(Pecten Maximus (L.)) Dredge Discards Using a Static Time-Lapse Camera System
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
High Level Environmental Screening Study for Offshore Wind Farm Developments – Marine Habitats and Species Project
High Level Environmental Screening Study for Offshore Wind Farm Developments – Marine Habitats and Species Project AEA Technology, Environment Contract: W/35/00632/00/00 For: The Department of Trade and Industry New & Renewable Energy Programme Report issued 30 August 2002 (Version with minor corrections 16 September 2002) Keith Hiscock, Harvey Tyler-Walters and Hugh Jones Reference: Hiscock, K., Tyler-Walters, H. & Jones, H. 2002. High Level Environmental Screening Study for Offshore Wind Farm Developments – Marine Habitats and Species Project. Report from the Marine Biological Association to The Department of Trade and Industry New & Renewable Energy Programme. (AEA Technology, Environment Contract: W/35/00632/00/00.) Correspondence: Dr. K. Hiscock, The Laboratory, Citadel Hill, Plymouth, PL1 2PB. [email protected] High level environmental screening study for offshore wind farm developments – marine habitats and species ii High level environmental screening study for offshore wind farm developments – marine habitats and species Title: High Level Environmental Screening Study for Offshore Wind Farm Developments – Marine Habitats and Species Project. Contract Report: W/35/00632/00/00. Client: Department of Trade and Industry (New & Renewable Energy Programme) Contract management: AEA Technology, Environment. Date of contract issue: 22/07/2002 Level of report issue: Final Confidentiality: Distribution at discretion of DTI before Consultation report published then no restriction. Distribution: Two copies and electronic file to DTI (Mr S. Payne, Offshore Renewables Planning). One copy to MBA library. Prepared by: Dr. K. Hiscock, Dr. H. Tyler-Walters & Hugh Jones Authorization: Project Director: Dr. Keith Hiscock Date: Signature: MBA Director: Prof. S. Hawkins Date: Signature: This report can be referred to as follows: Hiscock, K., Tyler-Walters, H. -
Fisheries (Southland and Sub-Antarctic Areas Commercial Fishing) Regulations 1986 (SR 1986/220)
Reprint as at 1 October 2017 Fisheries (Southland and Sub-Antarctic Areas Commercial Fishing) Regulations 1986 (SR 1986/220) Paul Reeves, Governor-General Order in Council At Wellington this 2nd day of September 1986 Present: The Right Hon G W R Palmer presiding in Council Pursuant to section 89 of the Fisheries Act 1983, His Excellency the Governor-Gener- al, acting by and with the advice and consent of the Executive Council, hereby makes the following regulations. Contents Page 1 Title, commencement, and application 4 2 Interpretation 4 Part 1 Southland area Total prohibition 3 Total prohibitions 15 Note Changes authorised by subpart 2 of Part 2 of the Legislation Act 2012 have been made in this official reprint. Note 4 at the end of this reprint provides a list of the amendments incorporated. These regulations are administered by the Ministry for Primary Industries. 1 Fisheries (Southland and Sub-Antarctic Areas Reprinted as at Commercial Fishing) Regulations 1986 1 October 2017 Certain fishing methods prohibited 3A Certain fishing methods prohibited in defined areas 16 3AB Set net fishing prohibited in defined area from Slope Point to Sand 18 Hill Point Minimum set net mesh size 3B Minimum set net mesh size 19 3BA Minimum net mesh for queen scallop trawling 20 Set net soak times 3C Set net soak times 20 3D Restrictions on fishing in paua quota management areas 21 3E Labelling of containers for paua taken in any PAU 5 quota 21 management area 3F Marking of blue cod pots and fish holding pots [Revoked] 21 Trawling 4 Trawling prohibited -
Marine Bivalve Molluscs
Marine Bivalve Molluscs Marine Bivalve Molluscs Second Edition Elizabeth Gosling This edition first published 2015 © 2015 by John Wiley & Sons, Ltd First edition published 2003 © Fishing News Books, a division of Blackwell Publishing Registered Office John Wiley & Sons, Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK Editorial Offices 9600 Garsington Road, Oxford, OX4 2DQ, UK The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK 111 River Street, Hoboken, NJ 07030‐5774, USA For details of our global editorial offices, for customer services and for information about how to apply for permission to reuse the copyright material in this book please see our website at www.wiley.com/wiley‐blackwell. The right of the author to be identified as the author of this work has been asserted in accordance with the UK Copyright, Designs and Patents Act 1988. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher. Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The publisher is not associated with any product or vendor mentioned in this book. Limit of Liability/Disclaimer of Warranty: While the publisher and author(s) have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. -
Diseases Affecting Finfish
Diseases Affecting Finfish Legislation Ireland's Exotic / Disease Name Acronym Health Susceptible Species Vector Species Non-Exotic Listed National Status Disease Measures Bighead carp (Aristichthys nobilis), goldfish (Carassius auratus), crucian carp (C. carassius), Epizootic Declared Rainbow trout (Oncorhynchus mykiss), redfin common carp and koi carp (Cyprinus carpio), silver carp (Hypophtalmichthys molitrix), Haematopoietic EHN Exotic * Disease-Free perch (Percha fluviatilis) Chub (Leuciscus spp), Roach (Rutilus rutilus), Rudd (Scardinius erythrophthalmus), tench Necrosis (Tinca tinca) Beluga (Huso huso), Danube sturgeon (Acipenser gueldenstaedtii), Sterlet sturgeon (Acipenser ruthenus), Starry sturgeon (Acipenser stellatus), Sturgeon (Acipenser sturio), Siberian Sturgeon (Acipenser Baerii), Bighead carp (Aristichthys nobilis), goldfish (Carassius auratus), Crucian carp (C. carassius), common carp and koi carp (Cyprinus carpio), silver carp (Hypophtalmichthys molitrix), Chub (Leuciscus spp), Roach (Rutilus rutilus), Rudd (Scardinius erythrophthalmus), tench (Tinca tinca) Herring (Cupea spp.), whitefish (Coregonus sp.), North African catfish (Clarias gariepinus), Northern pike (Esox lucius) Catfish (Ictalurus pike (Esox Lucius), haddock (Gadus aeglefinus), spp.), Black bullhead (Ameiurus melas), Channel catfish (Ictalurus punctatus), Pangas Pacific cod (G. macrocephalus), Atlantic cod (G. catfish (Pangasius pangasius), Pike perch (Sander lucioperca), Wels catfish (Silurus glanis) morhua), Pacific salmon (Onchorhynchus spp.), Viral -
Predator and Scavenger Aggregation to Discarded By-Catch from Dredge Fisheries: Importance of Damage Level
Journal of Sea Research 51 (2004) 69–76 www.elsevier.com/locate/seares Short Communication Predator and scavenger aggregation to discarded by-catch from dredge fisheries: importance of damage level S.R. Jenkinsa,b,*, C. Mullena, A.R. Branda a Port Erin Marine Laboratory (University of Liverpool), Port Erin, Isle of Man, British Isles, IM9 6JA, UK b Marine Biological Association, Citadel Hill, Plymouth, PL1 2PB, UK Received 23 October 2002; accepted 22 May 2003 Abstract Predator and scavenger aggregation to simulated discards from a scallop dredge fishery was investigated in the north Irish Sea using an in situ underwater video to determine differences in the response to varying levels of discard damage. The rate and magnitude of scavenger and predator aggregation was assessed using three different types of bait, undamaged, lightly damaged and highly damaged individuals of the great scallop Pecten maximus. In each treatment scallops were agitated for 40 minutes in seawater to simulate the dredging process, then subjected to the appropriate damage level before being tethered loosely in front of the video camera. The density of predators and scavengers at undamaged scallops was low and equivalent to recorded periods with no bait. Aggregation of a range of predators and scavengers occurred at damaged bait. During the 24 hour period following baiting there was a trend of increasing magnitude of predator abundance with increasing damage level. However, badly damaged scallops were eaten quickly and lightly damaged scallops attracted a higher overall magnitude of predator abundance over a longer 4 day period. Large scale temporal variability in predator aggregation to simulated discarded biota was examined by comparison of results with those of a previous study, at the same site, 4 years previously. -
1 - R.Int.Drv/Rh/Lbrest 2001-01
Direction des Ressources Vivantes/Ressources Halieutiques/Laboratoire Côtier Brest PITEL Mathilde BERTHOU Patrick FIFAS Spyros fév 2001 - R.INT.DRV/RH/LBREST 2001-01 1 - Dredge design and fisheries Les dragues françaises et la pêcherie 2 - Environnemental impact Impact sur l’environnement 3 - Management Gestion Programme ECODREDGE 1999-2001 Report 1 – Dredge designs and fisheries These 3 reports have been realised during Ecodredge Program (1999-2001) and contribute to a final ECODREDGE report on international dredges designs and fisheries, environnemetal impact and management. REPORT 1 DREDGE DESIGNS AND FISHERIES ECODREDGE Report 1 – Dredge designs and fisheries Table of contents 1 DREDGE DESIGNS....................................................................................... 5 1.1 Manual dredges for sea-shore fishing................................................................... 7 1.1.1 Recreational fisheries....................................................................................... 7 1.1.2 Professional fisheries........................................................................................ 7 1.2 Flexible Dredges for King scallops (Pecten maximus)......................................... 9 1.3 Flexible and rigid dredges for Warty venus (Venus verrucosa) ....................... 14 1.4 Flexible Dredge for Queen scallops (Chlamys varia, Chlamys opercularia)..... 18 1.5 Rigid Dredges for small bivalves......................................................................... 19 1.6 Flexible Dredge for Mussels -
Determination of the Abundance and Population Structure of Buccinum Undatum in North Wales
Determination of the Abundance and Population Structure of Buccinum undatum in North Wales Zara Turtle Marine Environmental Protection MSc Redacted version September 2014 School of Ocean Sciences Bangor University Bangor University Bangor Gwynedd Wales LL57 2DG Declaration This work has not previously been accepted in substance for any degree and is not being currently submitted for any degree. This dissertation is being submitted in partial fulfilment of the requirement of the M.Sc. in Marine Environmental Protection. The dissertation is the result of my own independent work / investigation, except where otherwise stated. Other sources are acknowledged by footnotes giving explicit references and a bibliography is appended. I hereby give consent for my dissertation, if accepted, to be made available for photocopying and for inter-library loan, and the title and summary to be made available to outside organisations. Signed: Date: 12/09/2014 i Determination of the Abundance and Population Structure of Buccinum undatum in North Wales Zara Turtle Abstract A mark-recapture study and fisheries data analysis for the common whelk, Buccinum undatum, was undertaken for catches on a commercial fishing vessel operating from The fishing location, north Wales, from June-July 2014. Laboratory experiments were conducted on B.undatum to investigate tag retention rates and behavioural responses after being exposed to a number of treatments. Thick rubber bands were found to have a 100 % tag retention rate after four months. Riddling, tagging and air exposure do not affect the behavioural responses of B.undatum. The mark-recapture study was used to estimate population size and movement. 4007 whelks were tagged with thick rubber bands over three tagging events. -
Phylum MOLLUSCA Chitons, Bivalves, Sea Snails, Sea Slugs, Octopus, Squid, Tusk Shell
Phylum MOLLUSCA Chitons, bivalves, sea snails, sea slugs, octopus, squid, tusk shell Bruce Marshall, Steve O’Shea with additional input for squid from Neil Bagley, Peter McMillan, Reyn Naylor, Darren Stevens, Di Tracey Phylum Aplacophora In New Zealand, these are worm-like molluscs found in sandy mud. There is no shell. The tiny MOLLUSCA solenogasters have bristle-like spicules over Chitons, bivalves, sea snails, sea almost the whole body, a groove on the underside of the body, and no gills. The more worm-like slugs, octopus, squid, tusk shells caudofoveates have a groove and fewer spicules but have gills. There are 10 species, 8 undescribed. The mollusca is the second most speciose animal Bivalvia phylum in the sea after Arthropoda. The phylum Clams, mussels, oysters, scallops, etc. The shell is name is taken from the Latin (molluscus, soft), in two halves (valves) connected by a ligament and referring to the soft bodies of these creatures, but hinge and anterior and posterior adductor muscles. most species have some kind of protective shell Gills are well-developed and there is no radula. and hence are called shellfish. Some, like sea There are 680 species, 231 undescribed. slugs, have no shell at all. Most molluscs also have a strap-like ribbon of minute teeth — the Scaphopoda radula — inside the mouth, but this characteristic Tusk shells. The body and head are reduced but Molluscan feature is lacking in clams (bivalves) and there is a foot that is used for burrowing in soft some deep-sea finned octopuses. A significant part sediments. The shell is open at both ends, with of the body is muscular, like the adductor muscles the narrow tip just above the sediment surface for and foot of clams and scallops, the head-foot of respiration. -
Ambient Concentrations of Selected Organochlorines in Estuaries
Ambient concentrations of selected organochlorines in estuaries Organochlorines Programme Ministry for the Environment June 1999 Authors Sue Scobie Simon J Buckland Howard K Ellis Ray T Salter Organochlorines in New Zealand: Ambient concentrations of selected organochlorines in estuaries Published by Ministry for the Environment PO Box 10-362 Wellington ISBN 0 478 09036 6 First published November 1998 Revised June 1999 Printed on elemental chlorine free 50% recycled paper Foreword People around the world are concerned about organochlorine contaminants in the environment. Research has established that even the most remote regions of the world are affected by these persistent chemicals. Organochlorines, as gases or attached to dust, are transported vast distances by air and ocean currents – they have been found even in polar regions. Organochlorines are stored in body fat and accumulate through the food chain. Even a low concentration of emission to the environment can contribute in the long term to significant risks to the health of animals, including birds, marine mammals and humans. The contaminants of concern include dioxins (by-products of combustion and of some industrial processes), PCBs, and a number of chlorinated pesticides (for example, DDT and dieldrin). These chemicals have not been used in New Zealand for many years. But a number of industrial sites are contaminated, and dioxins continue to be released in small but significant quantities. In view of the international concern, the Government decided that we needed better information on the New Zealand situation. The Ministry for the Environment was asked to establish an Organochlorines Programme to carry out research, assess the data, and to consider management issues such as clean up targets and emission control standards. -
Shellfish Size at Maturity Review
Shellfish Size at Maturity Review Contents Introduction ............................................................................................................................................................................................................................................................ 2 American hard-shelled clam (Mercenaria mercenaria) ............................................................................................................................................................................... 3 Crawfish (Palinurus spp.) ................................................................................................................................................................................................................................... 3 Edible/brown crab (Cancer pagurus) ............................................................................................................................................................................................................... 4 Grooved carpetshell clam (Ruditapes decussatus) ..................................................................................................................................................................................... 6 Lobster (Homarus gammarus) ........................................................................................................................................................................................................................... 7 Manila clam (Ruditapes philippinarum) -
Pecten Maximus) Sea-Ranching in Norway – Lessons Learned
Scallop (Pecten maximus) sea-ranching in Norway – lessons learned Ellen Sofie Grefsrud, Tore Strohmeier & Øivind Strand Background - Sea ranching in Norway • 1990-1997: Program to develop and encourage sea ranching (PUSH) • Focus on four species • Atlantic salmon (Salmo salar) • Atlantic cod (Gadus morhua) • Arctic char (Salvelinus alpinus) • European lobster (Homarus gammarus) • Only lobster showed an economic potential Grefsrud et. al, 6th ISSESR, 11-14 November, Sarasota FL, USA Background - Scallop sea ranching • 1980-90’s – a growing interest on scallop Pecten maximus cultivation in Norway • Based on suspended culture (1980’s) – labour costs high • European concensus that seeding on bottom was the most viable option • First experimental releases i Norway in mid-1990’s Photo: IMR Photo: IMR Grefsrud et. al, 6th ISSESR, 11-14 November, Sarasota FL, USA Production model Pecten maximus • Hatchery + nursery – larvae + 2-20 mm shell height • Intermediate culture – 20-55 mm • Grow-out on seabed – 55->100 mm Photo: IMR Three production steps to lower risk for investors and increase the profit in each step Time aspect – four-five years from hatchery to market sized scallops Grefsrud et. al, 6th ISSESR, 11-14 November, Sarasota FL, USA Hatchery + nursery • Established a commercial hatchery, Scalpro Photo: S. Andersen • Industry + research developed methodolgy for producing spat on a commercial scale • Larvae phase • Antibiotics and probiotica to prevent bacterial outbreaks (early phase) • Continous flow-through in larvae tank and increased volume • No use of antibiotics in commercial production • From hatching to spat in about three weeks Photo: IMR Grefsrud et. al, 6th ISSESR, 11-14 November, Sarasota FL, USA Hatchery + nursery • Transferred from hatchery to nursery in the sea at 2-4 mm • Land based race-way system – 2-20 mm Photo: IMR • Flow-through filtered sea water • Reduced predation and fouling • The commercial hatchery, Scalpro, covered both the hatchey and nursery phase Photo: IMR Grefsrud et. -
Amnesic Shellfish Poisoning Toxins in Bivalve Molluscs in Ireland
Amnesic shellfish poisoning toxins in bivalve molluscs in Ireland Kevin J. Jamesa,*, Marion Gillmana,Mo´nica Ferna´ndez Amandia, Ame´rico Lo´pez-Riverab, Patricia Ferna´ndez Puentea, Mary Lehanea, Simon Mitrovica, Ambrose Fureya aPROTEOBIO, Mass Spectrometry Centre for Proteomics and Biotoxin Research, Department of Chemistry, Cork Institute of Technology, Bishopstown, Cork, Ireland bMarine Toxins Laboratory, Biomedical Sciences Institute, Faculty of Medicine, University of Chile, Santiago, Chile Abstract In December 1999, domoic acid (DA) a potent neurotoxin, responsible for the syndrome Amnesic Shellfish Poisoning (ASP) was detected for the first time in shellfish harvested in Ireland. Two liquid chromatography (LC) methods were applied to quantify DA in shellfish after sample clean-up using solid-phase extraction (SPE) with strong anion exchange (SAX) cartridges. Toxin detection was achieved using photodiode array ultraviolet (LC-UV) and multiple tandem mass spectrometry (LC-MSn). DA was identified in four species of bivalve shellfish collected along the west and south coastal regions of the Republic of Ireland. The amount of DA that was present in three species was within EU guideline limits for sale of shellfish (20 mg DA/g); mussels (Mytilus edulis), !1.0 mg DA/g; oysters (Crassostrea edulis), !5.0 mg DA/g and razor clams (Ensis siliqua), !0.3 mg DA/g. However, king scallops (Pecten maximus) posed a significant human health hazard with levels up to 240 mg DA/g total tissues. Most scallop samples (55%) contained DA at levels greater than the regulatory limit. The DA levels in the digestive glands of some samples of scallops were among the highest that have ever been recorded (2820 mg DA/g).