Dear Anonymous Reviewer #2, Thanks for Your Invested Time In

Total Page:16

File Type:pdf, Size:1020Kb

Dear Anonymous Reviewer #2, Thanks for Your Invested Time In Dear Anonymous Reviewer #2, Thanks for your invested time in reading our manuscript and for your many and detailed constructive suggestions. We hope that you will find the new and improved version of the paper satisfactory. Our response is written in bold font directly below your original comments in the text below. We have responded to all suggestions, followed most of them, and clarified the issue if required. We will made an attempt to shorten the paper, but were also told by reviewer #1 to add some text on the tides and seasonal changes in subglacial discharge and AW temperature. These additions hopefully contribute to the novelty of our work. Best regards, Philipp Anhaus, Lars H. Smedsrud, Marius Årthun, and Fiammetta Straneo Major points 1) Ice-tongue melt-time projection The ice-tongue melt-time projection neglects all feedbacks in this glacier fjord, including ice dynamics (evolving ice flux across the grounding line, and shape of the cavity), iceberg calving, evolving ocean circulation and wind patterns (and sea ice, if relevant) outside the fjord. The projection also does not take into account, rotational effects, dimensionality of the problem, and temporal changes inside the fjord - I would expect at least seasonal AW temperature/thickness (and presence), and seasonally distributed subglacial discharge to play some role here. As a result, I am not sure the provided ice- tongue melt-time projection has much meaning. If not a coupled glacier-ocean model, I think at least a glacier model should be involved, to produce a somewhat more robust statement about the 79NG stability at present and in the future. We agree that the melt-time estimates neglects a number of the processes listed above, and we only calculated this to illustrate the sensitivity to ocean temperature in an easy-to-understand way. The paragraph will be rewritten to make this more clear. We will include new runs that includes seasonality in subglacial discharge and AW temperature/ layer thickness. These are both highly uncertain. The subglacial discharge seasonal variation has an overall small contribution, and this is also the case with the seasonality in the AW temperature/ layer thickness as observed with an Ice Tethered Mooring (ITM, Figure S6). The ITM was deployed on a 1.35 m thick ice floe in a rift 15 km up-glacier from the northern terminus of the 79NG ice tongue during the ARK-XXX/2 (PS100) cruise on the R/V Polarstern (Kanzow, 2017) on August 23, 2016 at 79° 41.0 N, 20° 20.9 W. Four Aquadopp single-point current profiler from Nortek AS (http://www.nortekusa.com/usa/products/acoustic-doppler-current-meters/aquadopp- current-meter-brochure/view) were attached to the mooring line at initial depths of about 165 m, 250 m, 370 m, and 500 m (https://www.whoi.edu/page.do?pid=154416). The measurements including temperature were averaged over 15 minutes. The data were collected and made available by the Ice-Tethered Profiler Program (Toole et al., 2011; Krishfield et al., 2008) based at the Woods Hole Oceanographic Institution (http://www.whoi.edu/itp). 2) New insights The main focus of the manuscript is on assessing sensitivity of the plume model to its parameters - but I am not sure it provides any new insights or conclusions. I am also not sure it provides any new insights on the processes driving submarine melting - but is it possible that I missed it - it would be helpful if the authors clarified what the contributions are and how they differ from previous studies. Here are a few studies (not referenced here) that have done this before and more exhaustively: Carroll et al 2015, and 2016, Sciascia 2013, Beckmann et al 2018. As it stands, I think the presented plume model application to 79NG is within the parameter range studied previously. If not, it would be good to clarify that. The main result (linear scaling of melt rate with AW temperature) is consistent with other studies in Greenland glaciers, and as mentioned even in the discussion here it maybe more of a property of the plume model itself, than anything else. The main goal of the paper is to estimate the sensitivity of ocean driven melting of 79NG. But to find this sensitivity we had to find a realistic set of parameters. We agree that the main finding appears to be consistent with earlier studies, but this is a good thing, because there are so few observations available of 79NG. So, despite the limited observations, results appear sound. We have further found that melting is in-sensitive to a large range in subglacial discharge (from RACMO2.3p2), and that tides are likely too slow to contribute much to the melting. Overall the sensitivity to AW temperature (from ECCOv4) seems large, and the present AW presence already melts the 79NG quite effectively. We are thankful for the suggested new references that we have investigated and some will be included in the new version of the manuscript. They largely describe comparable results, but for other areas, or in a more general way using parameters not specific for the 79NG configuration. 3) References The manuscript is not very carefully referenced. Although there are a lot of references, the choices are sometimes quite arbitrary. Given this is primarily a sensitivity study of the plume model - it should be clear how the findings here differ from other (often more complete and insightful) sensitivity studies of the plume model. Modelling studies are at times used as references where one would expect a reference for observations. We are sorry to learn that you find other studies more complete and full of insight, but hold that we have also found some interesting results that will be useful. We will update the citations in many places, and include the results on tides and seasonality in subglacial discharge and AW temperature/ layer thickness – so the novelty should be improved. 4) Structure I feel the manuscript is written quite confusingly and could use a bit of reorganization. Description and interpretation are often mixed without a clear distinction. Although I have quite a few in-line comments and clarification suggestions below, I feel that for what the manuscript does, it could be half its length, and more to the point. A lot of the confusion arises because of the poor organization. Here are some suggestions for restructuring: *Include a background section (could be part of introduction) - where all relevant information about the region and glacier is summarized and refer to it whenever necessary, instead of giving background throughout the manuscript, sometimes repetitively, sometimes not at all. Thanks for the constructive suggestions on improving the structure of our paper. We will try to follow your suggestions by moving the first paragraph of the results chapter which addresses the hydrography at the 79NG (Wilson and Straneo, 2015) to the background in the introduction. Otherwise the background in the introduction is fairly short and contains the relevant information. The rest is methods, new results, and discussion of our results. We will attempt to delete some details about the model parameters, and focus more on the results in the present version. *Clearly describe the experiment setup in the methods section, motivate and justify these experiment choices and clarify what you are trying to achieve. State all the assumptions in this section. At present, while there is discussion of sensitivity to some parameters in the end, there are many model choices for which there is no reasoning/explanation provided These are indeed general and good rules to follow, and we will follow most of the specific suggestions. We will merge the content of Table 2 in Table 1 in the methods section in order to describe all model parameters in this section instead of having this separated. The “problem” arises here because some model “choices” are indeed results, and needed some discussion. What we have provided in the methods section is the model equations and the STANDARD values for the model parameters. These are our best choice values, and were used for the sensitivity of melt rates towards AW temperature – the main focus. Our best shot at the mean situation is presented in section 3.2 (STANDARD case), and the sensitivity to the ocean forcing in section 3.3 (ocean forcing sensitivity). The detailed testing of the parameters will be shifted to section 3.4 (parametrization). It is probably this section that is thought of as “model choices” – but these are truly unknown, and we had to do extensive testing to find values that we think are representative. *Describe the relevant part of the results (I think currently the result description is quite long, given it doesn’t provide that much new insight) Hopefully people have different interests, and some will find the results regarding plume speed, plume thickness, entrainment rates, drag coefficients, temperature evolution and topographic control for 79NG interesting. No such results are available for 79NG, until now. We agree that the melt rates are probably the most interesting though and some were already presented in Schaffer (2017) and Mayer et al. (2018) but not the extensive testing of the coefficients, the subglacial discharge range we will update now, and the tides we will now describe. The paper is quite compact, and only has 8 figures. Four of them present the melting results. We also have only 3 tables now. *Explain why the results (resulting melt rates in this case) are believable for the base case (present), and only then move on to the results for the future case. We will add a direct comparison with satellite-based melt rates in the new version.
Recommended publications
  • Internal Frost Damage in Concrete - Experimental Studies of Destruction Mechanisms
    Internal frost damage in concrete - experimental studies of destruction mechanisms Fridh, Katja 2005 Link to publication Citation for published version (APA): Fridh, K. (2005). Internal frost damage in concrete - experimental studies of destruction mechanisms. Division of Building Materials, LTH, Lund University. Total number of authors: 1 General rights Unless other specific re-use rights are stated the following general rights apply: Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal Read more about Creative commons licenses: https://creativecommons.org/licenses/ Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. LUND UNIVERSITY PO Box 117 221 00 Lund +46 46-222 00 00 Download date: 09. Oct. 2021 LUND INSTITUTE OF TECHNOLOGY LUND UNIVERSITY Division of Building Materials INTERNAL FROST DAMAGE IN CONCRETE Experimental studies of destruction mechanisms Katja Fridh Report TVBM-1023 Doctoral thesis Lund 2005 ISRN LUTVDG/TVBM--05/1023--SE(1-276) ISSN 0348-7911 TVBM ISBN 91-628-6558-7 Lund Institute of Technology Telephone: 46-46-2227415 Division of Building Materials Telefax: 46-46-2224427 Box 118 www.byggnadsmaterial.lth.se SE-221 00 Lund, Sweden Preface The work presented here was carried out at the Division of Building Materials at the Lund Institute of Technology.
    [Show full text]
  • An Experimental Study of Ice-Bed Separation During Glacial Sliding Benjamin Brett Etp Ersen Iowa State University
    Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2012 An experimental study of ice-bed separation during glacial sliding Benjamin Brett etP ersen Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Geology Commons, and the Geophysics and Seismology Commons Recommended Citation Petersen, Benjamin Brett, "An experimental study of ice-bed separation during glacial sliding" (2012). Graduate Theses and Dissertations. 12701. https://lib.dr.iastate.edu/etd/12701 This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. An experimental study of ice-bed separation during glacial sliding by Benjamin Brett Petersen A thesis submitted to the graduate faculty in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Major: Geology Program of Study Committee: Neal R. Iverson, Major Professor Igor Beresnev Carl E. Jacobson Iowa State University Ames, Iowa 2012 Copyright © Benjamin Brett Petersen, 2012. All rights reserved. ii TABLE OF CONTENTS ACKNOWLEDGMENTS iii ABSTRACT iv CHAPTER 1. INTRODUCTION 1 1.1 Ice-bed separation 1 1.2 Sliding models 2 1.3 Hydrology models 5 1.4 Quarrying 8 1.5 Experimental studies of cavitation 9 1.6 Motivation and objectives 10 CHAPTER 2. METHODS 12 2.1 The ring-shear device 12 2.2 Procedure 19 2.3 Data processing 25 CHAPTER 3.
    [Show full text]
  • Reconstructing the Confluence Zone Between Laurentide and Cordilleran Ice Sheets Along the Rocky Mountain Foothills, Southwest Alberta
    This is a repository copy of Reconstructing the confluence zone between Laurentide and Cordilleran ice sheets along the Rocky Mountain Foothills, southwest Alberta. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/105138/ Version: Accepted Version Article: Utting, D., Atkinson, N., Pawley, S. et al. (1 more author) (2016) Reconstructing the confluence zone between Laurentide and Cordilleran ice sheets along the Rocky Mountain Foothills, southwest Alberta. Journal of Quaternary Science, 31 (7). pp. 769-787. ISSN 0267-8179 https://doi.org/10.1002/jqs.2903 Reuse Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher’s website. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ Reconstructing the confluence zone between Laurentide and Cordilleran ice sheets along the Rocky Mountain Foothills, south-west Alberta Daniel J. Utting1, Nigel Atkinson1, Steven Pawley1, Stephen J.
    [Show full text]
  • Ice Crystal Growth Through Nonbasal Plane Adsorption of Antifreeze Proteins
    Blocking rapid ice crystal growth through nonbasal plane adsorption of antifreeze proteins Luuk L. C. Olijvea,b, Konrad Meisterc, Arthur L. DeVriesd, John G. Dumane, Shuaiqi Guof,g, Huib J. Bakkerc, and Ilja K. Voetsa,b,h,1 aInstitute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands; bLaboratory of Macromolecular and Organic Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands; cInstitute for Atomic and Molecular Physics, Foundation for Fundamental Research on Matter, 1098 XG Amsterdam, The Netherlands; dDepartment of Animal Biology, University of Illinois at Urbana–Champaign, Urbana, IL 61801; eDepartment of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556; fProtein Function Discovery Group, Queen’s University, Kingston, ON, Canada K7l 3N6; gDepartment of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON, Canada K7l 3N6; and hLaboratory of Physical Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands Edited by Pablo G. Debenedetti, Princeton University, Princeton, NJ, and approved January 26, 2016 (received for review December 14, 2015) Antifreeze proteins (AFPs) are a unique class of proteins that bind AFPs also target different—sometimes multiple—ice crystal planes, to growing ice crystal surfaces and arrest further ice growth. AFPs including prism, pyramidal, and basal faces (Fig. 1) (13). Recent have gained a large interest for their use in antifreeze formula- Monte Carlo and molecular dynamics simulations confirm this tions for water-based materials, such as foods, waterborne paints, specificity (14–16). and organ transplants. Instead of commonly used colligative AFPs exhibit two forms of activities.
    [Show full text]
  • CAT — Creative Authors' Treasury
    SCIO WRITERS CLUB December 2016 Volume 5, Issue 2 Elementary CAT — Creative Authors’ Treasury Winter Edition— Inside this issue: Winter Snow Winter Snow 1 Winter is Coming Winter Snow Winter Oh, so much snow Thank You 2 Who would ever know how I Like People No, no, no too much snow, why? Our river is going to over flow from snow So much depends The Winter Sorrow 3 It’s too much for our shovels to handle The Cabin We can have snow, not too much Winter Snow is falling down fast Acrostic Poems 4 It is vast Sled 6 By Noah Little Pigs 9 Ginger Bread Guys Winter is Coming Brrr feel that cold wind Snowathysis 10 That means winter is coming Snow 12 With its great Christmas cheer The Winter Race So get out your coats Puzzle Page 13 Because winter is on the way. The Snowman 14 By Lillian Cline Page 2 CAT — Creative Authors’ Treasury Winter Winter is here Winter is the coldest time of year Winter is like ice Winter is the best time of year Snow is cold Winter is cold all around I Like By Kiara Grover I like my family I like my brothers I like my life I like my friend Thank You I like the snow Thank you! I like Christmas Thank You, for being there for me Thank You, for loving me Thank You, for taking care of me By Cameron Halsey And most of all, thank You for keeping a smile on my face By Alivia Thomason People People There’s people just like you and me Short people, tall people, skinny people, fat people, bald people, hairy people, short hair people, Long haired people, fashion people, old people, young people, rich people, poor people, people with hats, people with no hats, smart people, people with a job, cool people, not cool people, mean people, nice people and so many more people like me don’t judge anyone no matter what By Emma Eck Page 3 So much depends upon The Cabin So much depends upon A Christmas present In the woods To cherish, and keep, Where it was snowing Until the end of time A cabin was lit up The best present ever With Christmas lights Oh thank you, Dad.
    [Show full text]
  • Antarctic Peninsula the Extended Expedition to the White Continent 1 to 16 January 2013
    ANTA RCTIC PENINSULA T HE E XTENDED EXP EDITION TO THE WHITE C ONTINENT C HEESEMANS’ E C OLOGY S AFARIS E XPEDITION L OG 2013 CHEESEMANS’ ECOLOGY SAFARIS EXPEDITION LOG Antarctic Peninsula The Extended Expedition to the White Continent 1 to 16 January 2013 Markus Eichenberger Willian Draisma Willian Draisma Designed by Debbie Thompson and Kate Spencer Dailies coordinated by Joe Kaplan and written by Tom Fleischner, Jessica Joganic, Rosemary Joganic, Joe Kaplan, Samantha Oester, Christina Prahl, Clemens Vanderwerf, and Shirley West; with contributions from other participants Images by passengers and sta as credited Cover Photo Almirante Brown By Kathy Richardson Back Cover Photo Grandidier Channel By Dustin Richards This Page Photo Almirante Brown By Willian Draisma COPYRIGHT NOTICE Copyright ©2013 Cheesemans’ Ecology Safaris Photographers hold the copyright to their work. ii TABLE OF CONTENTS INTRODUCTION Introduction 1 For over twenty years, Cheesemans’ Ecology Safaris has op- The Expedition 2 erated the longest, most in-depth expeditions to the Ant- arctic region, a destination of supreme splendor and seren- Ushuaia and Embarkation 1 January 4 ity that deserves no less. We are honored that each of you At Sea to The Peninsula 2 January 6 chose to travel with us on this lifetime journey. Much time Half Moon Island 3 January 8 and e ort was invested, most of it “behind the scenes,” to ensure that you had the same life altering experience that Cierva Cove and Danco Island 4 January 10 so many of our previous expedition participants a rm. Cuverville Island and Port Lockroy 5 January 12 On 31 December we celebrated New Year’s Eve in Ushuaia, Antarctic Circle and Detaille Island 6 January 16 Argentina, and then boarded our ship the Ortelius the fol- Hugh Rose David Meeks Petermann and Booth Islands 7 January 18 lowing morning, sailing 2,337 miles over the next 16 days, with 97 passengers, 13 Paradise Bay and Almirante Brown 8 January 22 expedition sta , and the hardworking ship’s crew.
    [Show full text]
  • A Simple Guide to Roofing
    a simple guide to roofing 21 Pages of tips to avoid costly mistakes Notes How to choose the Right Contractor? for your project It’s important to recognize that your projects success is not simply how many shingles, and how much labour, and the price you paid. It’s in the preparation process before and after. You are trusting this to the contractor, and before you spend your hard earned money we strongly recommended that you read this guide book before beginning your contractor selection process. Remember! You are trusting your most expensive asset to a contractor who is TEARING the roof off of your home! Most common BBB complaints: of the time 33% 7% contractor cannot even be found of the time the contractor or contacted to does not respond to complaint. request a response! Some important questions to ask: Are they using employees or subcontractors? Insurance is very important. Subcontractors are not insured by the company. They may provide an estimate that SAYS they will only use fully insured sub-contractors, and even show a copy of the agree- ment their make their subcontractors sign. However, neither of these is a confirmation that the contrac- tor is actually presently insured! This goes for manufacturer certifications as well! Ask for proof! Do not feel uneasy asking for this, as it is not unreasonable for you to be concerned. The professional contractor will be ready to have this information available. The true professional will appreciate that you are an educated customer that values the extra measures they have taken to protect YOU - the home owner.
    [Show full text]
  • The Arctic Game
    University of Denver Digital Commons @ DU Electronic Theses and Dissertations Graduate Studies 1-1-2012 The Arctic Game Sarah E. Nuernberger University of Denver Follow this and additional works at: https://digitalcommons.du.edu/etd Part of the Climate Commons, and the International Relations Commons Recommended Citation Nuernberger, Sarah E., "The Arctic Game" (2012). Electronic Theses and Dissertations. 894. https://digitalcommons.du.edu/etd/894 This Thesis is brought to you for free and open access by the Graduate Studies at Digital Commons @ DU. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Digital Commons @ DU. For more information, please contact [email protected],[email protected]. THE ARCTIC GAME __________ A Thesis Presented to the Faculty of the Josef Korbel School of International Studies University of Denver __________ In Partial Fulfillment of the Requirements for the Degree Master of Arts __________ by Sarah E. Nuernberger June 2012 Advisor: Dr. Dale Rothman ©Copyright by Sarah E. Nuernberger 2012 All Rights Reserved Author: Sarah E. Nuernberger Title: THE ARCTIC GAME Advisor: Dr. Dale Rothman Degree Date: June 2012 Abstract Since outsiders first visited the Arctic, they have believed in man’s ability to conquer the region. Today’s Arctic conquest is not one of heroic exploration, but rather one of ownership and exploitation. This paper illustrates contestation in the Arctic through the metaphor of a game, with attendant prizes, players, and rules. It focuses on how to prevent the future destruction of the Arctic given the interactions of the Arctic’s landscape, prizes, players, and current management frameworks.
    [Show full text]
  • High Arctic Sovereignty Revisited
    ARCTIC VOL. 56, NO. 1 (MARCH 2003) P. 101–109 InfoNorth The Muskox Patrol: High Arctic Sovereignty Revisited by Peter Schledermann HE ROLE OF THE ROYAL CANADIAN MOUNTED POLICE Under Sverdrup’s hugely successful leadership, mem- (RCMP) in the Canadian government’s quest to bers of the Norwegian expedition spent four years map- T secure international recognition of its claims to ping and surveying large, often unknown portions of the sovereignty over the High Arctic islands is a chapter of High Arctic islands. The only people they encountered Canadian history rarely visited. Yet the sovereignty battle were North Greenlandic Inughuit who had crossed Smith over a group of Arctic islands few can even name was the Sound to assist the American explorer Robert Peary in his stuff of high-stakes political poker: bluff indifference mixed quest to reach the North Pole. When the expedition re- with sudden bursts of national interest, courage, hardships, turned to Norway in 1902, Sverdrup began what would and dedication of a high order. Canadian government become a lifelong, personal struggle to press his govern- activities in the High Arctic between 1900 and 1933 were ment into pursuing the claim he had set in motion. While carried out almost exclusively in response to the real or the Norwegian government expressed little official inter- perceived intentions of other nations to challenge Canada’s est in the matter, the Dominion of Canada government sovereignty claims. This story is currently being presented took the claim far more seriously. For centuries, American as a proposal for a documentary film, “The Muskox Pa- and European whalers and explorers had frequented Arctic trol,” by Ole Gjerstad and Peter Schledermann.
    [Show full text]
  • Sostratus Colony of Alpha Rho Chi Fraternity
    sostratus colony of alpha rho chi fraternity 1 preamble 2 acknowledgments 3 about sostratus & the beacon 5 colony history 13 calendar of events 15 constitution 21 bylaws 31 minutes 98 financial records 102 membership records 103 incorporation documents 108 university documents 111 contact information chapter petition We, the pledges of Alpha Rho Chi Fraternity at Sostratus Colony, hereby request that this Petition to Form a Chapter of said Fraternity be examined. Having fulfilled the requirements given us by the Grand Council of Alpha Rho Chi Fraternity, we request that the Grand Council and the several Chapters of Alpha Rho Chi Fraternity examine and test this, our Petition to Form a Chapter, as evidence of our efforts and of our worthiness to be admitted as Brothers. Therefore, we hereby submit this Petition to the Grand Council and to the several Chapters of Alpha Rho Chi Fraternity, in full faith that it will be examined and tested in accordance with the traditions and regulations of said Fraternity. In witness whereof we have set our hands, this 10th day of February 2009. 1 petition Petition Chair: Jamie Millard Petition Editor: Craig Pontius Cadency Design: Josh Mantyla Text/Photo Submission: Wellbe Bartsma, Paul Ellis, David Freeman, Mark Lo, Josh Mantyla, Emily Pinney, Craig Pontius, & Jesse Wolfe Graphic Design: Jamie Millard & Craig Pontius colonization The colony wishes to thank our pledge trainer, Brother Camille Ganir, for all her efforts and patience with us during this process. We could not have done this without you. We also thank Brothers Laura Schmidt, Charles “Chooch” Pickard, and Dana Hennis for traveling all the way to Pullman to pledge our colony, as well as for all the help they have provided during the colonization process.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 6,391,224 B1 Wowk (45) Date of Patent: May 21, 2002
    USOO6391 224B1 (12) United States Patent (10) Patent No.: US 6,391,224 B1 WOwk (45) Date of Patent: May 21, 2002 (54) POLYVINYLALCOHOL COMPOUNDS FOR Gregory M. Fahy et al., Physical Problems with the Vitri INHIBITION OF ICE GROWTH fication of Large Biological Systems, Cryobiology, Vol. 27, 1990, pp. 492–510. (no month). (75) Inventor: Brian Wowk, Corona, CA (US) Robin L. Sutton et al., Devitrification in Butane-2,3-Diol Solutions Containing Anti-Freeze Peptide, Cryo-Letters, (73) Assignee: 21' Century Medicine, Inc., Rancho vol. 14, 1993, pp. 13-20. (no month). Cucamonga, CA (US) S. Naitana et al., Polyvinyl alcohol as a defined substitute for Serum in Vitrification and warming Solutions to cryopreserve * ) Notice: Subject to anyy disclaimer, the term of this Ovine embryos at different Stages of development, Animal patent is extended or adjusted under 35 Reproduction Science, vol. 48, 1997, pp. 247-256. (no U.S.C. 154(b) by 0 days. month). V. Sommerfeld et al., Cryopreservation of Bovine in Vitro (21) Appl. No.: 09/400,791 Produced Embryos. Using Ethylene Glycol in Controlled Freezing or Vitrification, Cryobiology, vol. 38, 1999, pp. (22) Filed: Sep. 21, 1999 95-195. (no month). Related U.S. Application Data XP-002131673, Zh Nagano-Ken Nokyo Chiki Kaihatsu (60) Provisional application No. 60/143,587, filed on Jul. 13, Kiko, Database WPI, Derwent Publications Ltd., London, 1999, provisional application No. 60/128,142, filed on Apr. GB, Dec. 14, 1993, 2 pages. 7, 1999, provisional application No. 60/127,158, filed on XP-002131762, S. Naitana et al., Polyvinyl alcohol as a Mar.
    [Show full text]
  • Iñupiatun Uqaluit Taniktun Sivunniuġutiŋit North Slope Iñupiaq to English Dictionary
    Iñupiatun Uqaluit Taniktun Sivunniuġutiŋit North Slope Iñupiaq to English Dictionary Compiled by Edna Ahgeak MacLean Alaska Native Languages Archives University of Alaska Fairbanks 2012 ©2012 Alaska Native Languages Archives, University of Alaska Fairbanks Printed in the United States of America All rights reserved Library of Congress Cataloging-in-Publication data MacLean, Edna Ahgeak, 1944- Iñupiatun Uqaluit Taniktun Sivunniuġutiŋit North Slope Iñupiaq to English Dictionary / compiled by Edna Ahgeak MacLean. Includes bibliographical references and an English wordfinder list. ISBN # 1. Iñupiaq language – Dictionaries – English I. Title Ms., item IN(N)971M2010. Fairbanks: Alaska Native Language Archive. This work was supported in part jointly by the National Science Foundation (Grant No.?), the President’s Office of the University of Alaska, and the North Slope Borough Assembly through the North Slope Borough History, Language, and Culture Commission. Barrow, Alaska. First Printing 2012?. ? copies. Address correspondence to: Alaska Native Languages Archives University of Alaska PO Box 757680 Fairbanks, Alaska 99775 Dedicated To Dr. Michael Krauss In Recognition of his Leadership in the Retention, Maintenance and Preservation of Alaska’s Native Languages Also Dedicated To All Iñupiat For Keeping the Iñupiaq Culture Alive and Vibrant And to my Inspiration and Tutaaluuraq Gwendolyn Sirrouna MacLean APPENDIX 6 Sikukun Taggisit Ice Terms Sixty-five (65) terms for ice are in this list. Sixteen (16) of which are based on the term siku “ice”.
    [Show full text]