Use of Air Circulation to Reduce Wet Leaves Under High Humidity Conditions

Total Page:16

File Type:pdf, Size:1020Kb

Use of Air Circulation to Reduce Wet Leaves Under High Humidity Conditions Short Communication Environ. Control Biol., 51 (4), 215220, 2013 DOI: 10.2525/ecb.51.215 Use of Air Circulation to Reduce Wet Leaves under High Humidity Conditions 1 1 2 1 Takeshi KUROYANAGI , Hisashi YOSHIKOSHI , Takafumi KINOSHITA and Hiroki KAWASHIMA 1 NARO Western Region Agricultural Research Center, Zentsuji, Kagawa 7650053, Japan 2 NARO Tohoku Agricultural Research Center, Morioka, Iwate 0200123, Japan (Received August 16, 2013; Accepted November 21, 2013) The wetting of plants due to guttation (i.e., drops of xylem sap that exude onto the leaves) represents a potential risk for incidence and outbreak of pathogens. Here, we investigated the effect of air circulation on guttation of tomato leaves under dark and high humidity conditions. The tomato plants were grown in a container and pinched above the second truss and were then separately placed in a darkened and constantly humidified growth cabinet that was exposed to three levels of air circulation intensity (air velocities of 0.05 m s1, 0.16 m s1, and 0.29 m s1). The evaporation rate increased in direct proportion to air velocity around the plants regardless of differences in leaf area. The guttation rate varied with leaf area; specially, tomato plants with small leaf areas secreted larger amounts of guttation water than those with large leaf areas. However, guttation was completely suppressed in both large and small leaves under well-circulated conditions (i.e., a veloc- ity of 0.3 m s1). This study indicates that air circulation reduces the wetting of plants by guttation under dark and high humidity conditions, which is likely to suppress the secondary spread of pathogens. Keywords : circulator, greenhouse, guttation, tomato, transpiration, wetting commercial-like greenhouse conditions, the secondary INTRODUCTION spread of C. michiganensis subsp. michiganensis is caused by workers touching the guttation droplets exuded from in- The wetting of plants is regarded as an undesirable oculated source plants. In comparison, once the guttation condition in greenhouses because of an increased risk of droplets have dried, spread does not occur by touching in- fungal and bacterial-incited diseases (Csizinszky et al., oculated plants (Sharabani et al., 2013). Tomato mosaic 2005). Droplets form on plants as a result of 3 factors as- virus (ToMV) and pepper mild mottle virus (PMMV) have sociated with the high humidity of greenhouses: (1) con- also been identified in the guttation water of infected to- densation falling from greenhouse covers; (2) condensation mato and green pepper plants, with the concentrations of on the leaf or fruit surface; and (3) guttation, which is the the virus particles being sufficient to lead to the infection of exudation of drops of xylem sap due to root pressure. The healthy plants (French et al., 1993). Since hydathodes presence of water on plants is often unavoidable in green- serve as efficient infection routes via guttation, the imple- houses. mentation of certain greenhouse air conditions that inhibit Among growers, guttation is widely believed to be a guttation might prevent the secondary spread of critical sign of plants having good root spread. Depending on plant pathogens. species and weather conditions, guttation on a plant may be Water droplets on leaf margins due to guttation are comparable to condensation on the leaves (Hughes and brought through the intercellular spaces of the leaf, called Brimblecombe, 1994), with this phenomenon being fre- the epithem, which results in these droplets being in con- quently observed under greenhouse conditions tinuous contact with the water in the vascular system (Joachimsmeier et al., 2011). Since guttation water is de- (Wilkinson, 1979). This channel through the leaf becomes rived from xylem sap through hydathodes (the structure active in darkness, when almost all the stomata close. through which water exudation occurs), it has a similar Guttation might be effectively suppressed by dehumidify- composition to the exudates that flow from the root to the ing greenhouse air and increasing transpiration rates. shoot in healthy plants (such as tomato and cucumber), and However, dehumidification is not unavailable for more than contains various minerals, such as P, K, Ca, and Mg half of the greenhouses in Japan, which are not equipped (Masuda, 1989). However, the appearance of droplet with dehumidifiers or heaters. Therefore, circulating air through hydathodes is regarded as a major invasion route of around the leaves, which decreases the thickness of leaf pathogens into host plants (Huang, 1986). For example, boundary layer (Yabuki and Harazono, 1978), might pro- Clavibacter michiganensis subsp. michiganensis, which vide an alternative means of increasing transpiration. causes bacterial canker in tomato plants, is transported into The present study aimed to examine methods to sup- the leaves via guttation droplets containing bacteria, and press the appearance of droplets on leaves by circulating air causes marginal necrosis (Carlton et al., 1998). Under the around plants. Guttation was provoked by placing individ- Corresponding author : Takeshi Kuroyanagi, fax: 81877621130, e-mail : [email protected] Vol. 51, No. 4 (2013) T. KUROYANAGI ET AL. ual tomato plants in a closed growth cabinet under constant and the chamber was taken under conditions being passive. dark and high humidity conditions. A stable temperature The fluorescent lamps in the chamber were not used during was produced in the cabinet and root zone, with three dif- the experiments. ferent air circulation intensities being created in the cabinet Measurement by adjusting the number of active fans attached to the floor Eight tomato plants were used in the experiments, of and the ceiling. The transpiration rate was monitored auto- which 4 were grown in 2011 and the other 4 were grown in matically, whereas the amount of droplets on the leaf mar- 2012. The experiments were conducted from November 8 gins was manually collected after subjecting plants to each to 18 in 2011, and from December 4, 2012 to January 11, air circulation level. Based on the findings of this study, 2013. The leaf area and fresh weight of the fruits of all the mechanism of transpiration under dark and high humid- plants were measured destructively after the experiments. ity conditions, along with the relationship between plant Individual plants were exposed to the three-level air characteristics and guttation, were considered towards im- circulation intensity: “No” (no fan running), “Low” (1 fan proving greenhouse management protocol. running on the ceiling), and “High” (all 8 fans running). Plants were subjected to each air circulation intensity for 1, MATERIALS AND METHODS 3, 6, and 15 h, to examine the effect of the exposure time on the magnitude of guttation and transpiration. One plant Plant and experimental system was subjected to 3 to 11 treatments, consisting of a combi- Non-grafted tomato (Solanum lycopersicum) cultivars nation of the air circulation intensity and the exposure time. (Reiyo, Sakata Seed Corporation, Kanagawa, Japan), which Between treatments, plants were rested for an interval of 1 was at the fruit developmental stage after being pinched h and more, during which time the cabinet and the chamber above second fruit truss, were used for the experiments. were not saturated with water vapor. Water with the same The individual seedlings were transplanted on September temperature to the room was supplied to the substrate be- 20, 2011, and October 5, 2012, into plastic containers with fore each treatment until drainage was observed at the bot- bars to support the stems and a rockwool substrate (200 tom of the container. Evaporation from the substrate was mm200 mm75 mm). The tomato plants were grown in prevented by the presence of a plastic board and a thin plas- an unheated greenhouse located at Kagawa, Japan (34.1°N, tic film. The droplets that formed on leaves as a result of 133.5°E), until use in the experiments. A mixture of guttation were collected by a researcher using about 15 Otsuka House No. 1 and No. 2 nutrient solutions (Otsuka pieces of cotton (66 mm50 mm2 mm) per treatment. Chemical Co., Ltd., Osaka, Japan) adjusted to 0.6 to 1.6 dS Droplets on the floor of the upper compartment were also m1 was supplied to the plants. 4-Chlorophenoxy acetate collected, as they were also regarded as guttation droplets. (Tomato Tone, ISK Biosciences K. K., Tokyo, Japan) was Droplets were collected from the chamber within 1 h, while sprayed onto young flowers to promote fruit set. The humidification lasted. The amount of the droplets on each leaves of the plants were not pruned; however, the fruit was leaf was derived from the difference of weight on each pruned to retain less than 5 fruits per truss. Apical and lat- piece of cotton before and after collection, using an electric eral buds were removed at least 1 week before the onset of balance (Adventurer Pro AV4102CU, Ohaus Corporation, each experiment. NJ, USA; repeatability 0.01 g). Moisture absorption of the A growth cabinet (680 mm680 mm1990 mm) in a cotton was negligible, as the cotton did not increase weight thermostatic chamber (MBCR-C5040, Sanyo Electric Co., after being left for 1 h in the humidified chamber. Ltd.; 2600 mm3250 mm2200 mm) was used to pro- The arrangement of measurement devices in the cabi- vide the three-level air circulation conditions under dark net is presented as a schematic in Fig. 1. The transpiration and high humidity conditions. The cabinet was composed rate of individual plants was measured using an electric of transparent PVC rigid plates which were sealed with balance (XP8002S, Mettler-Toledo International Inc., transparent adhesive tape. A perforated PVC rigid plate Greifensee, Switzerland; repeatability 0.008 g) placed in separated the cabinet into an upper and lower compartment. the upper compartment of the cabinet. The weight of the For air circulation, the upper compartment was equipped plant and container was recorded every minute on a PC via with 8 axial fans (ASEN 60511, Panasonic Corporation; software (Balance Link, Mettler-Toledo International Inc., 0.26 m3 min1); 4 of the fans were attached to the ceiling to Greifensee, Switzerland).
Recommended publications
  • Theories of Ascent of Sap
    Theories of Ascent of Sap The following points highlight the top four theories of ascent of sap. The theories are: 1. Vital Force Theory 2. Root Pressure Theory 3. Theory of Capillarity 4. Cohesion Tension Theory. 1. Vital Force Theory: A common vital force theory about the ascent of sap was put forward by J.C. Bose (1923). It is called pulsation theory. The theory believes that the innermost cortical cells of the root absorb water from the outer side and pump the same into xylem channels. However, living cells do not seem to be involved in the ascent of sap as water continues to rise upward in the plant in which roots have been cut or the living cells of the stem are killed by poison and heat. 2. Root Pressure Theory: The theory was put forward by Priestley (1916). Root pressure is a positive pressure that develops in the xylem sap of the root of some plants. It is a manifestation of active water absorption. Root pressure is observed in certain seasons which favour optimum metabolic activity and reduce transpiration. It is maximum during rainy season in the tropical countries and during spring in temperate habitats. The amount of root pressure commonly met in plants is 1-2 bars or atmospheres. Higher values (e.g., 5-10 atm) are also observed occasionally. Root pressure is retarded or becomes absent under conditions of starvation, low temperature, drought and reduced availability of oxygen. There are three view points about the mechanism of root pressure development: (a) Osmotic: Tracheary elements of xylem accumulate salts and sugars.
    [Show full text]
  • Plant Water Relations: Absorption, Transport and Control Mechanisms
    5 Plant Water Relations: Absorption, Transport and Control Mechanisms Geraldo Chavarria1 and Henrique Pessoa dos Santos2 1The University of Passo Fundo 2Embrapa Grape & Wine Brazil 1. Introduction Although water is abundant on Earth - covering 71% of the total surface - its distribution is not uniform and can easily cause restrictions in availability to vegetal production. At global scale, these restrictions are easily observed in dry climates and can appear in other regions which do not currently experience drought, as provided by the future backdrop of climate change (IPCC, 2007). The influences of water restriction on losses in the production and distribution of vegetation on the terrestrial surface are significantly larger than all other losses combined which are caused by biotic and abiotic factors (Boyer, 1985). This striking effect of water on plants emerges from its physiological importance, being an essential factor for successful plant growth, involving photosynthesis and several other biochemical processes such as the synthesis of energetic composites and new tissue. Therefore, in order to characterise the growth and productive behaviour of plant species it is essential to have an understanding of plant water relations, as well as the consequences of an inadequate water supply. Broadly, the water state of a plant is controlled by relative rates of loss and absorption, moreover it depends on the ability to adjust and keep an adequate water status. This will be considered throughout this chapter. 2. Absorption and water flow through plants Independent of the species, plants require from the soil a water volume that overcomes its metabolic necessities. Through the transpiration process plants transmit to the atmosphere the majority of the water absorbed from soil (generally around 90%).
    [Show full text]
  • Anatomy of Leaf Apical Hydathodes in Four Monocotyledon Plants of Economic and Academic Relevance Alain Jauneau, Aude Cerutti, Marie-Christine Auriac, Laurent D
    Anatomy of leaf apical hydathodes in four monocotyledon plants of economic and academic relevance Alain Jauneau, Aude Cerutti, Marie-Christine Auriac, Laurent D. Noël To cite this version: Alain Jauneau, Aude Cerutti, Marie-Christine Auriac, Laurent D. Noël. Anatomy of leaf apical hydathodes in four monocotyledon plants of economic and academic relevance. PLoS ONE, Public Library of Science, 2020, 15 (9), pp.e0232566. 10.1371/journal.pone.0232566. hal-02972304 HAL Id: hal-02972304 https://hal.inrae.fr/hal-02972304 Submitted on 20 Oct 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License PLOS ONE RESEARCH ARTICLE Anatomy of leaf apical hydathodes in four monocotyledon plants of economic and academic relevance 1☯ 2☯ 1,2 2 Alain Jauneau *, Aude Cerutti , Marie-Christine Auriac , Laurent D. NoeÈlID * 1 FeÂdeÂration de Recherche 3450, Universite de Toulouse, CNRS, Universite Paul Sabatier, Castanet- Tolosan, France, 2 LIPM, Universite de Toulouse, INRAE, CNRS, Universite Paul Sabatier, Castanet- Tolosan, France ☯ These authors contributed equally to this work. a1111111111 * [email protected] (AJ); [email protected] (LN) a1111111111 a1111111111 a1111111111 a1111111111 Abstract Hydathode is a plant organ responsible for guttation in vascular plants, i.e.
    [Show full text]
  • Non-Destructive Estimation of Root Pressure Using Sap Flow, Stem
    Annals of Botany 111: 271–282, 2013 doi:10.1093/aob/mcs249, available online at www.aob.oxfordjournals.org Non-destructive estimation of root pressure using sap flow, stem diameter measurements and mechanistic modelling Tom De Swaef*, Jochen Hanssens, Annelies Cornelis and Kathy Steppe Faculty of Bioscience Engineering, Department of Applied Ecology and Environmental Biology, Laboratory of Plant Ecology, Ghent University, Coupure links 653, B-9000 Ghent, Belgium * For correspondence. E-mail [email protected] Received: 20 August 2012 Returned for revision: 24 September 2012 Accepted: 8 October 2012 Published electronically: 4 December 2012 † Background Upward water movement in plants via the xylem is generally attributed to the cohesion–tension theory, as a response to transpiration. Under certain environmental conditions, root pressure can also contribute Downloaded from to upward xylem water flow. Although the occurrence of root pressure is widely recognized, ambiguity exists about the exact mechanism behind root pressure, the main influencing factors and the consequences of root pres- sure. In horticultural crops, such as tomato (Solanum lycopersicum), root pressure is thought to cause cells to burst, and to have an important impact on the marketable yield. Despite the challenges of root pressure research, progress in this area is limited, probably because of difficulties with direct measurement of root pressure, prompt- ing the need for indirect and non-destructive measurement techniques. http://aob.oxfordjournals.org/ † Methods A new approach to allow non-destructive and non-invasive estimation of root pressure is presented, using continuous measurements of sap flow and stem diameter variation in tomato combined with a mechanistic flow and storage model, based on cohesion–tension principles.
    [Show full text]
  • 3115 SAPS Operating Instructions
    OPERATING INSTRUCTIONS FIELD PLANT WATER STATUS CONSOLE March 2017 Fig. 1 - Model 3115 Portable Plant Water Console shown with 22 c/f Compressed Gas Cylinder, 3072V22 SOILMOISTURE EQUIPMENT CORP. P.O. Box 30025, Santa Barbara, CA 93105 U.S.A. Telephone 805-964-3525 - Fax No. 805-683-2189 Email: [email protected] - Website: http://www.soilmoisture.com Table of Contents Chapter - Page 1 Description ............................................................................................................................... 1 - 4 2 Technical Specification ............................................................................................................ 2 - 5 2.1 Weight .......................................................................................................................... 2 - 5 2.2 Dimensions ................................................................................................................... 2 - 5 2.3 Pressure Vessel ............................................................................................................. 2 - 5 2.4 Gauges .......................................................................................................................... 2 - 5 2.5 Valves ........................................................................................................................... 2 - 5 2.6 Connecting Hose .......................................................................................................... 2 - 5 2.7 Pressure Tank ..............................................................................................................
    [Show full text]
  • Differences Between Transpiration and Guttation
    BIOLOGY TRANSPIRATION Significance and Factors affecting Transpiration Factors Affecting the Rate of Transpiration •On a bright sunny day, stomata open fully, so transpiration is increased. •On a cloudy day, stomata open partially, so Intensity of sunlight transpiration is reduced. •At night, stomata close; hence, transpiration is greatly reduced or negligible. •Increase in temperature of the air increases the rate Temperature of transpiration. •Transpiration increases with rapid or active air Velocity of wind movement. Humidity •If the air is humid, the rate of transpiration is reduced. •Increase in the CO2 level in the atmosphere over Carbon dioxide normal 0.03% causes stomatal closure. Hence, it decreases the rate of transpiration. •With decrease in atmospheric pressure, the rate of Atmospheric pressure transpiration increases. www.topperlearning.com 2 BIOLOGY TRANSPIRATION Adaptation in Plants to Control Excessive Transpiration Plants which grow in dry climate have evolved a variety of adaptations to curtail transpiration. Morphological Leaves may be modified into spines as in cactus or into needles as in pines. Adaptations Spines Needles Leaves may be folded or rolled up. Rolled up Leaves Leaves may be shed. Example: deciduous trees. Deciduous Trees Anatomical The number of stomata is reduced, and they may be sunken in pits. Adaptations Sunken Stoma www.topperlearning.com 3 BIOLOGY TRANSPIRATION Structure of Sunken Stomata A thick waxy cuticle develops on the leaves. Example: Banyan tree, evergreen trees. Banyan Tree Shrubs and grass develop a waterproof covering of cork or bark. A multiple epidermis may develop in some leaves. www.topperlearning.com 4 BIOLOGY TRANSPIRATION Significance of Transpiration Cooling Effect Suction Force Distribution of Water and Mineral Salts Evaporation reduces the As water evaporates from leaves, Higher the rate of transpiration, temperature of leaf a suction force is created.
    [Show full text]
  • Measurement of Root Hydraulic Conductance
    Measurement of Root Hydraulic Conductance Albert H. Markhart, III Department of Horticulture Science and Landscape Architecture, University of Minnesota, St. Paul, MN 55108 Barbara Smit Center for Urban Horticulture, University of Washington, Seattle, WA 98195 Plant root systems provide water, nutrients, and growth regulators transpiration at the shoot and osmotic potential. The latter is gen- to the shoot. Growth and production of a plant are often limited by erated by the combination of active solute accumulation, passive the ability of the root to extract water and nutrients from the soil solute leakage, and rate of water movement from the soil to the and transport them to the shoot. The transport of most nutrients and xylem. This is difficult, if not impossible, to determine. Conduc- growth regulators occurs via the transpiration stream. The velocity tivity of the radial pathway is determined by structures through and quantity of water moving from the root to the shoot determines which the water flows. Water flows along the path of least resis- the quantity and concentration of substances that arrive at the shoot. tance. Resistance of the interstices in the cell wall is considered Understanding the forces and resistances that control the movement lower than across plasmalemma and cytoplasm. For these reasons, of water through the soil-plant-air continuum and the flux of po- it is thought that water moves apoplasticly across the root until a tential chemical signals is essential to understanding the impact of significant barrier is encountered, at which point the water is forced the soil environment on root function and on root integration with through the plasmalemma.
    [Show full text]
  • Chemical Composition of the Periderm in Relation to in Situ Water
    Chemical composition of the periderm in relation to in situ water absorption rates of oak, beech and spruce fine roots Christoph Leuschner, Heinz Coners, Regina Icke, Klaus Hartmann, N. Dominique Effinger, Lukas Schreiber To cite this version: Christoph Leuschner, Heinz Coners, Regina Icke, Klaus Hartmann, N. Dominique Effinger, et al.. Chemical composition of the periderm in relation to in situ water absorption rates of oak, beech and spruce fine roots. Annals of Forest Science, Springer Nature (since 2011)/EDP Science (until 2010), 2003, 60 (8), pp.763-772. 10.1051/forest:2003071. hal-00883751 HAL Id: hal-00883751 https://hal.archives-ouvertes.fr/hal-00883751 Submitted on 1 Jan 2003 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Ann. For. Sci. 60 (2003) 763–772 763 © INRA, EDP Sciences, 2004 DOI: 10.1051/forest:2003071 Original article Chemical composition of the periderm in relation to in situ water absorption rates of oak, beech and spruce fine roots Christoph LEUSCHNERa*, Heinz CONERSa, Regina ICKEb, Klaus HARTMANNc, N. Dominique EFFINGERd, Lukas SCHREIBERc a Abt. Ökologie und Ökosystemforschung, Albrecht-von-Haller-Institut für Pflanzenwissenschaften, Universität Göttingen, Untere Karspüle 2, 37073 Göttingen, Germany b Abt.
    [Show full text]
  • The Theory of the Rise of Sap in Trees: Some Historical and Conceptual Remarks
    The theory of the rise of sap in trees: some historical and conceptual remarks Harvey R. Brown Faculty of Philosophy, University of Oxford Radcliffe Humanities, Radcliffe Observatory Quarter Woodstock Road, Oxford OX2 6GG, U.K. [email protected] Abstract The ability of trees to suck water from roots to leaves, sometimes to heights of over a hundred meters, is remarkable given the absence of any mechanical pump. This study deals with a number of issues, of both an historical and conceptual nature, in the orthodox \Cohesion-Tension" theory of the ascent of sap in trees. The theory relies chiefly on the excep- tional cohesive and adhesive properties of water, the structural properties of trees, and the role of evaporation (\transpiration") from leaves. But it is not the whole story. Plant scientists have been aware since the inception of the theory in the late 19th century that further processes are at work in order to prime the trees, the main such process { growth itself { being so obvious to them that it is often omitted from the story. Other factors depend largely on the type of tree, and are not always fully understood. For physicists, in particular, it may be helpful to see the fuller picture, which is what this study attempts to provide in non-technical terms.1 \There are therefore agents in Nature able to make the particles of bodies stick together by very strong attractions. And it is the business of experimental philosophy to find them out." Isaac Newton2 \To believe that columns of water should hang in the tracheals like solid bodies, and should, like them, transmit downwards the pull exerted on them at their upper ends by the transpiring leaves, is to some of us equivalent to believing in ropes of sand." Francis Darwin3 \Water is unique in its importance and its properties.
    [Show full text]
  • Suberin Biosynthesis in O. Sativa: Characterisation of a Cytochrome P450 Monooxygenase
    Suberin biosynthesis in O. sativa: characterisation of a cytochrome P450 monooxygenase Dissertation zur Erlangung des Doktorgrades (Dr. rer. nat.) der Mathematisch-Naturwissenschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn vorgelegt von Friedrich Felix Maria Waßmann aus Berlin Bonn, April 2014 Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn. 1. Gutachter: Prof. Dr. Lukas Schreiber 2. Gutachter: Dr. Rochus Franke Tag der Promotion: 28.07.2014 Erscheinungsjahr: 2015 Contents List of abbreviationsIV 1 Introduction1 1.1 Adaptations of the apoplast to terrestrial life...................1 1.1.1 Aromatic and aliphatic polymers in vascular plants...........2 1.2 Structures of the root apoplast............................3 1.3 The lipid polyester suberin..............................5 1.3.1 Suberin biosynthetic pathways.......................6 1.3.2 Cytochrome P450...............................9 1.4 Aims of this work.................................... 10 2 Materials and methods 11 2.1 Materials......................................... 11 2.1.1 Chemicals.................................... 11 2.1.2 Media and solutions.............................. 12 2.1.3 Software..................................... 14 2.1.4 In silico tools and databases......................... 15 2.2 Plants........................................... 16 2.2.1 Genotypes.................................... 16 2.2.2 Cultivation and propagation of O. sativa .................
    [Show full text]
  • Anatomy of Epithemal Hydathodes in Four Monocotyledon Plants of Economic and Academic
    bioRxiv preprint doi: https://doi.org/10.1101/2020.04.20.050823; this version posted April 20, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Anatomy of epithemal hydathodes in four monocotyledon plants of economic and academic 2 relevance 3 4 Running title: Anatomy of monocot hydathodes 5 6 Alain Jauneau 1*, Aude Cerutti 2, Marie-Christine Auriac 1,2 and Laurent D. Noël 2* 7 8 1 Fédération de Recherche 3450, Université de Toulouse, CNRS, Université Paul Sabatier, Castanet- 9 Tolosan, France 10 2 LIPM, Université de Toulouse, INRAE, CNRS, Université Paul Sabatier, Castanet-Tolosan, France 11 * Authors for correspondence: 12 Alain Jauneau; Institut Fédératif de Recherche 3450, Plateforme Imagerie, Pôle de Biotechnologie 13 Végétale, Castanet-Tolosan 31326, France; E-mail: [email protected] 14 Laurent D. Noël; Laboratoire des interactions plantes micro-organismes (LIPM), UMR2594/441 15 CNRS/INRA, chemin de Borde Rouge, CS52627, F-31326 Castanet-Tolosan Cedex, France; Tel: 16 +33 5 6128 5047; E-mail: [email protected]. 17 18 AJ and AC contributed equally to this study 19 20 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.04.20.050823; this version posted April 20, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • Transpiration, Root Pressure
    BIOLOGY TRANSPORT IN PLANTS Transpiration, Root Pressure Contents Ascent of Sap ............................................................................................................................................. 3 Transpiration ............................................................................................................................................... 7 Go to Top www.topperlearning.com 2 BIOLOGY TRANSPORT IN PLANTS Ascent of Sap The upward conduction of water in the form of a dilute solution of mineral ions from the roots through the stem to the aerial parts of plants is called the ascent of sap. Several theories were put forward to explain the mechanism of the ascent of sap. These theories were placed under the following categories: i. Vital force theories ii. Root pressure theory iii. Physical force theories Vital Force Theories According to vital force theories, living cells are responsible for the ascent of sap. Some vital force theories: i. Westermaier Theory ii. Godlewski’s Relay Pump Theory iii. Bose’s Pulsation Theory Westermaier Theory Westermaier suggested that the living component of the xylem, the xylem parenchyma, is responsible for the conduction of water, while the tracheids and vessels act as a reservoir of water. Godlewski’s Relay Pump Theory Godlewski’s relay pump theory is also known as the clambering theory. According to this theory, conduction of water takes place because of the activity of xylem parenchyma and medullary rays. When the osmotic pressure of these cells is high, water is absorbed from the surrounding vessels. This results in increased turgor pressure. An increase in turgor pressure pumps the water to the next level of xylem vessels in a staircase-like manner. Bose’s Pulsation Theory Sir J. C. Bose proposed that the pulsation movement which occurs in the cortical cells present just outside the endodermis is responsible for the ascent of sap.
    [Show full text]