Topics in Logic Proof Theory
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Corcoran-Smiley Interpretation of Aristotle's Syllogistic As
November 11, 2013 15:31 History and Philosophy of Logic Aristotelian_syllogisms_HPL_house_style_color HISTORY AND PHILOSOPHY OF LOGIC, 00 (Month 200x), 1{27 Aristotle's Syllogistic and Core Logic by Neil Tennant Department of Philosophy The Ohio State University Columbus, Ohio 43210 email [email protected] Received 00 Month 200x; final version received 00 Month 200x I use the Corcoran-Smiley interpretation of Aristotle's syllogistic as my starting point for an examination of the syllogistic from the vantage point of modern proof theory. I aim to show that fresh logical insights are afforded by a proof-theoretically more systematic account of all four figures. First I regiment the syllogisms in the Gentzen{Prawitz system of natural deduction, using the universal and existential quantifiers of standard first- order logic, and the usual formalizations of Aristotle's sentence-forms. I explain how the syllogistic is a fragment of my (constructive and relevant) system of Core Logic. Then I introduce my main innovation: the use of binary quantifiers, governed by introduction and elimination rules. The syllogisms in all four figures are re-proved in the binary system, and are thereby revealed as all on a par with each other. I conclude with some comments and results about grammatical generativity, ecthesis, perfect validity, skeletal validity and Aristotle's chain principle. 1. Introduction: the Corcoran-Smiley interpretation of Aristotle's syllogistic as concerned with deductions Two influential articles, Corcoran 1972 and Smiley 1973, convincingly argued that Aristotle's syllogistic logic anticipated the twentieth century's systematizations of logic in terms of natural deductions. They also showed how Aristotle in effect advanced a completeness proof for his deductive system. -
Does Reductive Proof Theory Have a Viable Rationale?
DOES REDUCTIVE PROOF THEORY HAVE A VIABLE RATIONALE? Solomon Feferman Abstract The goals of reduction and reductionism in the natural sciences are mainly explanatory in character, while those in mathematics are primarily foundational. In contrast to global reductionist programs which aim to reduce all of mathematics to one supposedly “univer- sal” system or foundational scheme, reductive proof theory pursues local reductions of one formal system to another which is more jus- tified in some sense. In this direction, two specific rationales have been proposed as aims for reductive proof theory, the constructive consistency-proof rationale and the foundational reduction rationale. However, recent advances in proof theory force one to consider the viability of these rationales. Despite the genuine problems of foun- dational significance raised by that work, the paper concludes with a defense of reductive proof theory at a minimum as one of the principal means to lay out what rests on what in mathematics. In an extensive appendix to the paper, various reduction relations between systems are explained and compared, and arguments against proof-theoretic reduction as a “good” reducibility relation are taken up and rebutted. 1 1 Reduction and reductionism in the natural sciencesandinmathematics. The purposes of reduction in the natural sciences and in mathematics are quite different. In the natural sciences, one main purpose is to explain cer- tain phenomena in terms of more basic phenomena, such as the nature of the chemical bond in terms of quantum mechanics, and of macroscopic ge- netics in terms of molecular biology. In mathematics, the main purpose is foundational. This is not to be understood univocally; as I have argued in (Feferman 1984), there are a number of foundational ways that are pursued in practice. -
Notes on Proof Theory
Notes on Proof Theory Master 1 “Informatique”, Univ. Paris 13 Master 2 “Logique Mathématique et Fondements de l’Informatique”, Univ. Paris 7 Damiano Mazza November 2016 1Last edit: March 29, 2021 Contents 1 Propositional Classical Logic 5 1.1 Formulas and truth semantics . 5 1.2 Atomic negation . 8 2 Sequent Calculus 10 2.1 Two-sided formulation . 10 2.2 One-sided formulation . 13 3 First-order Quantification 16 3.1 Formulas and truth semantics . 16 3.2 Sequent calculus . 19 3.3 Ultrafilters . 21 4 Completeness 24 4.1 Exhaustive search . 25 4.2 The completeness proof . 30 5 Undecidability and Incompleteness 33 5.1 Informal computability . 33 5.2 Incompleteness: a road map . 35 5.3 Logical theories . 38 5.4 Arithmetical theories . 40 5.5 The incompleteness theorems . 44 6 Cut Elimination 47 7 Intuitionistic Logic 53 7.1 Sequent calculus . 55 7.2 The relationship between intuitionistic and classical logic . 60 7.3 Minimal logic . 65 8 Natural Deduction 67 8.1 Sequent presentation . 68 8.2 Natural deduction and sequent calculus . 70 8.3 Proof tree presentation . 73 8.3.1 Minimal natural deduction . 73 8.3.2 Intuitionistic natural deduction . 75 1 8.3.3 Classical natural deduction . 75 8.4 Normalization (cut-elimination in natural deduction) . 76 9 The Curry-Howard Correspondence 80 9.1 The simply typed l-calculus . 80 9.2 Product and sum types . 81 10 System F 83 10.1 Intuitionistic second-order propositional logic . 83 10.2 Polymorphic types . 84 10.3 Programming in system F ...................... 85 10.3.1 Free structures . -
Proof Theory of Constructive Systems: Inductive Types and Univalence
Proof Theory of Constructive Systems: Inductive Types and Univalence Michael Rathjen Department of Pure Mathematics University of Leeds Leeds LS2 9JT, England [email protected] Abstract In Feferman’s work, explicit mathematics and theories of generalized inductive definitions play a cen- tral role. One objective of this article is to describe the connections with Martin-L¨of type theory and constructive Zermelo-Fraenkel set theory. Proof theory has contributed to a deeper grasp of the rela- tionship between different frameworks for constructive mathematics. Some of the reductions are known only through ordinal-theoretic characterizations. The paper also addresses the strength of Voevodsky’s univalence axiom. A further goal is to investigate the strength of intuitionistic theories of generalized inductive definitions in the framework of intuitionistic explicit mathematics that lie beyond the reach of Martin-L¨of type theory. Key words: Explicit mathematics, constructive Zermelo-Fraenkel set theory, Martin-L¨of type theory, univalence axiom, proof-theoretic strength MSC 03F30 03F50 03C62 1 Introduction Intuitionistic systems of inductive definitions have figured prominently in Solomon Feferman’s program of reducing classical subsystems of analysis and theories of iterated inductive definitions to constructive theories of various kinds. In the special case of classical theories of finitely as well as transfinitely iterated inductive definitions, where the iteration occurs along a computable well-ordering, the program was mainly completed by Buchholz, Pohlers, and Sieg more than 30 years ago (see [13, 19]). For stronger theories of inductive 1 i definitions such as those based on Feferman’s intutitionic Explicit Mathematics (T0) some answers have been provided in the last 10 years while some questions are still open. -
Proof Theory for Modal Logic
Proof theory for modal logic Sara Negri Department of Philosophy 00014 University of Helsinki, Finland e-mail: sara.negri@helsinki.fi Abstract The axiomatic presentation of modal systems and the standard formula- tions of natural deduction and sequent calculus for modal logic are reviewed, together with the difficulties that emerge with these approaches. Generaliza- tions of standard proof systems are then presented. These include, among others, display calculi, hypersequents, and labelled systems, with the latter surveyed from a closer perspective. 1 Introduction In the literature on modal logic, an overall skepticism on the possibility of developing a satisfactory proof theory was widespread until recently. This attitude was often accompanied by a belief in the superiority of model-theoretic methods over proof- theoretic ones. Standard proof systems have been shown insufficient for modal logic: Natural deduction presentations of even the most basic modal logics present difficulties that have been resolved only partially, and the same has happened with sequent calculus. These traditional proof system have failed to meet in a satisfactory way such basic requirements as analyticity and normalizability of formal derivations. Therefore alternative proof systems have been developed in recent years, with a lot of emphasis on their relative merits and on applications. We review first the axiomatic presentations of modal systems and the standard formulations of natural deduction and sequent calculus for modal logic, and the difficulties that emerge with -
Curtis Frank Review
Curtis Franks, The Autonomy of Mathematical Knowledge: Hilbert’s program revisited. Cambridge University Press, 2009 Reviewed by Solomon Feferman According to Curtis Franks’ preface, this book bundles his historical, philosophical and logical research to center around what he thinks are “the most important and most overlooked aspects of Hilbert’s program … a glaring oversight of one truly unique aspect of Hilbert’s thought,” namely that “questions about mathematics that arise in philosophical reflection⎯questions about how and why its methods work⎯might best be addressed mathematically… Hilbert’s program was primarily an effort to demonstrate that.” The standard “well-rehearsed” story for these oversights is said to be that Hilbert’s philosophical vision was dashed by Gödel’s incompleteness theorems. But Franks argues to the contrary that Gödel’s remarkable early contributions to metamathematics instead drew “significant attention to the then fledgling discipline,” a field that has since proved to be exceptionally productive scientifically (even through the work of such logicians as Tarski, who mocked Hilbert’s program). One may well ask how the author’s effort to put this positive face on the patent failure of Hilbert’s program can possibly succeed in showing that mathematical knowledge is autonomous, that mathematics has only to look to itself for its proper foundations. Let us see. The first two chapters of Franks’ elegantly written book (whose text, unfortunately, is marred by numerous typos) are devoted to the development of Hilbert’s “new science” within his overall conception of mathematics and his philosophical naturalism.1 In particular, much of Ch. 2 draws on the Hamburg lectures [Hilbert 1922] in which Hilbert threw down the gauntlet against his primary opponents, the foundationalist skeptics Kronecker, Brouwer and Weyl, and laid out the plans and means 1 Franks takes Hilbert’s famous 1899 work on the foundations of geometry as a point of departure. -
• Hermann Weyll, 1927. Comments on Hilbert's
Hermann Weyll, 1927. Comments on Hilbert's second lecture on the • foundations of mathematics. Response to Hilbert's 1927 lecture. Weyll defends Poincar´ewho had a problem (circularity in the justification) with the with the metamathematical use of mathematical induction. Most important point: in constructive mathematics, the rule of generalization and of induction blend. Paul Bernays, 1927. Appendix to Hilbert's lecture \The foundations • of mathematics". This paper by Bernays presents a proof of Ackermann (second version) of the consistency of a certain system. The proof idea comes from Hilbert but is here formally worked out in a more general setting. The setting is not so general that it comprises all of analysis. Luitzen Egbertus Jan Brouwer, 1927a. Intuitionistic reflections on • formalism. This text is the first paragraph of a longer paper by Brouwer. He comes back to an earlier statement of his that dialogue between logicism (?) and intuitionism is excluded. In this paper his list four point on which formalism and intuitionism could enter a dialogue. The relevant (subjective!) points concern the relation between finite metamathematics and some parts of intuitionism. Wilhelm Ackermann, 1928. On HIlbert's constructoin of the real num- • bers/ I cannot really match the title with the content of the introduction. Probably Hilbert uses primitive recursive functions in constructing his real numbers. Ackermann presents a study of a generalized version of the recursion schema by allowing functions of lower type to occur in the re- cursing definitions. A function is introduced which is shown to be larger than every primitive recursive function. This function can be represented by a type-1 recursion simultaious on two variables. -
Gödel on Finitism, Constructivity and Hilbert's Program
Lieber Herr Bernays!, Lieber Herr Gödel! Gödel on finitism, constructivity and Hilbert’s program Solomon Feferman 1. Gödel, Bernays, and Hilbert. The correspondence between Paul Bernays and Kurt Gödel is one of the most extensive in the two volumes of Gödel’s collected works devoted to his letters of (primarily) scientific, philosophical and historical interest. It ranges from 1930 to 1975 and deals with a rich body of logical and philosophical issues, including the incompleteness theorems, finitism, constructivity, set theory, the philosophy of mathematics, and post- Kantian philosophy, and contains Gödel’s thoughts on many topics that are not expressed elsewhere. In addition, it testifies to their life-long warm personal relationship. I have given a detailed synopsis of the Bernays Gödel correspondence, with explanatory background, in my introductory note to it in Vol. IV of Gödel’s Collected Works, pp. 41- 79.1 My purpose here is to focus on only one group of interrelated topics from these exchanges, namely the light that ittogether with assorted published and unpublished articles and lectures by Gödelthrows on his perennial preoccupations with the limits of finitism, its relations to constructivity, and the significance of his incompleteness theorems for Hilbert’s program.2 In that connection, this piece has an important subtext, namely the shadow of Hilbert that loomed over Gödel from the beginning to the end of his career. 1 The five volumes of Gödel’s Collected Works (1986-2003) are referred to below, respectively, as CW I, II, III, IV and V. CW I consists of the publications 1929-1936, CW II of the publications 1938-1974, CW III of unpublished essays and letters, CW IV of correspondence A-G, and CW V of correspondence H-Z. -
Nonclassical First Order Logics: Semantics and Proof Theory
Nonclassical first order logics: Semantics and proof theory Apostolos Tzimoulis joint work with G. Greco, P. Jipsen, A. Kurz, M. A. Moshier, A. Palmigiano TACL Nice, 20 June 2019 Starting point Question How can we define general relational semantics for arbitrary non-classical first-order logics? I What are the models? I What do quantifiers mean in those models? I What does completeness mean? 2 / 29 Methodology: dual characterizations q Non − classical algebraic Non − classical proof th: semantics first order models Classical algebraic Classical proof th: semantics first order models i 3 / 29 A brief recap on classical first-order logic: Language I Set of relation symbols (Ri)i2I each of finite arity ni. I Set of function symbols ( f j) j2J each of finite arity n j. I Set of constant symbols (ck)k2K (0-ary functions). I Set of variables Var = fv1;:::; vn;:::g. The first-order language L = ((Ri)i2I; ( f j) j2J; (ck)k2K) over Var is built up from terms defined recursively as follows: Trm 3 t ::= vm j ck j f j(t;:::; t): The formulas of first-order logic are defined recursively as follows: L 3 A ::= Ri(t) j t1 = t2 j > j ? j A ^ A j A _ A j :A j 8vmA j 9vmA 4 / 29 A brief recap on classical first-order logic: Meaning The models of a first-order logic L are tuples D D D M = (D; (Ri )i2I; ( f j ) j2J; (ck )k2K) D D D where D is a non-empty set and Ri ; f j ; ck are concrete ni-ary relations over D, n j-ary functions on D and elements of D resp. -
Lorenzen's Proof of Consistency for Elementary Number Theory [With An
Lorenzen’s proof of consistency for elementary number theory Thierry Coquand Computer science and engineering department, University of Gothenburg, Sweden, [email protected]. Stefan Neuwirth Laboratoire de mathématiques de Besançon, Université Bourgogne Franche-Comté, France, [email protected]. Abstract We present a manuscript of Paul Lorenzen that provides a proof of con- sistency for elementary number theory as an application of the construc- tion of the free countably complete pseudocomplemented semilattice over a preordered set. This manuscript rests in the Oskar-Becker-Nachlass at the Philosophisches Archiv of Universität Konstanz, file OB 5-3b-5. It has probably been written between March and May 1944. We also com- pare this proof to Gentzen’s and Novikov’s, and provide a translation of the manuscript. arXiv:2006.08996v1 [math.HO] 16 Jun 2020 Keywords: Paul Lorenzen, consistency of elementary number the- ory, free countably complete pseudocomplemented semilattice, inductive definition, ω-rule. We present a manuscript of Paul Lorenzen that arguably dates back to 1944 and provide an edition and a translation, with the kind permission of Lorenzen’s daughter, Jutta Reinhardt. It provides a constructive proof of consistency for elementary number theory by showing that it is a part of a trivially consistent cut-free calculus. The proof resorts only to the inductive definition of formulas and theorems. More precisely, Lorenzen proves the admissibility of cut by double induction, on the complexity of the cut formula and of the derivations, without using any ordinal assignment, contrary to the presentation of cut elimination in most standard texts on proof theory. -
Common Sense for Concurrency and Strong Paraconsistency Using Unstratified Inference and Reflection
Published in ArXiv http://arxiv.org/abs/0812.4852 http://commonsense.carlhewitt.info Common sense for concurrency and strong paraconsistency using unstratified inference and reflection Carl Hewitt http://carlhewitt.info This paper is dedicated to John McCarthy. Abstract Unstratified Reflection is the Norm....................................... 11 Abstraction and Reification .............................................. 11 This paper develops a strongly paraconsistent formalism (called Direct Logic™) that incorporates the mathematics of Diagonal Argument .......................................................... 12 Computer Science and allows unstratified inference and Logical Fixed Point Theorem ........................................... 12 reflection using mathematical induction for almost all of Disadvantages of stratified metatheories ........................... 12 classical logic to be used. Direct Logic allows mutual Reification Reflection ....................................................... 13 reflection among the mutually chock full of inconsistencies Incompleteness Theorem for Theories of Direct Logic ..... 14 code, documentation, and use cases of large software systems Inconsistency Theorem for Theories of Direct Logic ........ 15 thereby overcoming the limitations of the traditional Tarskian Consequences of Logically Necessary Inconsistency ........ 16 framework of stratified metatheories. Concurrency is the Norm ...................................................... 16 Gödel first formalized and proved that it is not possible -
On Proofs of the Consistency of Arithmetic
STUDIES IN LOGIC, GRAMMAR AND RHETORIC 5 (18) 2002 Roman Murawski Adam Mickiewicz University, Pozna´n ON PROOFS OF THE CONSISTENCY OF ARITHMETIC 1. The main aim and purpose of Hilbert’s programme was to defend the integrity of classical mathematics (refering to the actual infinity) by showing that it is safe and free of any inconsistencies. This problem was formulated by him for the first time in his lecture at the Second International Congress of Mathematicians held in Paris in August 1900 (cf. Hilbert, 1901). Among twenty three problems Hilbert mentioned under number 2 the problem of proving the consistency of axioms of arithmetic (under the name “arithmetic” Hilbert meant number theory and analysis). Hilbert returned to the problem of justification of mathematics in lectures and papers, especially in the twentieth 1, where he tried to describe and to explain the problem more precisely (in particular the methods allowed to be used) and simultaneously presented the partial solutions obtained by his students. Hilbert distinguished between the unproblematic, finitistic part of mathematics and the infinitistic part that needed justification. Finitistic mathematics deals with so called real sentences, which are completely meaningful because they refer only to given concrete objects. Infinitistic mathematics on the other hand deals with so called ideal sentences that contain reference to infinite totalities. It should be justified by finitistic methods – only they can give it security (Sicherheit). Hilbert proposed to base mathematics on finitistic mathematics via proof theory (Beweistheorie). It should be shown that proofs which use ideal elements in order to prove results in the real part of mathematics always yield correct results, more exactly, that (1) finitistic mathematics is conservative over finitistic mathematics with respect to real sentences and (2) the infinitistic 1 More information on this can be found for example in (Mancosu, 1998).