considerable damage with higher coral cover. The impact of Drupella spp. to coral reefs and can exacerbate other disturbances. appeared to be minimal with the population suffering Among coral predators, Drupella spp. are considered from the loss of coral cover. We suggest that as delayer of coral recovery in the Republic of monitoring programs collect temporal- and spatial- Maldives, although little information is available on scale data on non-outbreaking populations or non- their ecology. Thus, we aimed to assess their popula- aggregating populations to understand the dynamics of tion structure, feeding behaviour and spatial distribu- predation related to the co-occurrence of anthro- tion around 2 years after a coral bleaching event in pogenic and natural impacts. 2016. Biological and environmental data were col- lected using belt and line intercept transects in six Keywords Corallivory Á Coral Á Coral bleaching Á shallow reefs in Maldives. The snails occurred in Coral recovery Á Predation Á Acropora Á Pocillopora aggregations with a maximum of 62 individuals and exhibited a preference for branching corals. Yet, the gastropods showed a high plasticity in adapting feeding preferences to prey availability. Drupella Introduction spp. were homogenously distributed in the study area with an average of 9.04 ± 19.72 ind/200 m2.
    [Show full text]
  • HMAS Diamantina
    RAAF Radschool Association Magazine – Vol 45 Page 16 HMAS Diamantina. In Perth last year, while we were looking over HMAS Stirling, we couldn’t help noticing the number of times the Navy referred to the old WW2 frigate, the HMAS Diamantina. It seems she was something special and as we live in Brisbane we know where she rests today so we decided it was time we had a look over her, just to see what all the fuss was about. Anyone familiar with Brisbane will also know Southbank which is the Phoenix that arose from the site left vacant when Expo (30 April 1988 – 30 October 1988) wound up. Prior to Expo, that area of Brisbane held old storage and warehouse sheds, dilapidated wooden wharves and at its eastern end, the old South Brisbane Dry Dock. When Expo finished, the site lay vacant for a period while they figured out what to do with the land and eventually they got enough people to agree to a set of plans and today we have the wonderful open area that is extensively used by Brisbanites and visitors every day. But they left the old dry dock. The dock was built in 1876, is 131 metres long and during the war was a strategic asset having provided facilities for the servicing of over a hundred RAN and USN ships. It was finally closed in 1972 and now, as part of the Queensland Maritime Museum, is the final resting place for the 2,120 ton HMAS Diamantina. A couple of years ago, when Brisbane flooded, so did the dock, the Diamantina floated off her chocks and after the two huge centrifugal pumps, which can A RAAF Radschool Association Magazine – Vol 45 Page 16 completely empty the dock in only 3-4 hours, pumped out the water, Diamantina was resettled on new chocks and that’s how she rests today.
    [Show full text]
  • Amphiura Filiformis, We First Highlighted a Blue-Green Light Sensitivity Using a Behavioural Approach
    High opsin diversity in a non-visual infaunal brittle star Delroisse et al. Delroisse et al. BMC Genomics 2014, 15:1035 http://www.biomedcentral.com/1471-2164/15/1035 Delroisse et al. BMC Genomics 2014, 15:1035 http://www.biomedcentral.com/1471-2164/15/1035 RESEARCH ARTICLE Open Access High opsin diversity in a non-visual infaunal brittle star Jérôme Delroisse1*, Esther Ullrich-Lüter2, Olga Ortega-Martinez3, Sam Dupont3, Maria-Ina Arnone4, Jérôme Mallefet5 and Patrick Flammang1 Abstract Background: In metazoans, opsins are photosensitive proteins involved in both vision and non-visual photoreception. Echinoderms have no well-defined eyes but several opsin genes were found in the purple sea urchin (Strongylocentrotus purpuratus) genome. Molecular data are lacking for other echinoderm classes although many species are known to be light sensitive. Results: In this study focused on the European brittle star Amphiura filiformis, we first highlighted a blue-green light sensitivity using a behavioural approach. We then identified 13 new putative opsin genes against eight bona fide opsin genes in the genome of S. purpuratus. Six opsins were included in the rhabdomeric opsin group (r-opsins). In addition, one putative ciliary opsin (c-opsin), showing high similarity with the c-opsin of S. purpuratus (Sp-opsin 1), one Go opsin similar to Sp-opsins 3.1 and 3.2, two basal-branch opsins similar to Sp-opsins 2 and 5, and two neuropsins similar to Sp-opsin 8, were identified. Finally, two sequences from one putative RGR opsin similar to Sp-opsin 7 were also detected. Adult arm transcriptome analysis pinpointed opsin mRNAs corresponding to one r-opsin, one neuropsin and the homologue of Sp-opsin 2.
    [Show full text]
  • Unavailable Sequences Are Indicated with Dashes
    SUPPLEMENTARY MATERIAL Table S1. List of samples sequenced in this study. Not all genes are available for each specimen; unavailable sequences are indicated with dashes. Generic assignments are based on our revised classification; uncertain assignments are indicated by single quotation marks. Type species of valid genera are in bold. Voucher locations: Natural History Museum, London (NHMUK); Australian Museum, Sydney (AM); Western Australian Museum, Perth (WAM); Florida Museum of Natural History, Gainesville (UF); University of Costa Rica (UCR); Universidad Nacional Autónoma de México (CNMO); ‘La Sapienza’ University of Rome (BAU); Muséum Nationale d’Histoire Naturelle, Paris (MNHN). Accession numbers beginning with EU were published by Claremont et al. (2008); accession numbers beginning with FN were published by Barco et al. (2010); accession numbers beginning with FR were published by Claremont et al. (2011). Species Locality Voucher 12S 28S 16S COI Rapaninae (outgroup) Concholepas Chile: Isla Rojas, Region NHMUK FN677398 EU391554 FN677453 EU391581 concholepas XI 19990303 (Bruguière, 1789) Dicathais orbita Australia: Tasmania AM C458269 FN677395 FN677459 FN677450 EU391573 (Gmelin, 1791) Mancinella intermedia Mozambique: Cabo NHMUK FN677384 EU391543 FN677434 EU391574 (Kiener, 1835) Delgado Prov. 20060440 Rapana bezoar Japan: Kochi Pref. NHMUK FN677376 FN677476 FN677438 FN677421 (Linnaeus, 1767) 20080038 Thais nodosa Ghana: Matrakni Point NHMUK FN677373 EU391566 FN677425 EU391579 (Linnaeus, 1758) 20070652 Thalessa aculeata New Caledonia: Touho NHMUK FN677374 FN677477 FN677426 FN677422 (Deshayes, 1844) 20070631 Ergalataxinae Kuroda & Habe, 1971 Trachypollia lugubris Costa Rica: Puntarenas UCR 7797 HE583773 HE583860 HE583924 HE584011 (C.B. Adams, 1852) Trachypollia lugubris Panama BAU 00248 HE583774 HE583861 HE583925 HE584012 (C.B. Adams, 1852) CLADE A ‘Morula’ anaxares Mozambique: Cabo NHMUK HE583775 EU391541 HE583926 EU391584 (Kiener, 1836) Delgado Prov.
    [Show full text]
  • Marine Genomics Meets Ecology: Diversity and Divergence in South
    Marine genomics meets ecology: Diversity and divergence in South African sea stars of the genus Parvulastra Katherine Dunbar Thesis submitted for the degree of Doctor of Philosophy Biodiversity and Ecological Processes Research Group School of Biosciences Cardiff University December 2006 UMI Number: U584961 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. Dissertation Publishing UMI U584961 Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author. Microform Edition © ProQuest LLC. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code. ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 DECLARATION This work has not previously been substance for any degree and is not being concurrently submitted in c y degree. Signed ................................(candidate) Date.... 3 l . ™ MW. ... ..... STATEMENT 1 This thesis is the result of my own M ent work/investigation, except where otherwise stated. Other source* edged by footnotes giving explicit references. Signed (candidate) S.**: Q tife : ...... STATEMENT 2 I hereby give consent for my thesis, if accepted, to be available for photocopying and for inter-library loan, and for the tJfJSJa^^prrmqary to be made available to outside organisations Signed ................................................................... (candidate) Date............................. Abstract The coast of South Africa is situated between the warm Indian and the cold Atlantic Oceans, resulting in an extreme intertidal temperature gradient and potentially strong opposing selection pressures between the east and west coasts.
    [Show full text]
  • Security & Defence European
    a 7.90 D European & Security ES & Defence 2/2018 International Security and Defence Journal COUNTRY FOCUS: MALAYSIA ISSN 1617-7983 • www.euro-sd.com • March 2018 Unmanned Maritime Systems Game Changer for EU Defence? Spain: Increasing Funds for Defence 25 member states established the ”Permanent Seven new programmes are to be scheduled Structured Cooperation“ (PESCO). for the next 15 years. Politics · Armed Forces · Procurement · Technology The backbone of every strong troop. Mercedes-Benz Defence Vehicles. When your mission is clear. When there’s no road for miles around. And when you need to give all you’ve got, your equipment needs to be the best. At times like these, we’re right by your side. Mercedes-Benz Defence Vehicles: armoured, highly capable off-road and logistics vehicles with payloads ranging from 0.5 to 110 t. Mobilising safety and efficiency: www.mercedes-benz.com/defence-vehicles Editorial The Balkans Are Losing Their Illusions At the beginning of the year, Bulgaria strategy”. If this were true, the authors took over the presidency of the European would have performed a particularly great Council. The six months in which a Mem- service by giving the term a new content. ber State exercises this honorary position, So far, it has been assumed that a strategy before passing on the baton to the next indicates how a goal should be achieved. capital city, are too short for course- However, this document offers only vague setting. Certainly, at least for a moment, hints. Instead, it lists once again what the President of the Council can put issues requirements applicants must fulfil in or- that are important to him on the agenda.
    [Show full text]
  • 128 Freiberg, 2012 Protoconch Characters of Late Cretaceous
    Freiberger Forschungshefte, C 542 psf (20) 93 – 128 Freiberg, 2012 Protoconch characters of Late Cretaceous Latrogastropoda (Neogastropoda and Neomesogastropoda) as an aid in the reconstruction of the phylogeny of the Neogastropoda by Klaus Bandel, Hamburg & David T. Dockery III, Jackson with 5 plates BANDEL, K. & DOCKERY, D.T. III (2012): Protoconch characters of Late Cretaceous Latrogastropoda (Neogastropoda and Neomesogastropoda) as an aid in the reconstruction of the phylogeny of the Neogastropoda. Paläontologie, Stratigraphie, Fazies (20), Freiberger Forschungshefte, C 542: 93–128; Freiberg. Keywords: Latrogastropoda, Neogastropoda, Neomesogastropoda, Cretaceous. Addresses: Prof. Dr. Klaus Bandel, Universitat Hamburg, Geologisch Paläontologisches Institut und Museum, Bundesstrasse 55, D-20146 Hamburg, email: [email protected]; David T. Dockery III, Mississippi Department of Environmental Quality, Office of Geology, P.O. Box 20307, 39289-1307 Jackson, MS, 39289- 1307, U.S.A., email: [email protected]. Contents: Abstract Zusammenfassung 1 Introduction 2 Palaeontology 3 Discussion 3.1 Characters of protoconch morphology among Muricoidea 3.2 Characteristics of the protoconch of Buccinidae, Nassariidae, Columbellinidae and Mitridae 3.3 Characteristics of the protoconch morphology among Toxoglossa References Abstract Late Cretaceous Naticidae, Cypraeidae and Calyptraeidae can be recognized by the shape of their teleoconch, as well as by their characteristic protoconch morphology. The stem group from which the Latrogastropoda originated lived during or shortly before Aptian/Albian time (100–125 Ma). Several groups of Latrogastropoda that lived at the time of deposition of the Campanian to Maastrichtian (65–83 Ma) Ripley Formation have no recognized living counterparts. These Late Cretaceous species include the Sarganoidea, with the families Sarganidae, Weeksiidae and Moreidae, which have a rounded and low protoconch with a large embryonic whorl.
    [Show full text]
  • Coral-Eating Snail Drupella Cornus Population Increases in Kenyan Coral Reef Lagoons
    MARINE ECOLOGY PROGRESS SERIES Published December 1 Mar. Ecol. Prog. Ser. Coral-eating snail Drupella cornus population increases in Kenyan coral reef lagoons T. R. McClanahan The Wildlife Conservation Society, Coral Reef Conservation Project, PO Box 99470, Mombasa, Kenya ABSTRACT: Data from a study of corallivorous snails in 8 Kenyan coral-reef lagoons sampled at 3 time intervals over a 6 yr period suggest that Drupella cornus populations have increased on Kenyan reefs. This increase was greatest in heavily fished reefs and a transition reef (converted to a park in about 1990) but less pronounced in the unfished parks and a reserve (restricted fishing). The abundance of corallivorous snails was better predicted by the abundance of their predators than the abundance of their coral food. The 2 most abundant species, Coralhophjla violacaea and D. cornus, were associated with the coral genus Porites although D. cornus was found on a wider variety of coral genera than C. violacea. D. cornus was most abundant on fished reefs with the exception of l reef where C. violacea was dominant and persisted at high population densities over the study period. Observed population increases in Kenya and western Australia may be due to oceanic conditions which improved D. cornus recruitment success during the late 1980s. KEY WORDS: Fishing . Marine protected areas. Population dynamics . Prosobranch snails INTRODUCTION Corallivorous snails such as Drupella cornus (syn- onymous with Morula or Drupella elata; Spry 1961, Benthic invertebrates such as coral-eating starfish Wilson 1992), Coralliophila vjolacea (= C. neritoidea; (Moran 1986), prosobranch snails (Moyer et al. 1982, Abbott & Dance 1986) and other members of the 1985, Turner 1992a), and sea urchins (Lessios et al.
    [Show full text]
  • Population Outbreaks and Large Aggregations of Drupella on the Great Barrier Reef
    RESEARCH PUBLICATION NO. 96 Population outbreaks and large aggregations of Drupella on the Great Barrier Reef R.L. Cumming RESEARCH PUBLICATION NO. 96 Population outbreaks and large aggregations of Drupella on the Great Barrier Reef R.L. Cumming Liquiddity Environmental Consulting Cairns QLD 4879 PO Box 1379 Townsville QLD 4810 Telephone: (07) 4750 0700 Fax: (07) 4772 6093 Email: [email protected] www.gbrmpa.gov.au © Commonwealth of Australia 2009 Published by the Great Barrier Reef Marine Park Authority ISBN 978 1 876945 87 9 (pdf) This work is copyright. Apart from any use as permitted under the Copyright Act 1968, no part may be reproduced by any process without the prior written permission of the Great Barrier Reef Marine Park Authority. The National Library of Australia Cataloguing-in-Publication entry : Cumming, R. L. Population outbreaks and large aggregations of drupella on the Great Barrier Reef [electronic resource] / R. L. Cumming. ISBN 978 1 876945 87 9 (pdf) Research publication (Great Barrier Reef Marine Park Authority. Online) ; 96. Bibliography. Drupella--Control--Environmental aspects--Queensland—Great Barrier Reef. Great Barrier Reef Marine Park Authority. 594.3209943 DISCLAIMER The views and opinions expressed in this publication are those of the authors and do not necessarily reflect those of the Australian Government. While reasonable effort has been made to ensure that the contents of this publication are factually correct, the Commonwealth does not accept responsibility for the accuracy or completeness of the contents, and shall not be liable for any loss or damage that may be occasioned directly or indirectly through the use of, or reliance on, the contents of this publication.
    [Show full text]