Ch. 36 Transport in Vascular Plants
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Transpiration
TRANSPIRATION BY: Dr. Madhu Gupta (Guest Faculty) SOS in Botany Jiwaji University Gwalior What is it? The loss of water in the vapour form from the exposed parts of a plant is called transpiration. The loss of water due to transpiration is quite high. Rather 98-99% of the water absorbed by a plant is lost in transpiration. Hardly 0.2% is used in photosynthesis while the remaining is retained in the plant during growth. Most of the transpiration occurs through foliar surface or surface of the leaves. It is known as foliar transpiration. Foliar transpiration accounts for over 90% of the total transpiration. Transpiration occurs through young or mature stem is called as Cauline transpiration. Depending upon the plant surface, transpiration is classified into three types: Stomatal • Water vapour diffuses out through minute pore (stomata) present in soft aerial part of plant is known Transpiration as Stomatal Transpiration • Sometimes water may evaporate through certain Lenticular other openings present on the older stems. These openings are called Lenticels and the transpiration Transpiration that takes place through term is known as Lenticular Transpiration. • Loss of water may also take place through cuticle, but Cuticular the amount so lost is relatively small • This type of transpiration depends upon the thickness Transpiration of the cuticle and presence or absence of wax coating on the surface of the leaves. Stomatal Transpiration Lenticular Transpiration Cuticular Transpiration Factors Affecting Transpiration: Water Stress: Whenever the rate of transpiration exceeds the rate of absorption, a water deficit is created in the plants and results in the incipient wilting of leaves. -
Photosynthesis Respiration and Transpiration.Notebook February 13, 2017
Photosynthesis Respiration and Transpiration.notebook February 13, 2017 Essential Question: What processes are required for plant survival? Key Concept: All living things need energy to carry out their basic functions. Living things break down food to get their energy.One thing that makes plants different from most others organisms is how they get their food. 1 Photosynthesis Respiration and Transpiration.notebook February 13, 2017 There are 3 processes that take place in the leaves that are mandatory for plant to survive. Photosynthesis Respiration Transpiration 2 Photosynthesis Respiration and Transpiration.notebook February 13, 2017 ALL PLANTS ARE AUTOTROPHS which means they make their own food for energy. Food for plants is SUGAR Remember: Chloroplast: Attract sunlight with chlorophyll Mitochondria: Energy Factory 3 Photosynthesis Respiration and Transpiration.notebook February 13, 2017 Observe the diagrams below. Can you infer which one is photosynthesis and respiration? 4 Photosynthesis Respiration and Transpiration.notebook February 13, 2017 What is needed: 1st Photosynthesis 1. Sunlight 2. Carbon Dioxide 3. Water What it Makes: Sugar (keeps) Oxygen (released for humans) Where it happens: Chloroplasts Sunlight Water H20 Carbon Dioxide CO2 Equation: Sunlight + 6H2O + 6CO2 = 6O2 + C6H12O6 5 Photosynthesis Respiration and Transpiration.notebook February 13, 2017 6 Photosynthesis Respiration and Transpiration.notebook February 13, 2017 Water Photosynthesis Sugar Carbon Oxygen Dioxide Excess Solar Energy Water 7 Photosynthesis Respiration and Transpiration.notebook February 13, 2017 Photosynthesis makes sugar, but in order to use the food the plant must break it down into usable energy through a process called Respiration. Food Respiration is the process of how plants break down the sugar so the plant can use it for energy. -
Synthetic Conversion of Leaf Chloroplasts Into Carotenoid-Rich Plastids Reveals Mechanistic Basis of Natural Chromoplast Development
Synthetic conversion of leaf chloroplasts into carotenoid-rich plastids reveals mechanistic basis of natural chromoplast development Briardo Llorentea,b,c,1, Salvador Torres-Montillaa, Luca Morellia, Igor Florez-Sarasaa, José Tomás Matusa,d, Miguel Ezquerroa, Lucio D’Andreaa,e, Fakhreddine Houhouf, Eszter Majerf, Belén Picóg, Jaime Cebollag, Adrian Troncosoh, Alisdair R. Ferniee, José-Antonio Daròsf, and Manuel Rodriguez-Concepciona,f,1 aCentre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, 08193 Barcelona, Spain; bARC Center of Excellence in Synthetic Biology, Department of Molecular Sciences, Macquarie University, Sydney NSW 2109, Australia; cCSIRO Synthetic Biology Future Science Platform, Sydney NSW 2109, Australia; dInstitute for Integrative Systems Biology (I2SysBio), Universitat de Valencia-CSIC, 46908 Paterna, Valencia, Spain; eMax-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany; fInstituto de Biología Molecular y Celular de Plantas, CSIC-Universitat Politècnica de València, 46022 Valencia, Spain; gInstituto de Conservación y Mejora de la Agrodiversidad, Universitat Politècnica de València, 46022 Valencia, Spain; and hSorbonne Universités, Université de Technologie de Compiègne, Génie Enzymatique et Cellulaire, UMR-CNRS 7025, CS 60319, 60203 Compiègne Cedex, France Edited by Krishna K. Niyogi, University of California, Berkeley, CA, and approved July 29, 2020 (received for review March 9, 2020) Plastids, the defining organelles of plant cells, undergo physiological chromoplasts but into a completely different type of plastids and morphological changes to fulfill distinct biological functions. In named gerontoplasts (1, 2). particular, the differentiation of chloroplasts into chromoplasts The most prominent changes during chloroplast-to-chromo- results in an enhanced storage capacity for carotenoids with indus- plast differentiation are the reorganization of the internal plastid trial and nutritional value such as beta-carotene (provitamin A). -
Plant Water Relations: Absorption, Transport and Control Mechanisms
5 Plant Water Relations: Absorption, Transport and Control Mechanisms Geraldo Chavarria1 and Henrique Pessoa dos Santos2 1The University of Passo Fundo 2Embrapa Grape & Wine Brazil 1. Introduction Although water is abundant on Earth - covering 71% of the total surface - its distribution is not uniform and can easily cause restrictions in availability to vegetal production. At global scale, these restrictions are easily observed in dry climates and can appear in other regions which do not currently experience drought, as provided by the future backdrop of climate change (IPCC, 2007). The influences of water restriction on losses in the production and distribution of vegetation on the terrestrial surface are significantly larger than all other losses combined which are caused by biotic and abiotic factors (Boyer, 1985). This striking effect of water on plants emerges from its physiological importance, being an essential factor for successful plant growth, involving photosynthesis and several other biochemical processes such as the synthesis of energetic composites and new tissue. Therefore, in order to characterise the growth and productive behaviour of plant species it is essential to have an understanding of plant water relations, as well as the consequences of an inadequate water supply. Broadly, the water state of a plant is controlled by relative rates of loss and absorption, moreover it depends on the ability to adjust and keep an adequate water status. This will be considered throughout this chapter. 2. Absorption and water flow through plants Independent of the species, plants require from the soil a water volume that overcomes its metabolic necessities. Through the transpiration process plants transmit to the atmosphere the majority of the water absorbed from soil (generally around 90%). -
Anatomy of Leaf Apical Hydathodes in Four Monocotyledon Plants of Economic and Academic Relevance Alain Jauneau, Aude Cerutti, Marie-Christine Auriac, Laurent D
Anatomy of leaf apical hydathodes in four monocotyledon plants of economic and academic relevance Alain Jauneau, Aude Cerutti, Marie-Christine Auriac, Laurent D. Noël To cite this version: Alain Jauneau, Aude Cerutti, Marie-Christine Auriac, Laurent D. Noël. Anatomy of leaf apical hydathodes in four monocotyledon plants of economic and academic relevance. PLoS ONE, Public Library of Science, 2020, 15 (9), pp.e0232566. 10.1371/journal.pone.0232566. hal-02972304 HAL Id: hal-02972304 https://hal.inrae.fr/hal-02972304 Submitted on 20 Oct 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License PLOS ONE RESEARCH ARTICLE Anatomy of leaf apical hydathodes in four monocotyledon plants of economic and academic relevance 1☯ 2☯ 1,2 2 Alain Jauneau *, Aude Cerutti , Marie-Christine Auriac , Laurent D. NoeÈlID * 1 FeÂdeÂration de Recherche 3450, Universite de Toulouse, CNRS, Universite Paul Sabatier, Castanet- Tolosan, France, 2 LIPM, Universite de Toulouse, INRAE, CNRS, Universite Paul Sabatier, Castanet- Tolosan, France ☯ These authors contributed equally to this work. a1111111111 * [email protected] (AJ); [email protected] (LN) a1111111111 a1111111111 a1111111111 a1111111111 Abstract Hydathode is a plant organ responsible for guttation in vascular plants, i.e. -
Research Advances on Leaf and Wood Anatomy of Woody Species
rch: O ea pe es n A R t c s c Rodriguez et al., Forest Res 2016, 5:3 e e r s o s Forest Research F DOI: 10.4172/2168-9776.1000183 Open Access ISSN: 2168-9776 Research Article Open Access Research Advances on Leaf and Wood Anatomy of Woody Species of a Tamaulipan Thorn Scrub Forest and its Significance in Taxonomy and Drought Resistance Rodriguez HG1*, Maiti R1 and Kumari A2 1Universidad Autónoma de Nuevo León, Facultad de Ciencias Forestales, Carr. Nac. No. 85 Km. 45, Linares, Nuevo León 67700, México 2Plant Physiology, Agricultural College, Professor Jaya Shankar Telangana State Agricultural University, Polasa, Jagtial, Karimnagar, Telangana, India Abstract The present paper make a synthesis of a comparative leaf anatomy including leaf surface, leaf lamina, petiole and venation as well as wood anatomy of 30 woody species of a Tamaulipan Thorn Scrub, Northeastern Mexico. The results showed a large variability in anatomical traits of both leaf and wood anatomy. The variations of these anatomical traits could be effectively used in taxonomic delimitation of the species and adaptation of the species to xeric environments. For example the absence or low frequency of stomata on leaf surface, the presence of long palisade cells, and presence of narrow xylem vessels in the wood could be related to adaptation of the species to drought. Besides the species with dense venation and petiole with thick collenchyma and sclerenchyma and large vascular bundle could be well adapted to xeric environments. It is suggested that a comprehensive consideration of leaf anatomy (leaf surface, lamina, petiole and venation) and wood anatomy should be used as a basis of taxonomy and drought resistance. -
Ferns of the National Forests in Alaska
Ferns of the National Forests in Alaska United States Forest Service R10-RG-182 Department of Alaska Region June 2010 Agriculture Ferns abound in Alaska’s two national forests, the Chugach and the Tongass, which are situated on the southcentral and southeastern coast respectively. These forests contain myriad habitats where ferns thrive. Most showy are the ferns occupying the forest floor of temperate rainforest habitats. However, ferns grow in nearly all non-forested habitats such as beach meadows, wet meadows, alpine meadows, high alpine, and talus slopes. The cool, wet climate highly influenced by the Pacific Ocean creates ideal growing conditions for ferns. In the past, ferns had been loosely grouped with other spore-bearing vascular plants, often called “fern allies.” Recent genetic studies reveal surprises about the relationships among ferns and fern allies. First, ferns appear to be closely related to horsetails; in fact these plants are now grouped as ferns. Second, plants commonly called fern allies (club-mosses, spike-mosses and quillworts) are not at all related to the ferns. General relationships among members of the plant kingdom are shown in the diagram below. Ferns & Horsetails Flowering Plants Conifers Club-mosses, Spike-mosses & Quillworts Mosses & Liverworts Thirty of the fifty-four ferns and horsetails known to grow in Alaska’s national forests are described and pictured in this brochure. They are arranged in the same order as listed in the fern checklist presented on pages 26 and 27. 2 Midrib Blade Pinnule(s) Frond (leaf) Pinna Petiole (leaf stalk) Parts of a fern frond, northern wood fern (p. -
3115 SAPS Operating Instructions
OPERATING INSTRUCTIONS FIELD PLANT WATER STATUS CONSOLE March 2017 Fig. 1 - Model 3115 Portable Plant Water Console shown with 22 c/f Compressed Gas Cylinder, 3072V22 SOILMOISTURE EQUIPMENT CORP. P.O. Box 30025, Santa Barbara, CA 93105 U.S.A. Telephone 805-964-3525 - Fax No. 805-683-2189 Email: [email protected] - Website: http://www.soilmoisture.com Table of Contents Chapter - Page 1 Description ............................................................................................................................... 1 - 4 2 Technical Specification ............................................................................................................ 2 - 5 2.1 Weight .......................................................................................................................... 2 - 5 2.2 Dimensions ................................................................................................................... 2 - 5 2.3 Pressure Vessel ............................................................................................................. 2 - 5 2.4 Gauges .......................................................................................................................... 2 - 5 2.5 Valves ........................................................................................................................... 2 - 5 2.6 Connecting Hose .......................................................................................................... 2 - 5 2.7 Pressure Tank .............................................................................................................. -
197 Section 9 Sunflower (Helianthus
SECTION 9 SUNFLOWER (HELIANTHUS ANNUUS L.) 1. Taxonomy of the Genus Helianthus, Natural Habitat and Origins of the Cultivated Sunflower A. Taxonomy of the genus Helianthus The sunflower belongs to the genus Helianthus in the Composite family (Asterales order), which includes species with very diverse morphologies (herbs, shrubs, lianas, etc.). The genus Helianthus belongs to the Heliantheae tribe. This includes approximately 50 species originating in North and Central America. The basis for the botanical classification of the genus Helianthus was proposed by Heiser et al. (1969) and refined subsequently using new phenological, cladistic and biosystematic methods, (Robinson, 1979; Anashchenko, 1974, 1979; Schilling and Heiser, 1981) or molecular markers (Sossey-Alaoui et al., 1998). This approach splits Helianthus into four sections: Helianthus, Agrestes, Ciliares and Atrorubens. This classification is set out in Table 1.18. Section Helianthus This section comprises 12 species, including H. annuus, the cultivated sunflower. These species, which are diploid (2n = 34), are interfertile and annual in almost all cases. For the majority, the natural distribution is central and western North America. They are generally well adapted to dry or even arid areas and sandy soils. The widespread H. annuus L. species includes (Heiser et al., 1969) plants cultivated for seed or fodder referred to as H. annuus var. macrocarpus (D.C), or cultivated for ornament (H. annuus subsp. annuus), and uncultivated wild and weedy plants (H. annuus subsp. lenticularis, H. annuus subsp. Texanus, etc.). Leaves of these species are usually alternate, ovoid and with a long petiole. Flower heads, or capitula, consist of tubular and ligulate florets, which may be deep purple, red or yellow. -
Book of Abstracts
CHALLENGES FOR PLANT NUTRITION IN CHANGING ENVIRONMENTS International Workshop and Meeting of the German Society of Plant Nutrition 2012 University of Bonn September 5 – 8, 2012 Book of Abstracts Table of Contents Plenary Session: Introductory talks ................................................. 2 Plenary Session S1: Processes on leaf surfaces ................................. 5 Plenary Session S2: Plant water relations .......................................... 14 Plenary Session S3: Nutrient dynamics in changing environments .... 26 Plenary Session S4: Crop responses to nutrient imbalances ............. 38 Plenary Session S5: Phenotyping and early stress responses ........... 80 Poster Session P1: Fertilization (inorganic) ...................................... 92 Poster Session P2: Fertilization (organic) / Soil amendments ........ 110 Poster Session P3: Nutrient efficiency / Genomics ......................... 131 Poster Session P4: Root physiology / Root-soil interactions........... 148 Poster Session P5: Physiological response to abiotic stress .......... 169 Poster Session P6: Physiological response to nutrient imbalances 182 Poster Session P7: Nutrients and ecosystems / Climate change ... 200 Poster Session P8: Signalling / Quality / Phenotyping .................... 215 1 DGP Meeting September 5-9, 2012 Plenary Session: Introductory talks 2 DGP Meeting September 5-9, 2012 Plant nutrition in a changing environment. Patrick H. Brown Department of Plant Sciences, University of California, Davis, CA 95616, US; E-mail: [email protected] The scientific discipline of plant nutrition is wonderfully broad in its scale and its scope. From the exploration of the function of nutrients as signals and regulators of plant function, to the role of plant nutrients in agricultural productivity and food quality, to the exploration of the effects of nutrient losses on global environments, plant nutrition is a truly integrative discipline and will play a critical role in mans’ ability to adapt to environmental change. -
Invasive Plants in Your Backyard!
Invasive Plants In Your Backyard! A Guide to Their Identification and Control new expanded edition Do you know what plants are growing in your yard? Chances are very good that along with your favorite flowers and shrubs, there are non‐native invasives on your property. Non‐native invasives are aggressive exotic plants introduced intentionally for their ornamental value, or accidentally by hitchhiking with people or products. They thrive in our growing conditions, and with no natural enemies have nothing to check their rapid spread. The environmental costs of invasives are great – they crowd out native vegetation and reduce biological diversity, can change how entire ecosystems function, and pose a threat Invasive Morrow’s honeysuckle (S. Leicht, to endangered species. University of Connecticut, bugwood.org) Several organizations in Connecticut are hard at work preventing the spread of invasives, including the Invasive Plant Council, the Invasive Plant Working Group, and the Invasive Plant Atlas of New England. They maintain an official list of invasive and potentially invasive plants, promote invasives eradication, and have helped establish legislation restricting the sale of invasives. Should I be concerned about invasives on my property? Invasive plants can be a major nuisance right in your own backyard. They can kill your favorite trees, show up in your gardens, and overrun your lawn. And, because it can be costly to remove them, they can even lower the value of your property. What’s more, invasive plants can escape to nearby parks, open spaces and natural areas. What should I do if there are invasives on my property? If you find invasive plants on your property they should be removed before the infestation worsens. -
Summary a Plant Is an Integrated System Which: 1
Summary A plant is an integrated system which: 1. Obtains water and nutrients from the soil. 2. Transports them 3. Combines the H2O with CO2 to make sugar. 4. Exports sugar to where it’s needed Today, we’ll start to go over how this occurs Transport in Plants – Outline I.I. PlantPlant waterwater needsneeds II.II. TransportTransport ofof waterwater andand mineralsminerals A.A. FromFrom SoilSoil intointo RootsRoots B.B. FromFrom RootsRoots toto leavesleaves C.C. StomataStomata andand transpirationtranspiration WhyWhy dodo plantsplants needneed soso muchmuch water?water? TheThe importanceimportance ofof waterwater potential,potential, pressure,pressure, solutessolutes andand osmosisosmosis inin movingmoving water…water… Transport in Plants 1.1. AnimalsAnimals havehave circulatorycirculatory systems.systems. 2.2. VascularVascular plantsplants havehave oneone wayway systems.systems. Transport in Plants •• OneOne wayway systems:systems: plantsplants needneed aa lotlot moremore waterwater thanthan samesame sizedsized animals.animals. •• AA sunflowersunflower plantplant “drinks”“drinks” andand “perspires”“perspires” 1717 timestimes asas muchmuch asas aa human,human, perper unitunit ofof mass.mass. Transport of water and minerals in Plants WaterWater isis goodgood forfor plants:plants: 1.1. UsedUsed withwith CO2CO2 inin photosynthesisphotosynthesis toto makemake “food”.“food”. 2.2. TheThe “blood”“blood” ofof plantsplants –– circulationcirculation (used(used toto movemove stuffstuff around).around). 3.3. EvaporativeEvaporative coolingcooling.