Molecular Interactions Between Maize Fine Streak Virus and Insect Vector

Total Page:16

File Type:pdf, Size:1020Kb

Molecular Interactions Between Maize Fine Streak Virus and Insect Vector Molecular interactions between Maize fine streak virus and insect vector, Graminella nigrifrons DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Yuting Chen, M.S. Graduate Program in Entomology The Ohio State University 2013 Dissertation Committee: Dr. Andrew P. Michel, Advisor Dr. David L. Denlinger Dr. Omprakash Mittapalli Dr. Margaret G. Redinbaugh Copyrighted by Yuting Chen 2013 Abstract Phytophagous hemipteran insects are suitable vectors for plant viruses, such as plant-infecting rhabdoviruses, which have caused severe yield loss. These single-stranded negative RNA viruses are specifically transmitted by hemipteran insects in a circulative propagative manner. My research investigated the vector-virus interactions using the black-faced leafhopper Graminella nigrifrons and an emerging plant-infecting rhabdovirus, Maize fine streak virus (MFSV) from molecular, genetic and ecological perspectives. G. nigrifrons is the only identified vector for MFSV, and vector competence varies within laboratory populations. G. nigrifrons can be experimentally separated into three types based on their ability to transmit MFSV: transmitters, which can transmit MFSV to new host plants; acquirers, which are positive MFSV, but do not transmit the virus; and non-acquirers, which are neither positive for nor able to transmit the virus. My research focused on how antiviral immunity responds to MFSV challenge among different types of G. nigrifrons, which was proposed to associate with vector competence. The transcriptome of G. nigrifrons was first characterized, and a significant similarity of immune response transcripts was discovered with other well-characterized insects. Expression of ten transcripts that putatively functioned in insect RNAi and humoral pathways was evaluated among three types of G. nigrifrons using RT-qPCR: Ars-2, Dcr-2, Ago-2, four PGRPs (SB1, SD, LB and LC), Toll, ii spaetzle and defensin. Overall down regulation was seen in MFSV challenged leafhoppers. In particular, Ars-2, Dcr-2 and Ago-2 were significantly suppressed in acquirers and non-acquirers compared to transmitters or control (MFSV unchallenged) leafhoppers. Expression of three PGRPs (SB1, SD, and LC) and Toll were similar in all MFSV challenged leafhoppers but was significantly suppressed compared to control. Genetic variation of RT-qPCR evaluated transcirpts was analyzed among three types of G. nigrifrons. A non-synonymous SNP in the MFSV-N gene was identified only in transmitters. However, there was no correlation between differentially expressed immune transcripts and the presence of putative synonymous/non-synonymous SNPs. RNAi was successfully developed to investigate the functions of PGRP-LC and Dcr-2 related to virus acquisition and transmission. Expression of PGRP-LC and Dcr-2 was reduced to 30% and 20% of levels in control leafhoppers respectively, after 14 and 22 dpi of dsRNAs. The reduction in expression was equally effective for both nymphs and adults. There was no effect on MFSV transmission or acquisition between non-injected or dsRNAs for GFP and PGRP-LC or Dcr-2 injected leafhoppers, however, acquisition was slightly higher in Dcr-2 silenced leafhoppers. Silencing PGRP-LC resulted in 90% mortality before MFSV could be transmitted. A significantly higher number of ‘abnormally molted’ leafhoppers were observed after silencing PGRP-LC. Higher temperature and light intensity tended to increase MFSV transmission during 1-week inoculation access period. There was no difference of transmission between insect genders under different environmental treatments. To conclude, my research revealed complex vector-virus-plant interactions at the molecular, genetic and environmental levels. Successful use of RNAi to decrease G. iii nigrifrons transcript levels may provide possible targets of RNAi-based pest management. iv Acknowledgments I especially would like to thank my advisor, Andy Michel, for his endless support and help with my study and research. Any growth, improvement or award from my research and even my English, could not have been achieved without his patient and kind guidance. I appreciate his allowing me do the research that I am really interested in. He is a truly wonderful advisor, and I count myself lucky to have been his student! I would like to thank my advisory committee members, David Denlinger, Omprakash Mittapalli and Margaret (Peg) Redinbaugh for their advice and support to this project. I really enjoyed our discussion about this project during every meeting. I appreciate the helpful and professional advice from Luis Canas regarding my statistical analysis. I appreciate Dan Herms and Larry Phelan for teaching the classes “Nature and Practice of Science” and “Journal Club”, from which I learned some of the most important things in my academic career. I appreciate Peter Piermarini and Nuris Acosta for helping me develop the RNAi technique using micro-injection. I also appreciate the helpful bioinformatics expertise of Bryan Cassone, Asela Wijeratne, Saranga Wijeratne and Xiaodong Bai. I also wish to thank Feng Qu and Lucy Stewart for their constructive advice during our group meeting. I am very grateful to Jane Todd for teaching me, from the very beginning, how to rear and maintain the G. nigrifrons colony in the laboratory and transfer MFSV using G. nigrifrons. Without these basic techniques, my project could not have succeeded. I enjoyed our discussion about research, and I also appreciate that she shared her v limited space in the growth chamber with me. I appreciate Kristen Willie for providing me MFSV antiserum and other reagents for my virus experiment. I also wish to thank Lee Wilson, Bob James and Judy Smith for arranging the greenhouse and growth chamber space for me in Selby and Thorne Hall. I thank Brenda Franks, Lori Jones and Shirley Holmes for their administrative support. I also thank my colleagues in both Andy and Peg’s lab for their technical help and friendship. Finally, I deeply appreciate the OSU Entomology Department for providing me this opportunity to study here. This department is such a wonderful family, which has made me feel at home in the US. The endless support received from other students and faculty helped make a significant improvement in not only my English, but also my study and research, and their friendship helped me get through every difficulty. I consider myself extremely fortunate to have been a part of this department. This project was partially funded by The OARDC Research Enhancement Competitive Grants Program. vi Vita 2001 − 2005……………………………… .. B.S. Plant Protection, China Agricultural University 2005 − 2008………………………………...M.S. Plant Pathology, China Agricultural University 2009 to present .............................................Entomology, The Ohio State University Publications Chen, Y., Cassone, B.J., Bai, X., Redinbaugh, M.G., Michel, A.P., 2012. Transcriptome of the plant virus vector Graminella nigrifrons, and the molecular interactions of Maize fine streak rhabdovirus transmission. Plos One 7, e40613 Cheng, Y.-Q., Liu, Z.-M., Xu, J., Zhou, T., Wang, M., Chen, Y.-T., Li, H.-F., Fan, Z.-F., 2008. HC-Pro protein of sugar cane mosaic virus interacts specifically with maize ferredoxin-5 in vitro and in planta. Journal of General Virology 89, 2046-2054. Fields of Study Major Field: Entomology vii Table of Contents Abstract ......................................................................................................................... ii Acknowledgments..........................................................................................................v Vita .............................................................................................................................. vii Table of Contents ....................................................................................................... viii List of Figures ................................................................................................................x List of Tables ............................................................................................................... xi Chapters: 1. Introduction ..............................................................................................................1 Biology of G. nigrifrons ........................................................................................ 2 Biology of plant-infecting rhabdoviruses .............................................................. 4 Interaction between plant-infecting rhabdoviruses and insect vector .................... 6 Interaction between MFSV and Graminella nigrifrons ......................................... 8 References ............................................................................................................ 10 2. Transcriptome of the plant virus vector Graminella nigrifrons, and the molecular interactions of Maize fine streak virus transmission ....................................................18 Abstract ................................................................................................................ 18 Introduction .......................................................................................................... 19 Methods and Materials ......................................................................................... 23 Results and Discussion .......................................................................................
Recommended publications
  • Biosecurity Plan for the Vegetable Industry
    Biosecurity Plan for the Vegetable Industry A shared responsibility between government and industry Version 3.0 May 2018 Plant Health AUSTRALIA Location: Level 1 1 Phipps Close DEAKIN ACT 2600 Phone: +61 2 6215 7700 Fax: +61 2 6260 4321 E-mail: [email protected] Visit our web site: www.planthealthaustralia.com.au An electronic copy of this plan is available through the email address listed above. © Plant Health Australia Limited 2018 Copyright in this publication is owned by Plant Health Australia Limited, except when content has been provided by other contributors, in which case copyright may be owned by another person. With the exception of any material protected by a trade mark, this publication is licensed under a Creative Commons Attribution-No Derivs 3.0 Australia licence. Any use of this publication, other than as authorised under this licence or copyright law, is prohibited. http://creativecommons.org/licenses/by-nd/3.0/ - This details the relevant licence conditions, including the full legal code. This licence allows for redistribution, commercial and non-commercial, as long as it is passed along unchanged and in whole, with credit to Plant Health Australia (as below). In referencing this document, the preferred citation is: Plant Health Australia Ltd (2018) Biosecurity Plan for the Vegetable Industry (Version 3.0 – 2018) Plant Health Australia, Canberra, ACT. This project has been funded by Hort Innovation, using the vegetable research and development levy and contributions from the Australian Government. Hort Innovation is the grower-owned, not for profit research and development corporation for Australian horticulture Disclaimer: The material contained in this publication is produced for general information only.
    [Show full text]
  • Acoustic Signals of Graminella Nigrifrons (Homoptera: Cicadellidae)
    The Great Lakes Entomologist Volume 24 Number 1 - Spring 1991 Number 1 - Spring 1991 Article 2 March 1991 Acoustic Signals of Graminella Nigrifrons (Homoptera: Cicadellidae) S. E. Heady Ohio State University L. R. Nault Ohio State University Follow this and additional works at: https://scholar.valpo.edu/tgle Part of the Entomology Commons Recommended Citation Heady, S. E. and Nault, L. R. 1991. "Acoustic Signals of Graminella Nigrifrons (Homoptera: Cicadellidae)," The Great Lakes Entomologist, vol 24 (1) Available at: https://scholar.valpo.edu/tgle/vol24/iss1/2 This Peer-Review Article is brought to you for free and open access by the Department of Biology at ValpoScholar. It has been accepted for inclusion in The Great Lakes Entomologist by an authorized administrator of ValpoScholar. For more information, please contact a ValpoScholar staff member at [email protected]. Heady and Nault: Acoustic Signals of <i>Graminella Nigrifrons</i> (Homoptera: Cica 1991 THE GREAT LAKES ENTOMOLOGIST 9 ACOUSTIC SIGNALS OF GRAM/NELLA NIGRIFRONS (HOMOPTERA: CICADELLIDAE) S. E. Heady and L. R. Nault I ABSTRACT The deltocephaline leafhopper, Graminella nigrifrons, produces low intensity sub­ strate transmitted vibrations (signals) to facilitate location of virgin females by males during courtship. In the laboratory, signals produced on maize leaves were received by a phonographic cartridge, amplified, and analyzed on an oscillograph and sonograph. Male calls, that are produced spontaneously, are complex, consist­ ing of three consecutive sections. Section 1 consists of ca. 3 sec of irregular clicks. Section 2 has ca. 4 sec of repeated phrases consisting of a continuous series of 0.4 sec chirps and a roll.
    [Show full text]
  • Data-Driven Identification of Potential Zika Virus Vectors Michelle V Evans1,2*, Tad a Dallas1,3, Barbara a Han4, Courtney C Murdock1,2,5,6,7,8, John M Drake1,2,8
    RESEARCH ARTICLE Data-driven identification of potential Zika virus vectors Michelle V Evans1,2*, Tad A Dallas1,3, Barbara A Han4, Courtney C Murdock1,2,5,6,7,8, John M Drake1,2,8 1Odum School of Ecology, University of Georgia, Athens, United States; 2Center for the Ecology of Infectious Diseases, University of Georgia, Athens, United States; 3Department of Environmental Science and Policy, University of California-Davis, Davis, United States; 4Cary Institute of Ecosystem Studies, Millbrook, United States; 5Department of Infectious Disease, University of Georgia, Athens, United States; 6Center for Tropical Emerging Global Diseases, University of Georgia, Athens, United States; 7Center for Vaccines and Immunology, University of Georgia, Athens, United States; 8River Basin Center, University of Georgia, Athens, United States Abstract Zika is an emerging virus whose rapid spread is of great public health concern. Knowledge about transmission remains incomplete, especially concerning potential transmission in geographic areas in which it has not yet been introduced. To identify unknown vectors of Zika, we developed a data-driven model linking vector species and the Zika virus via vector-virus trait combinations that confer a propensity toward associations in an ecological network connecting flaviviruses and their mosquito vectors. Our model predicts that thirty-five species may be able to transmit the virus, seven of which are found in the continental United States, including Culex quinquefasciatus and Cx. pipiens. We suggest that empirical studies prioritize these species to confirm predictions of vector competence, enabling the correct identification of populations at risk for transmission within the United States. *For correspondence: mvevans@ DOI: 10.7554/eLife.22053.001 uga.edu Competing interests: The authors declare that no competing interests exist.
    [Show full text]
  • An Overview of Mosquito Vectors of Zika Virus
    Microbes and Infection xxx (2018) 1e15 Contents lists available at ScienceDirect Microbes and Infection journal homepage: www.elsevier.com/locate/micinf An overview of mosquito vectors of Zika virus Sebastien Boyer a, Elodie Calvez b, Thais Chouin-Carneiro c, Diawo Diallo d, * Anna-Bella Failloux e, a Institut Pasteur of Cambodia, Unit of Medical Entomology, Phnom Penh, Cambodia b Institut Pasteur of New Caledonia, URE Dengue and Other Arboviruses, Noumea, New Caledonia c Instituto Oswaldo Cruz e Fiocruz, Laboratorio de Transmissores de Hematozoarios, Rio de Janeiro, Brazil d Institut Pasteur of Dakar, Unit of Medical Entomology, Dakar, Senegal e Institut Pasteur, URE Arboviruses and Insect Vectors, Paris, France article info abstract Article history: The mosquito-borne arbovirus Zika virus (ZIKV, Flavivirus, Flaviviridae), has caused an outbreak Received 6 December 2017 impressive by its magnitude and rapid spread. First detected in Uganda in Africa in 1947, from where it Accepted 15 January 2018 spread to Asia in the 1960s, it emerged in 2007 on the Yap Island in Micronesia and hit most islands in Available online xxx the Pacific region in 2013. Subsequently, ZIKV was detected in the Caribbean, and Central and South America in 2015, and reached North America in 2016. Although ZIKV infections are in general asymp- Keywords: tomatic or causing mild self-limiting illness, severe symptoms have been described including neuro- Arbovirus logical disorders and microcephaly in newborns. To face such an alarming health situation, WHO has Mosquito vectors Aedes aegypti declared Zika as an emerging global health threat. This review summarizes the literature on the main fi Vector competence vectors of ZIKV (sylvatic and urban) across all the ve continents with special focus on vector compe- tence studies.
    [Show full text]
  • Conservation Assessment for the Kansan Spikerush Leafhopper (Dorydiella Kansana Beamer)
    Conservation Assessment For The Kansan spikerush leafhopper (Dorydiella kansana Beamer) USDA Forest Service, Eastern Region January 11, 2005 James Bess OTIS Enterprises 13501 south 750 west Wanatah, Indiana 46390 This document is undergoing peer review, comments welcome This Conservation Assessment was prepared to compile the published and unpublished information on the subject taxon or community; or this document was prepared by another organization and provides information to serve as a Conservation Assessment for the Eastern Region of the Forest Service. It does not represent a management decision by the U.S. Forest Service. Though the best scientific information available was used and subject experts were consulted in preparation of this document, it is expected that new information will arise. In the spirit of continuous learning and adaptive management, if you have information that will assist in conserving the subject taxon, please contact the Eastern Region of the Forest Service - Threatened and Endangered Species Program at 310 Wisconsin Avenue, Suite 580 Milwaukee, Wisconsin 53203. TABLE OF CONTENTS EXECUTIVE SUMMARY ............................................................................................................ 1 ACKNOWLEDGEMENTS............................................................................................................ 1 NOMENCLATURE AND TAXONOMY ..................................................................................... 1 DESCRIPTION OF SPECIES.......................................................................................................
    [Show full text]
  • The Leafhoppers of Minnesota
    Technical Bulletin 155 June 1942 The Leafhoppers of Minnesota Homoptera: Cicadellidae JOHN T. MEDLER Division of Entomology and Economic Zoology University of Minnesota Agricultural Experiment Station The Leafhoppers of Minnesota Homoptera: Cicadellidae JOHN T. MEDLER Division of Entomology and Economic Zoology University of Minnesota Agricultural Experiment Station Accepted for publication June 19, 1942 CONTENTS Page Introduction 3 Acknowledgments 3 Sources of material 4 Systematic treatment 4 Eurymelinae 6 Macropsinae 12 Agalliinae 22 Bythoscopinae 25 Penthimiinae 26 Gyponinae 26 Ledrinae 31 Amblycephalinae 31 Evacanthinae 37 Aphrodinae 38 Dorydiinae 40 Jassinae 43 Athysaninae 43 Balcluthinae 120 Cicadellinae 122 Literature cited 163 Plates 171 Index of plant names 190 Index of leafhopper names 190 2M-6-42 The Leafhoppers of Minnesota John T. Medler INTRODUCTION HIS bulletin attempts to present as accurate and complete a T guide to the leafhoppers of Minnesota as possible within the limits of the material available for study. It is realized that cer- tain groups could not be treated completely because of the lack of available material. Nevertheless, it is hoped that in its present form this treatise will serve as a convenient and useful manual for the systematic and economic worker concerned with the forms of the upper Mississippi Valley. In all cases a reference to the original description of the species and genus is given. Keys are included for the separation of species, genera, and supergeneric groups. In addition to the keys a brief diagnostic description of the important characters of each species is given. Extended descriptions or long lists of references have been omitted since citations to this literature are available from other sources if ac- tually needed (Van Duzee, 1917).
    [Show full text]
  • Lepidoptera: Geometridae: Larentiinae)
    Blackwell Science, LtdOxford, UKAENAustralian Journal of Entomology1326-67562005 Australian Entomological Society 200544257278Original ArticleRevision of ScotocymaO Schmidt Australian Journal of Entomology (2005) 44, 257–278 Revision of Scotocyma Turner (Lepidoptera: Geometridae: Larentiinae) Olga Schmidt Zoologische Staatssammlung München, Münchhausenstraße 21, D-81247, München, Germany. Abstract The Australasian genus Scotocyma Turner is revised, containing the species S. albinotata (Walker), S. legalis (Warren), S. asiatica Holloway, S. scotopepla Prout, stat. n., S. manusensis Prout, stat. n., S. mimula (Warren), stat. n. and S. miscix Prout. Scotocyma euryochra Turner, syn. n., S. idioschema Turner, syn. n., S. ischnophrica Turner, syn. n. and S. transfixa Turner, syn. n. are regarded as synonyms of S. albinotata. Four species are described as new: S. samoensis, sp. n., S. sumatrensis, sp. n., S. rutilimixta, sp. n. and S. longiuncus, sp. n. Lectotypes are designated for S. scotopepla, S. manusensis and S. miscix. All species are illustrated, and keys to species and distribution maps are provided. A phylogenetic analysis was performed to test the monophyly of the genus and to examine distribution patterns of the species. A biogeographical discussion is included. The tribal position of the genus is clarified and relationships to closely related genera are discussed. Key words Australasian region, biogeography, distribution patterns, geometrid moths, Melanesian island arcs, phylogenetics, taxonomy, Xanthorhoini. INTRODUCTION Since Turner (1922), there have been few reviews of the Australasian genera of Larentiinae. Craw (1986, 1987) revised The genus Scotocyma Turner (1904) belongs to the large sub- the New Zealand species of the genera Notoreas Meyrick and family Larentiinae (Lepidoptera: Geometridae). The larentiine Helastia (Guenée). The Australian Anachloris Meyrick and moths have a worldwide distribution, with the highest species Australasian Chaetolopha Warren have been revised recently diversity in temperate regions.
    [Show full text]
  • The Leafhopper Vectors of Phytopathogenic Viruses (Homoptera, Cicadellidae) Taxonomy, Biology, and Virus Transmission
    /«' THE LEAFHOPPER VECTORS OF PHYTOPATHOGENIC VIRUSES (HOMOPTERA, CICADELLIDAE) TAXONOMY, BIOLOGY, AND VIRUS TRANSMISSION Technical Bulletin No. 1382 Agricultural Research Service UMTED STATES DEPARTMENT OF AGRICULTURE ACKNOWLEDGMENTS Many individuals gave valuable assistance in the preparation of this work, for which I am deeply grateful. I am especially indebted to Miss Julianne Rolfe for dissecting and preparing numerous specimens for study and for recording data from the literature on the subject matter. Sincere appreciation is expressed to James P. Kramer, U.S. National Museum, Washington, D.C., for providing the bulk of material for study, for allowing access to type speci- mens, and for many helpful suggestions. I am also grateful to William J. Knight, British Museum (Natural History), London, for loan of valuable specimens, for comparing type material, and for giving much useful information regarding the taxonomy of many important species. I am also grateful to the following persons who allowed me to examine and study type specimens: René Beique, Laval Univer- sity, Ste. Foy, Quebec; George W. Byers, University of Kansas, Lawrence; Dwight M. DeLong and Paul H. Freytag, Ohio State University, Columbus; Jean L. LaiFoon, Iowa State University, Ames; and S. L. Tuxen, Universitetets Zoologiske Museum, Co- penhagen, Denmark. To the following individuals who provided additional valuable material for study, I give my sincere thanks: E. W. Anthon, Tree Fruit Experiment Station, Wenatchee, Wash.; L. M. Black, Uni- versity of Illinois, Urbana; W. E. China, British Museum (Natu- ral History), London; L. N. Chiykowski, Canada Department of Agriculture, Ottawa ; G. H. L. Dicker, East Mailing Research Sta- tion, Kent, England; J.
    [Show full text]
  • Great Lakes Entomologist the Grea T Lakes E N Omo L O G Is T Published by the Michigan Entomological Society Vol
    The Great Lakes Entomologist THE GREA Published by the Michigan Entomological Society Vol. 45, Nos. 3 & 4 Fall/Winter 2012 Volume 45 Nos. 3 & 4 ISSN 0090-0222 T LAKES Table of Contents THE Scholar, Teacher, and Mentor: A Tribute to Dr. J. E. McPherson ..............................................i E N GREAT LAKES Dr. J. E. McPherson, Educator and Researcher Extraordinaire: Biographical Sketch and T List of Publications OMO Thomas J. Henry ..................................................................................................111 J.E. McPherson – A Career of Exemplary Service and Contributions to the Entomological ENTOMOLOGIST Society of America L O George G. Kennedy .............................................................................................124 G Mcphersonarcys, a New Genus for Pentatoma aequalis Say (Heteroptera: Pentatomidae) IS Donald B. Thomas ................................................................................................127 T The Stink Bugs (Hemiptera: Heteroptera: Pentatomidae) of Missouri Robert W. Sites, Kristin B. Simpson, and Diane L. Wood ............................................134 Tymbal Morphology and Co-occurrence of Spartina Sap-feeding Insects (Hemiptera: Auchenorrhyncha) Stephen W. Wilson ...............................................................................................164 Pentatomoidea (Hemiptera: Pentatomidae, Scutelleridae) Associated with the Dioecious Shrub Florida Rosemary, Ceratiola ericoides (Ericaceae) A. G. Wheeler, Jr. .................................................................................................183
    [Show full text]
  • Identifying Dryinidae (Hymenoptera) - Auchenorrhyncha (Hemiptera) Host Associations Using Phylogenetics
    IDENTIFYING DRYINIDAE (HYMENOPTERA) - AUCHENORRHYNCHA (HEMIPTERA) HOST ASSOCIATIONS USING PHYLOGENETICS BY CHRISTIAN ABEL MILLÁN-HERNÁNDEZ THESIS Submitted in partial fulfillment of the requirements for the degree of Master of Science in Entomology in the Graduate College of the University of Illinois at Urbana-Champaign, 2018 Urbana, Illinois Master's Committee: Dr. Christopher H. Dietrich, Chair, Director of Research Professor May R. Berenbaum Professor Andrew V. Suarez ABSTRACT Dryinidae is a family of ectoparasitoid wasps with cosmopolitan distribution that exclusively preys on and parasitizes members of the suborder Auchenorrhyncha (Hemiptera). Host records of these important biocontrol agents are fragmentary because previous records have been based on tedious laboratory rearing of parasitized individuals requiring environmental control and long waiting periods, usually with limited success. Molecular phylogenetic methods provide an alternative to expand knowledge of dryinid host breadth by DNA sequencing of host attached parasitoid larvae. For this study, 142 late-stage dryinid larvae were removed from parasitized individuals of Auchenorrhyncha (Hemiptera), mostly from a wet insect collection at the Illinois Natural History Survey representing all major biogeographic regions. The 28S D2-D3 nuclear ribosomal gene region was amplified using PCR and sequenced. Attempts to sequence Cytochrome c oxidase subunit 1, Cytochrome B and 18S DNA regions were unsuccessful due to contamination with host DNA. Sequence data were combined with data from a previous phylogenetic study based on adults and a maximum likelihood tree search was performed in the IQ-Tree webserver. The best tree was used to explore the significance of natural history traits including distribution, host taxonomy and habitat, for explaining host association patterns.
    [Show full text]
  • Genetic Insights Into Graminella Nigrifrons Competence for Maize Fine Streak Virus Infection and Transmission
    RESEARCH ARTICLE Genetic Insights into Graminella nigrifrons Competence for Maize fine streak virus Infection and Transmission Bryan J. Cassone1.¤a, Fiorella M. Cisneros Carter2.¤b, Andrew P. Michel3, Lucy R. Stewart1,2, Margaret G. Redinbaugh1,2* 1. United States Department of Agriculture- Agricultural Research Service, Corn, Soybean and Wheat Quality Research Unit, Ohio Agricultural Research and Development Center (OARDC), Wooster, Ohio, United States of America, 2. Department of Plant Pathology, Ohio Agricultural Research and Development Center (OARDC), The Ohio State University, Wooster, Ohio, United States of America, 3. Department of Entomology, The Ohio State University, Ohio Agricultural Research and Development Center (OARDC), The Ohio State University, Wooster, Ohio, United States of America *[email protected] . These authors contributed equally to this work. ¤a Current address: Center for Applied Plant Sciences, Department of Plant Pathology, The Ohio State University, OARDC, Wooster, OH, 44691, United States of America OPEN ACCESS ¤b Current address: Molecular and Cellular Imaging Center, The Ohio State University, OARDC, Wooster, Citation: Cassone BJ, Cisneros Carter FM, Michel OH, 44691, United States of America AP, Stewart LR, Redinbaugh MG (2014) Genetic Insights into Graminella nigrifrons Competence for Maize fine streak virus Infection and Transmission. PLoS ONE 9(11): e113529. doi:10. 1371/journal.pone.0113529 Abstract Editor: Joseph Clifton Dickens, United States Department of Agriculture, Beltsville Agricultural Background: Most plant-infecting rhabdoviruses are transmitted by one or a few Research Center, United States of America closely related insect species. Additionally, intraspecific differences in transmission Received: August 21, 2014 efficacy often exist among races/biotypes within vector species and among strains Accepted: October 29, 2014 within a virus species.
    [Show full text]
  • Islands As Hotspots for Emerging Mosquito-Borne Viruses: a One-Health Perspective
    viruses Review Islands as Hotspots for Emerging Mosquito-Borne Viruses: A One-Health Perspective Carla Mavian 1,2,*, Melissa Dulcey 2,3,†, Olga Munoz 2,3,4,†, Marco Salemi 1,2, Amy Y. Vittor 2,5,‡ and Ilaria Capua 2,4,‡ 1 Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32611, USA; [email protected]fl.edu 2 Emerging Pathogens Institute University of Florida, Gainesville, FL 32611, USA; dulceym@ufl.edu (M.D.); omunoz@ufl.edu (O.M.); [email protected]fl.edu (A.Y.V.); icapua@ufl.edu (I.C.) 3 Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL 32611, USA 4 One Health Center of Excellence, University of Florida, Gainesville, FL 32611, USA 5 Division of Infectious Diseases and Global Medicine, Department of Medicine, College of Medicine, University of Florida, Gainesville, FL 32611, USA * Correspondence: cmavian@ufl.edu † These authors contributed equally to this work. ‡ These authors contributed equally to this work. Received: 8 November 2018; Accepted: 18 December 2018; Published: 25 December 2018 Abstract: During the past ten years, an increasing number of arbovirus outbreaks have affected tropical islands worldwide. We examined the available literature in peer-reviewed journals, from the second half of the 20th century until 2018, with the aim of gathering an overall picture of the emergence of arboviruses in these islands. In addition, we included information on environmental and social drivers specific to island setting that can facilitate the emergence of outbreaks. Within the context of the One Health approach, our review highlights how the emergence of arboviruses in tropical islands is linked to the complex interplay between their unique ecological settings and to the recent changes in local and global sociodemographic patterns.
    [Show full text]