Observations on the Structure and Function of Hydathodes in Blechnum Lehmannii Author(S): John S

Total Page:16

File Type:pdf, Size:1020Kb

Observations on the Structure and Function of Hydathodes in Blechnum Lehmannii Author(S): John S American Fern Society Observations on the Structure and Function of Hydathodes in Blechnum lehmannii Author(s): John S. Sperry Source: American Fern Journal, Vol. 73, No. 3 (Jul. - Sep., 1983), pp. 65-72 Published by: American Fern Society Stable URL: http://www.jstor.org/stable/1546852 Accessed: 11/09/2009 13:15 Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use. Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/action/showPublisher?publisherCode=amfernsoc. Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission. JSTOR is a not-for-profit organization founded in 1995 to build trusted digital archives for scholarship. We work with the scholarly community to preserve their work and the materials they rely upon, and to build a common research platform that promotes the discovery and use of these resources. For more information about JSTOR, please contact [email protected]. American Fern Society is collaborating with JSTOR to digitize, preserve and extend access to American Fern Journal. http://www.jstor.org AMERICANFERNJOURNAL: VOLUME 73 NUMBER 3 (1983) 65 Observationson the Structureand Function of Hydathodes in Blechnum lehmannii JOHN S. SPERRY* The fronds of many ferns in the Polypodiaceae(Ogura, 1972) and Cyatheaceae (Weiler,cited in Lippmann, 1925) possess swollen vein endings associated with specializedadaxial epidermal cells. Their structureis similarin all ferns (Gardiner, 1883; Potonie, 1892; Poirault, 1893; Goebel, 1930; Guttenburg,1934), including Blechnum lehmannii Hieron. (Figs. 1-3). The depressed epidermis (Fig. 3) sug- gested the term "Wassergriibchen"for the vein endings to Europeananatomists of the nineteenthcentury (e.g., Potonie, 1892). Vein endings on developingfronds secrete water (Fig. 1) when conditions reduce or stop transpiration(Mettenius, 1856; Haberlandt,1894a; Goebel, 1926, 1930). In some species, the secretedwater containssalts in solution which form "chalkscales" after the waterhas evaporated (Mettenius,1856; Potonie, 1892; Lippmann,1925). Most sourcesreport that watersecretion is dependenton the metabolicactivity of the specialized epidermalcells adaxial to the vein ending (Fig. 3, e); it is thus regardedas an active, or glandular,process (Gardiner,1883; Haberlandt,1894a, 1914; Lepeshkin,1906; Stocking, 1956; Fahn, 1979). This conclusionis reflectedin variousreferences to the vein endings as waterglands, salt glands, or chalk glands. Thereis, however,very little evidenceto supportany conclusionson the mechanism of secretion. All work on the subject was performedin the last century,and the results obtained are questionabledue to the bias in experimentaldesign which preventedtesting of alternativehypotheses and to the possibility of artifactsin technique (see comments in Spanjer, 1898; Haberlandt,1898; Lepeshkin, 1923). Moreover,the results are contradictory,since they have been interpretedas support- ing eitheran active (Gardiner,1883; Haberlandt,1894a, 1914) or a passive(Spanjer, 1898) mechanismof secretion.Finally, all experimentswere performedon a single species, Polypodiumaureum L., and need not representthe situationin otherferns. Becausethe mechanismof secretionfrom vein terminationsis unknown,they will be referredto in this paperby the term"hydathode" which, as originallydefined by Haberlandt(1894b), did not presupposea mechanismof secretion.Haberlandt used his term to refer to structureson above-groundportions of the plant, particularly foliage leaves, which functionin watertransfer to and from the plant surface. Previous work on the mechanism of hydathodesecretion in ferns neglected importantaspects of the problem. Despite the fact that root pressurecould play a significantrole in the secretionprocess, the relationshipof root pressureto secretion in intactplants was not studied.In fact, thereis no well documentedaccount of root pressure in ferns. In addition, investigatorscould not analyze secretion from a structuralstandpoint because anatomical studies were confined to the mature, non-secretinghydathodes; the structureof the secretinghydathodes on developing leaves was unknown.In this study, the relationshipof root pressureto secretionas well as developmentalchanges in hydathodestructure were investigatedin B. * Harvard Forest, Petersham, MA 01366. Volume 73, number 2, of the JOURNAL was issued 16 June 1983. 66 AMERICANFERNJOURNAL: VOLUME 73 (1983) ?-?WtI.N..' ALSC FIG. 1. Hydathodessecreting water on a developingfrond; arrow indicates a dropletof waterabove a hydathode.FIG. 2. Epidermalpeel of hydathodephotographed with darkfield illumination.There is no intercellularspace in the epidermallayer; the separationof cells markedby the arrowis an artifactof preparationdue to the weak adherencebetween epidermalcells. FIG. 3. Transversesection of a hydathodeon a maturefrond made parallel to the leaf marginand treated with I-KI/H2S04.e = epidermal cells of hydathode,en = endodermis;arrows indicate Casparian strip. lehmannii in its native locality, the Central American cloud forest. Observations suggest that one mechanism of secretion from fern hydathodes is the passive transmission of xylem sap from vein endings to the plant surface through the apoplast of the hydathode under a pressure gradient induced by root pressure. MATERIALSAND METHODS Plants growing in the cloud forests near Xalapa in the state of Veracruz, Mexico; provided material for both experimental and anatomical work. Individual plants consist of a single, erect rhizome with short internodes. Root pressure was measured with a bubble manometer attached to the cut stipe (Fig. 4A) and a thermometer. The manometer was made with surgical tubing (ca. J. S. SPERRY:OBSERVATIONS ONBLECHNUM HYDATHODES 67 ) 1.20- S E ?-~ o S 1.10- E C 1.001 BB 0.5 1.0 2.0 A B time(hrs.) FG. 4A. Manometerattachment for measuringroot pressure.B= clearplastic bag enclosingthe entire crownof an individualplant, S =cut stipe to which the manometeris attached,C = clamp, Y = forked connector,BB = bubbleat sealed end of the manometertube. FIG. 4B. Rootpressure vs. time for plants 1, 2, 3. S = onset of hydathodesecretion. 0.8 mm inside diameter) partially filled with acid fuchsin and sealed at one end so as to leave a bubble at the sealed end (Fig. 4A, BB). Bubble length was assumed to be proportional to bubble volume. At the beginning of the experiment, bubble length at ambient pressure and air temperature was determined by releasing the clamp (Fig. 4A, C). After the clamp was closed, subsequent readings of bubble length and air temperature were made, and exudation pressure relative to ambient was calculated according to Gay-Lussac's law (Weast & Astle, 1981). Clamping itself did not affect bubble length. Care was taken when attaching the manometer so that a continuous column of liquid was present from stipe to bubble, and the attachment was gently secured with twist-ties to help guard against leakage. The relationship between root pressure and hydathode secretion was studied in three plants growing along a shaded stream in the cloud forest on a clear day. The entire above-ground portion of each individual plant was enclosed in a clear plastic bag and root pressure was monitored with a manometer attached to a single cut frond for each plant (Fig. 4A). Observations of xylem pressure and hydathode secretion were then made. Anatomical differences between the secreting and non-secreting hydathodes on these three plants and others were studied from hand sections and clearings from both fresh and material fixed in FAA. Clearings were made by treating the leaf with alcoholic sodium hydroxide followed by lactic acid. Observations were made on preparations left unstained or stained in toluidine blue. The distribution of lignin was determined from hand sections stained in phloroglucinol and concentrated HC1. Suberized and cutinized cell walls were identified using the I-KI/H2S04 test. S~~~~~~~~~~~~~~~~~~~~~~~~~... 68 AMERICANFERNJOURNAL: VOLUME 73 (1983) m:. .t xI _~ . .I t C~ll? - AL~ 9 ),Ai 'h:~..~ ks~' I~~~C~" _ "" ~,..,, ?., ,. :';' ?11 j 1 FIGS. 5-13. Developmentof Casparianstrip. All preparationswere treated in I-KI/H2SO4.FIGS. 5-8, 10, and 12 are from clearedpreparations; FIGS. 9, 11, and 13 are transversesections made parallel to the leaf margin. Arrows = Casparianstrip. FIGS. 5-9. Non-secretinghydathodes on maturefrond. FIG. 5. Vein subtendinga hydathodeand surroundedby endodermiswith fully developedCasparian strip. FIG. 6. Hydathodeviewed from the adaxial epidermisand focussed on the Casparianstrip borderingthe edge of the vein ending. FIG. 7. Highermagnification of the Casparianstrip as viewedin J. S. SPERRY:OBSERVATIONS ONBLECHNUM HYDATHODES 69 OBSERVATIONS Secretion.-Secretion was observedon developing,unenclosed fronds in foggy and rainyweather in the cloud forest and when individualcrowns were enclosed in plastic bags. In bagged plants, secretionwas initiatedon successive pinnae in an acropetaldirection so that the last hydathodesto begin secreting on developing fronds were those on the most distal
Recommended publications
  • Theories of Ascent of Sap
    Theories of Ascent of Sap The following points highlight the top four theories of ascent of sap. The theories are: 1. Vital Force Theory 2. Root Pressure Theory 3. Theory of Capillarity 4. Cohesion Tension Theory. 1. Vital Force Theory: A common vital force theory about the ascent of sap was put forward by J.C. Bose (1923). It is called pulsation theory. The theory believes that the innermost cortical cells of the root absorb water from the outer side and pump the same into xylem channels. However, living cells do not seem to be involved in the ascent of sap as water continues to rise upward in the plant in which roots have been cut or the living cells of the stem are killed by poison and heat. 2. Root Pressure Theory: The theory was put forward by Priestley (1916). Root pressure is a positive pressure that develops in the xylem sap of the root of some plants. It is a manifestation of active water absorption. Root pressure is observed in certain seasons which favour optimum metabolic activity and reduce transpiration. It is maximum during rainy season in the tropical countries and during spring in temperate habitats. The amount of root pressure commonly met in plants is 1-2 bars or atmospheres. Higher values (e.g., 5-10 atm) are also observed occasionally. Root pressure is retarded or becomes absent under conditions of starvation, low temperature, drought and reduced availability of oxygen. There are three view points about the mechanism of root pressure development: (a) Osmotic: Tracheary elements of xylem accumulate salts and sugars.
    [Show full text]
  • Anatomy of Leaf Apical Hydathodes in Four Monocotyledon Plants of Economic and Academic Relevance Alain Jauneau, Aude Cerutti, Marie-Christine Auriac, Laurent D
    Anatomy of leaf apical hydathodes in four monocotyledon plants of economic and academic relevance Alain Jauneau, Aude Cerutti, Marie-Christine Auriac, Laurent D. Noël To cite this version: Alain Jauneau, Aude Cerutti, Marie-Christine Auriac, Laurent D. Noël. Anatomy of leaf apical hydathodes in four monocotyledon plants of economic and academic relevance. PLoS ONE, Public Library of Science, 2020, 15 (9), pp.e0232566. 10.1371/journal.pone.0232566. hal-02972304 HAL Id: hal-02972304 https://hal.inrae.fr/hal-02972304 Submitted on 20 Oct 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License PLOS ONE RESEARCH ARTICLE Anatomy of leaf apical hydathodes in four monocotyledon plants of economic and academic relevance 1☯ 2☯ 1,2 2 Alain Jauneau *, Aude Cerutti , Marie-Christine Auriac , Laurent D. NoeÈlID * 1 FeÂdeÂration de Recherche 3450, Universite de Toulouse, CNRS, Universite Paul Sabatier, Castanet- Tolosan, France, 2 LIPM, Universite de Toulouse, INRAE, CNRS, Universite Paul Sabatier, Castanet- Tolosan, France ☯ These authors contributed equally to this work. a1111111111 * [email protected] (AJ); [email protected] (LN) a1111111111 a1111111111 a1111111111 a1111111111 Abstract Hydathode is a plant organ responsible for guttation in vascular plants, i.e.
    [Show full text]
  • Non-Destructive Estimation of Root Pressure Using Sap Flow, Stem
    Annals of Botany 111: 271–282, 2013 doi:10.1093/aob/mcs249, available online at www.aob.oxfordjournals.org Non-destructive estimation of root pressure using sap flow, stem diameter measurements and mechanistic modelling Tom De Swaef*, Jochen Hanssens, Annelies Cornelis and Kathy Steppe Faculty of Bioscience Engineering, Department of Applied Ecology and Environmental Biology, Laboratory of Plant Ecology, Ghent University, Coupure links 653, B-9000 Ghent, Belgium * For correspondence. E-mail [email protected] Received: 20 August 2012 Returned for revision: 24 September 2012 Accepted: 8 October 2012 Published electronically: 4 December 2012 † Background Upward water movement in plants via the xylem is generally attributed to the cohesion–tension theory, as a response to transpiration. Under certain environmental conditions, root pressure can also contribute Downloaded from to upward xylem water flow. Although the occurrence of root pressure is widely recognized, ambiguity exists about the exact mechanism behind root pressure, the main influencing factors and the consequences of root pres- sure. In horticultural crops, such as tomato (Solanum lycopersicum), root pressure is thought to cause cells to burst, and to have an important impact on the marketable yield. Despite the challenges of root pressure research, progress in this area is limited, probably because of difficulties with direct measurement of root pressure, prompt- ing the need for indirect and non-destructive measurement techniques. http://aob.oxfordjournals.org/ † Methods A new approach to allow non-destructive and non-invasive estimation of root pressure is presented, using continuous measurements of sap flow and stem diameter variation in tomato combined with a mechanistic flow and storage model, based on cohesion–tension principles.
    [Show full text]
  • Cercidiphyllum and Fossil Allies: Morphological Interpretation and General Problems
    Cercidiphyllum is a relict angiosperm bringing to us a flavor of Cretaceous Period. Its Cercidiphyllum reproductive morphology was interpreted, in the spirit of the dominant evolutionary paradigm, as inflorescences of reduced flowers represented by solitary pistils and Cercidiphyllum and Fossil Allies: groups of stamens. Evolutionary significance of Cercidiphyllum has long been antici- pated despite the unpersuasive morphological interpretation and irrelevant paleobo- and Fossil Allies: Morphological Interpretation and General Problems ofand Fossil and Development Plant Evolution tanical evidence. Morphological Interpretation This work was initially intended for paleobotanists who willingly compare their fossil material with the living Cercidiphyllum, using schematic descriptions and illustra- tions of traditional plant morphology. The idea behind this book was to provide an and General Problems adequately illustrated material for such comparisons. Yet it turned out that there are more things in Cercidiphyllum than are dreamed of in our traditional plant morphology. Some of morphological findings of this study, such as the replacement of the of Plant Evolution floral structure by leafy shoots or the subtending bract – leaf conversion are relevant to the experimental “evo-devo” studies and bear on general problems of angiosperm evolution. In Cercidiphyllum, the vegetative body is partly or mostly produced in the and Development reproductive line, suggesting a neotenic ancestral form, in which the vegetative devel- opment was drastically
    [Show full text]
  • Measurement of Root Hydraulic Conductance
    Measurement of Root Hydraulic Conductance Albert H. Markhart, III Department of Horticulture Science and Landscape Architecture, University of Minnesota, St. Paul, MN 55108 Barbara Smit Center for Urban Horticulture, University of Washington, Seattle, WA 98195 Plant root systems provide water, nutrients, and growth regulators transpiration at the shoot and osmotic potential. The latter is gen- to the shoot. Growth and production of a plant are often limited by erated by the combination of active solute accumulation, passive the ability of the root to extract water and nutrients from the soil solute leakage, and rate of water movement from the soil to the and transport them to the shoot. The transport of most nutrients and xylem. This is difficult, if not impossible, to determine. Conduc- growth regulators occurs via the transpiration stream. The velocity tivity of the radial pathway is determined by structures through and quantity of water moving from the root to the shoot determines which the water flows. Water flows along the path of least resis- the quantity and concentration of substances that arrive at the shoot. tance. Resistance of the interstices in the cell wall is considered Understanding the forces and resistances that control the movement lower than across plasmalemma and cytoplasm. For these reasons, of water through the soil-plant-air continuum and the flux of po- it is thought that water moves apoplasticly across the root until a tential chemical signals is essential to understanding the impact of significant barrier is encountered, at which point the water is forced the soil environment on root function and on root integration with through the plasmalemma.
    [Show full text]
  • Chemical Composition of the Periderm in Relation to in Situ Water
    Chemical composition of the periderm in relation to in situ water absorption rates of oak, beech and spruce fine roots Christoph Leuschner, Heinz Coners, Regina Icke, Klaus Hartmann, N. Dominique Effinger, Lukas Schreiber To cite this version: Christoph Leuschner, Heinz Coners, Regina Icke, Klaus Hartmann, N. Dominique Effinger, et al.. Chemical composition of the periderm in relation to in situ water absorption rates of oak, beech and spruce fine roots. Annals of Forest Science, Springer Nature (since 2011)/EDP Science (until 2010), 2003, 60 (8), pp.763-772. 10.1051/forest:2003071. hal-00883751 HAL Id: hal-00883751 https://hal.archives-ouvertes.fr/hal-00883751 Submitted on 1 Jan 2003 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Ann. For. Sci. 60 (2003) 763–772 763 © INRA, EDP Sciences, 2004 DOI: 10.1051/forest:2003071 Original article Chemical composition of the periderm in relation to in situ water absorption rates of oak, beech and spruce fine roots Christoph LEUSCHNERa*, Heinz CONERSa, Regina ICKEb, Klaus HARTMANNc, N. Dominique EFFINGERd, Lukas SCHREIBERc a Abt. Ökologie und Ökosystemforschung, Albrecht-von-Haller-Institut für Pflanzenwissenschaften, Universität Göttingen, Untere Karspüle 2, 37073 Göttingen, Germany b Abt.
    [Show full text]
  • II. Morphogenesis of Hydathodes
    Botanical Studies (2006) 47: 279-292. MORPHOLOGY Study on laminar hydathodes of Ficus formosana (Moraceae) II. Morphogenesis of hydathodes Chyi-ChuannCHENandYung-ReuiCHEN* Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, TAIWAN (ReceivedSeptember16,2005;AcceptedFebruary16,2006) Abstract.ThespatialandtemporalmorphogenesisoflaminarhydathodesinFicus formosanaMaxim.f. shimadaiHayatawasexaminedatlightandelectronmicroscopiclevels.Fourmainstagesofhydathode development,includinginitiation,celldivision,cellelongationanddifferentiation,andmaturation,can beidentified.Intheearlystageofleafdevelopment,theinitialcellsoccurinthenearbyregionofagiant trichome.Inthecelldivisionstage,epidermalinitialcellsundergoanticlinaldivisiontoformepidermalcells andwaterpores.Subepidermalinitialcellsundergoanticlinalandpericlinaldivisionstoproduceagroup ofcellswhichfurtherdifferentiateintoepithem,tracheidcells,andasheathlayerofhydathodes.During thecellelongationanddifferentiationstage,epithemcellsgrowintolobe-shapedcellsandseparatefrom adjacentcellsthroughschizogeny,causedbythearrangementofthecorticalmicrotubules,thesecretionof digestingenzymesactingonthecellwall,andtheforceandtensioninducedbycellgrowth.Thesefactors notonlycausetheformationoflobedcells,butalsoenlargetheintercellularspacesoftheepithem.Thelobed epithemcellsincreasethecontactregionsbetweenthecellandtheirenvironment.Duringthefinalstage, tracheidsgraduallymaturewithintheepithemanddeveloptheirconductivefunction,bywhichwaterpasses throughthewaybetweenvein-endsandwaterporestoproduceguttation.Thepathwayofepithemdirectional
    [Show full text]
  • The Theory of the Rise of Sap in Trees: Some Historical and Conceptual Remarks
    The theory of the rise of sap in trees: some historical and conceptual remarks Harvey R. Brown Faculty of Philosophy, University of Oxford Radcliffe Humanities, Radcliffe Observatory Quarter Woodstock Road, Oxford OX2 6GG, U.K. [email protected] Abstract The ability of trees to suck water from roots to leaves, sometimes to heights of over a hundred meters, is remarkable given the absence of any mechanical pump. This study deals with a number of issues, of both an historical and conceptual nature, in the orthodox \Cohesion-Tension" theory of the ascent of sap in trees. The theory relies chiefly on the excep- tional cohesive and adhesive properties of water, the structural properties of trees, and the role of evaporation (\transpiration") from leaves. But it is not the whole story. Plant scientists have been aware since the inception of the theory in the late 19th century that further processes are at work in order to prime the trees, the main such process { growth itself { being so obvious to them that it is often omitted from the story. Other factors depend largely on the type of tree, and are not always fully understood. For physicists, in particular, it may be helpful to see the fuller picture, which is what this study attempts to provide in non-technical terms.1 \There are therefore agents in Nature able to make the particles of bodies stick together by very strong attractions. And it is the business of experimental philosophy to find them out." Isaac Newton2 \To believe that columns of water should hang in the tracheals like solid bodies, and should, like them, transmit downwards the pull exerted on them at their upper ends by the transpiring leaves, is to some of us equivalent to believing in ropes of sand." Francis Darwin3 \Water is unique in its importance and its properties.
    [Show full text]
  • Suberin Biosynthesis in O. Sativa: Characterisation of a Cytochrome P450 Monooxygenase
    Suberin biosynthesis in O. sativa: characterisation of a cytochrome P450 monooxygenase Dissertation zur Erlangung des Doktorgrades (Dr. rer. nat.) der Mathematisch-Naturwissenschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn vorgelegt von Friedrich Felix Maria Waßmann aus Berlin Bonn, April 2014 Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn. 1. Gutachter: Prof. Dr. Lukas Schreiber 2. Gutachter: Dr. Rochus Franke Tag der Promotion: 28.07.2014 Erscheinungsjahr: 2015 Contents List of abbreviationsIV 1 Introduction1 1.1 Adaptations of the apoplast to terrestrial life...................1 1.1.1 Aromatic and aliphatic polymers in vascular plants...........2 1.2 Structures of the root apoplast............................3 1.3 The lipid polyester suberin..............................5 1.3.1 Suberin biosynthetic pathways.......................6 1.3.2 Cytochrome P450...............................9 1.4 Aims of this work.................................... 10 2 Materials and methods 11 2.1 Materials......................................... 11 2.1.1 Chemicals.................................... 11 2.1.2 Media and solutions.............................. 12 2.1.3 Software..................................... 14 2.1.4 In silico tools and databases......................... 15 2.2 Plants........................................... 16 2.2.1 Genotypes.................................... 16 2.2.2 Cultivation and propagation of O. sativa .................
    [Show full text]
  • Illustration Sources
    APPENDIX ONE ILLUSTRATION SOURCES REF. CODE ABR Abrams, L. 1923–1960. Illustrated flora of the Pacific states. Stanford University Press, Stanford, CA. ADD Addisonia. 1916–1964. New York Botanical Garden, New York. Reprinted with permission from Addisonia, vol. 18, plate 579, Copyright © 1933, The New York Botanical Garden. ANDAnderson, E. and Woodson, R.E. 1935. The species of Tradescantia indigenous to the United States. Arnold Arboretum of Harvard University, Cambridge, MA. Reprinted with permission of the Arnold Arboretum of Harvard University. ANN Hollingworth A. 2005. Original illustrations. Published herein by the Botanical Research Institute of Texas, Fort Worth. Artist: Anne Hollingworth. ANO Anonymous. 1821. Medical botany. E. Cox and Sons, London. ARM Annual Rep. Missouri Bot. Gard. 1889–1912. Missouri Botanical Garden, St. Louis. BA1 Bailey, L.H. 1914–1917. The standard cyclopedia of horticulture. The Macmillan Company, New York. BA2 Bailey, L.H. and Bailey, E.Z. 1976. Hortus third: A concise dictionary of plants cultivated in the United States and Canada. Revised and expanded by the staff of the Liberty Hyde Bailey Hortorium. Cornell University. Macmillan Publishing Company, New York. Reprinted with permission from William Crepet and the L.H. Bailey Hortorium. Cornell University. BA3 Bailey, L.H. 1900–1902. Cyclopedia of American horticulture. Macmillan Publishing Company, New York. BB2 Britton, N.L. and Brown, A. 1913. An illustrated flora of the northern United States, Canada and the British posses- sions. Charles Scribner’s Sons, New York. BEA Beal, E.O. and Thieret, J.W. 1986. Aquatic and wetland plants of Kentucky. Kentucky Nature Preserves Commission, Frankfort. Reprinted with permission of Kentucky State Nature Preserves Commission.
    [Show full text]
  • Anatomy of Epithemal Hydathodes in Four Monocotyledon Plants of Economic and Academic
    bioRxiv preprint doi: https://doi.org/10.1101/2020.04.20.050823; this version posted April 20, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Anatomy of epithemal hydathodes in four monocotyledon plants of economic and academic 2 relevance 3 4 Running title: Anatomy of monocot hydathodes 5 6 Alain Jauneau 1*, Aude Cerutti 2, Marie-Christine Auriac 1,2 and Laurent D. Noël 2* 7 8 1 Fédération de Recherche 3450, Université de Toulouse, CNRS, Université Paul Sabatier, Castanet- 9 Tolosan, France 10 2 LIPM, Université de Toulouse, INRAE, CNRS, Université Paul Sabatier, Castanet-Tolosan, France 11 * Authors for correspondence: 12 Alain Jauneau; Institut Fédératif de Recherche 3450, Plateforme Imagerie, Pôle de Biotechnologie 13 Végétale, Castanet-Tolosan 31326, France; E-mail: [email protected] 14 Laurent D. Noël; Laboratoire des interactions plantes micro-organismes (LIPM), UMR2594/441 15 CNRS/INRA, chemin de Borde Rouge, CS52627, F-31326 Castanet-Tolosan Cedex, France; Tel: 16 +33 5 6128 5047; E-mail: [email protected]. 17 18 AJ and AC contributed equally to this study 19 20 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.04.20.050823; this version posted April 20, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • Transpiration, Root Pressure
    BIOLOGY TRANSPORT IN PLANTS Transpiration, Root Pressure Contents Ascent of Sap ............................................................................................................................................. 3 Transpiration ............................................................................................................................................... 7 Go to Top www.topperlearning.com 2 BIOLOGY TRANSPORT IN PLANTS Ascent of Sap The upward conduction of water in the form of a dilute solution of mineral ions from the roots through the stem to the aerial parts of plants is called the ascent of sap. Several theories were put forward to explain the mechanism of the ascent of sap. These theories were placed under the following categories: i. Vital force theories ii. Root pressure theory iii. Physical force theories Vital Force Theories According to vital force theories, living cells are responsible for the ascent of sap. Some vital force theories: i. Westermaier Theory ii. Godlewski’s Relay Pump Theory iii. Bose’s Pulsation Theory Westermaier Theory Westermaier suggested that the living component of the xylem, the xylem parenchyma, is responsible for the conduction of water, while the tracheids and vessels act as a reservoir of water. Godlewski’s Relay Pump Theory Godlewski’s relay pump theory is also known as the clambering theory. According to this theory, conduction of water takes place because of the activity of xylem parenchyma and medullary rays. When the osmotic pressure of these cells is high, water is absorbed from the surrounding vessels. This results in increased turgor pressure. An increase in turgor pressure pumps the water to the next level of xylem vessels in a staircase-like manner. Bose’s Pulsation Theory Sir J. C. Bose proposed that the pulsation movement which occurs in the cortical cells present just outside the endodermis is responsible for the ascent of sap.
    [Show full text]