With Ornamented Exotyles

Total Page:16

File Type:pdf, Size:1020Kb

With Ornamented Exotyles Journal of the Marine Biological Association of the United Kingdom, 2017, 97(6), 1351–1406. # Marine Biological Association of the United Kingdom, 2016. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. doi:10.1017/S0025315416000655 Polymastiidae (Demospongiae: Hadromerida) with ornamented exotyles: a review of morphological affinities and description of a new genus and three new species alexander plotkin1, christine morrow2, elena gerasimova3 and hans tore rapp1,4,5 1Department of Biology, University of Bergen, Postbox 7803, 5020 Bergen, Norway, 2Department of Zoology, Ryan Institute, National University of Ireland Galway, University Road, Galway, Ireland, 3Ra˚dgivende Biologer AS, Bredsga˚rden, Bryggen, 5003 Bergen, Norway, 4Centre for Geobiology, University of Bergen, Postbox 7803, 5020 Bergen, Norway, 5Uni Environment, Uni Research AS, Postbox 7810, 5020 Bergen, Norway All polymastiid sponges displaying ornamented exotyles are reviewed and their morphological affinities are reconsidered. The study embraces all known species of Proteleia, Sphaerotylus, Trachyteleia and Tylexocladus as well as several species of Polymastia. A new genus, Koltunia, is established for the Antarctic species Proteleia burtoni based on the unique shape of distal ornamentations of its giant exotyles and on the absence of a spicule palisade in its cortex, a rare feature among the polymastiids. Three new species of Sphaerotylus are described – S. renoufi from the British Isles, S. strobilis from South Africa and S. tjalfei from West Greenland. Transfer of one New Zealand species from Polymastia to Proteleia and of one Chilean species from Polymastia to Sphaerotylus is proposed. The present study provides a background for future integrative phylogenetic analyses based on comprehensive molecular and morphological datasets which should reveal the natural rela- tionships between the polymastiid taxa. Keywords: sponges, Demospongiae, Polymastiidae, morphological affinities, new species Submitted 28 January 2016; accepted 13 April 2016; first published online 24 May 2016 INTRODUCTION species, T. joubini from Azores, which was notable for the denticulate distal ornamentations on its cortical spicules, Sponges of the family Polymastiidae Gray, 1867 have a simple and Sphaerotylus for Vosmaer’s P. capitata, which was charac- spicule assortment which is usually limited to several size terized by the spherical swellings on its projecting spicules. To categories of smooth monactines (Boury-Esnault, 2002). identify these spicules with usual tyles on the proximal However, in addition to these common spicules, some species extremities and ornaments on the distal extremetities protrud- also possess distally ornamented monactines. This additional ing above the sponge surface Topsent used the term exotyle category of spicules was first recorded in polymastiids by introduced by him 2 years earlier (Topsent, 1896) for the Sollas (1882) who noticed the rounded swellings on the similar spicules in Gomphostegia loricata (now Mycale distal tips of projecting monactines in his new species (Rhaphidotheca) loricata, see Van Soest et al., 2015) from Radiella schoenus from the Norwegian coast. Three years the family Mycalidae. later Vosmaer (1885) recorded similar spicules in his new For the time being nine species of Sphaerotylus from species Polymastia capitata from the Arctic. Dendy & Ridley various locations in polar and temperate waters of both hemi- (1886) noted the similarity between R. schoenus and P. capi- spheres, two species of Proteleia from the southern hemi- tata relegating the latter to synonymy with the former. They sphere and two species of Tylexocladus, one from the North also established a new genus, Proteleia, for their new species, Atlantic and the other from the South Pacific are recognized P. sollasi from South Africa, which was distinguished by the as valid (Van Soest et al., 2015). Exotyles have also been grapnel-like distal ornamentations of its protruding spicules. recorded in Trachyteleia stephensi Topsent, 1928 and in two In 1898 Topsent erected two more polymastiid genera dis- New Zealand species of Polymastia Bowerbank, 1864, P. playing ornamented monactines, Tylexocladus for his new tapetum Kelly-Borges & Bergquist, 1997 and P. umbraculum Kelly-Borges & Bergquist, 1997. Affinities between all these taxa have been discussed (Kelly-Borges & Bergquist, 1997; Corresponding author: Boury-Esnault, 2002), but they have never been properly A. Plotkin revised, and there is still no agreement on the differences at Email: [email protected] the generic level. 1351 Downloaded from https://www.cambridge.org/core. IP address: 170.106.202.226, on 29 Sep 2021 at 19:45:59, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0025315416000655 1352 alexander plotkin et al. In this paper we review all known species and varieties of S. exotylotus Koltun, 1970 Proteleia, Sphaerotylus, Trachyteleia and Tylexocladus along S. isidis (Thiele, 1905) comb. nov. with those species of Polymastia which display ornamented S. raphidophora Austin, Ott, Reiswig, Romagosa & McDaniel, exotyles. We establish a new genus, Koltunia gen. nov. for 2014 the Antarctic species Proteleia burtoni Koltun, 1964, describe S. renoufi sp. nov. three new species of Sphaerotylus – from South Africa, Ireland S. sceptrum Koltun, 1970 and West Greenland and propose the transfer of two South S. strobilis sp. nov. Pacific species of Polymastia, one to Sphaerotylus, the other S. tjalfei sp. nov. to Proteleia. Finally, we reconsider the affinities of the S. vanhoeffeni Hentschel, 1914 species studied based on multiple morphological characters. S. verenae Austin, Ott, Reiswig, Romagosa & McDaniel, 2014 Genus Trachyteleia Topsent, 1928 T. stephensi Topsent, 1928 MATERIALS AND METHODS Genus Tylexocladus Topsent, 1898 T. hispidus Le´vi, 1993 This study was based on the type specimens and other T. joubini Topsent, 1898 material stored in Ulster Museum, Belfast (BELUM), Natural Incertae sedis History Museum, London (BMNH), Go¨teborg Natural Polymastia umbraculum Kelly-Borges & Bergquist, 1997 History Museum (GNM), Muse´um National d’Histoire Naturelle, Paris (MNHN), Muse´eOce´anographique de Monaco (MOM), Museum of New Zealand, Te Papa Description of taxa Tongarewa, Wellington (NZNM), National Museum of Family POLYMASTIIDAE Gray, 1867 Natural History, Leiden (RMNH), Smithsonian National Museum of Natural History, Washington (USNM), diagnosis Zoological Institute of Russian Academy of Sciences, Saint- Petersburg (ZIN RAS), Museum fu¨r Naturkunde, Berlin Sponges of massive, encrusting, globular, discoid or peduncu- (ZMB), University Museum of Bergen (ZMBN) and Natural late growth form. Surface slightly velvety to very hispid. History Museum of Denmark, University of Copenhagen Choanosomal skeleton composed of radial megasclere tracts. (ZMUC). Additional fresh material was collected from the A complex specialized cortical skeleton is developed to a Norwegian coast during cruises by the University of Bergen. greater or lesser degree, composed of at least a palisade of The architecture of the sponge skeletons was examined under tylostyles, or oxeas and/or exotyles. Spicules comprise two or light microscope on histological sections prepared on a more size categories and include tylostyles, subtylostyles, precise saw with a diamond wafering blade after embedding strongyloxeas, styles or oxeas. Free spicules are always sponge fragments in epoxy resin as described by Boury- present in the choanosome; they may be intermediary or Esnault et al. (2002), Vacelet (2006) and Boury-Esnault & small tylostyles as well as various microscleres including Be´zac (2007). Spicules were examined under light microscope smooth centrotylote microxeas, acanthose microxeas, raphides and SEM after their isolation from organic matter in nitric in trichodragmata and astrotylostyles. A fringe of long spicules acid following standard procedures. The number of specimens is often present bordering the edge of the body where it is in used for spicule measurements is given in the corresponding contact with the substratum (from Plotkin & Janussen, 2008). section of the description of each species. The number of Genus Koltunia gen. nov. spicules of each category measured in one specimen is indicated as N. Measurements are presented as minimum– type species mean–maximum, unless otherwise indicated. Proteleia burtoni Koltun, 1964 (designation herein). SYSTEMATICS diagnosis Thickly encrusting sponges with shaggy surface. Main choa- Systematic index nosomal skeleton composed of longitudinal tracts of large styles and subtylostyles. These tracts ascend forming cortical Class DEMOSPONGIAE Sollas, 1885 bouquets and a thick surface hispidation. Auxiliary choanoso- Suborder HETEROSCLEROMORPHA Ca´rdenas, Perez & mal skeleton comprises free-scattered small tylostyles. Cortex Boury-Esnault, 2012 and surface hispidation reinforced by small tylostyles and Order POLYMASTIIDA Morrow & Ca´rdenas, 2015 giant exotyles (several mm in length). Distal extremities of Family POLYMASTIIDAE Gray, 1867 the exotyles with several long claws resembling grapnels. Genus Koltunia gen. nov. K. burtoni (Koltun, 1964) comb. nov. etymology Genus Proteleia Dendy & Ridley, 1886 Named after the
Recommended publications
  • E Urban Sanctuary Algae and Marine Invertebrates of Ricketts Point Marine Sanctuary
    !e Urban Sanctuary Algae and Marine Invertebrates of Ricketts Point Marine Sanctuary Jessica Reeves & John Buckeridge Published by: Greypath Productions Marine Care Ricketts Point PO Box 7356, Beaumaris 3193 Copyright © 2012 Marine Care Ricketts Point !is work is copyright. Apart from any use permitted under the Copyright Act 1968, no part may be reproduced by any process without prior written permission of the publisher. Photographs remain copyright of the individual photographers listed. ISBN 978-0-9804483-5-1 Designed and typeset by Anthony Bright Edited by Alison Vaughan Printed by Hawker Brownlow Education Cheltenham, Victoria Cover photo: Rocky reef habitat at Ricketts Point Marine Sanctuary, David Reinhard Contents Introduction v Visiting the Sanctuary vii How to use this book viii Warning viii Habitat ix Depth x Distribution x Abundance xi Reference xi A note on nomenclature xii Acknowledgements xii Species descriptions 1 Algal key 116 Marine invertebrate key 116 Glossary 118 Further reading 120 Index 122 iii Figure 1: Ricketts Point Marine Sanctuary. !e intertidal zone rocky shore platform dominated by the brown alga Hormosira banksii. Photograph: John Buckeridge. iv Introduction Most Australians live near the sea – it is part of our national psyche. We exercise in it, explore it, relax by it, "sh in it – some even paint it – but most of us simply enjoy its changing modes and its fascinating beauty. Ricketts Point Marine Sanctuary comprises 115 hectares of protected marine environment, located o# Beaumaris in Melbourne’s southeast ("gs 1–2). !e sanctuary includes the coastal waters from Table Rock Point to Quiet Corner, from the high tide mark to approximately 400 metres o#shore.
    [Show full text]
  • Sponge Fauna in the Sea of Marmara
    www.trjfas.org ISSN 1303-2712 Turkish Journal of Fisheries and Aquatic Sciences 16: 51-59 (2016) DOI: 10.4194/1303-2712-v16_1_06 RESEARCH PAPER Sponge Fauna in the Sea of Marmara Bülent Topaloğlu1,*, Alper Evcen2, Melih Ertan Çınar2 1 Istanbul University, Department of Marine Biology, Faculty of Fisheries, 34131 Vezneciler, İstanbul, Turkey. 2 Ege University, Department of Hydrobiology, Faculty of Fisheries, 35100 Bornova, İzmir, Turkey. * Corresponding Author: Tel.: +90.533 2157727; Fax: +90.512 40379; Received 04 December 2015 E-mail: [email protected] Accepted 08 February 2016 Abstract Sponge species collected along the coasts of the Sea of the Marmara in 2012-2013 were identified. A total of 30 species belonging to 21 families were found, of which four species (Ascandra contorta, Paraleucilla magna, Raspailia (Parasyringella) agnata and Polymastia penicillus) are new records for the eastern Mediterranean, while six species [A. contorta, P. magna, Chalinula renieroides, P. penicillus, R. (P.) agnata and Spongia (Spongia) nitens] are new records for the marine fauna of Turkey and 12 species are new records for the Sea of Marmara. Sponge specimens were generally collected in shallow water, but two species (Thenea muricata and Rhizaxinella elongata) were found at depths deeper than 100 m. One alien species (P. magna) was found at 10 m depth at station K18 (Büyükada). The morphological and distributional features of the species that are new to the Turkish marine fauna are presented. Keywords: Porifera, Benthos, Invertebrate, Turkish Straits System. Marmara Denizi Sünger Faunası Özet Bu çalışmada, Marmara Denizi ve kıyılarında 2012-2013 yılları arasında toplanan Sünger örnekleri tanımlanmıştır.
    [Show full text]
  • An Annotated Checklist of the Marine Macroinvertebrates of Alaska David T
    NOAA Professional Paper NMFS 19 An annotated checklist of the marine macroinvertebrates of Alaska David T. Drumm • Katherine P. Maslenikov Robert Van Syoc • James W. Orr • Robert R. Lauth Duane E. Stevenson • Theodore W. Pietsch November 2016 U.S. Department of Commerce NOAA Professional Penny Pritzker Secretary of Commerce National Oceanic Papers NMFS and Atmospheric Administration Kathryn D. Sullivan Scientific Editor* Administrator Richard Langton National Marine National Marine Fisheries Service Fisheries Service Northeast Fisheries Science Center Maine Field Station Eileen Sobeck 17 Godfrey Drive, Suite 1 Assistant Administrator Orono, Maine 04473 for Fisheries Associate Editor Kathryn Dennis National Marine Fisheries Service Office of Science and Technology Economics and Social Analysis Division 1845 Wasp Blvd., Bldg. 178 Honolulu, Hawaii 96818 Managing Editor Shelley Arenas National Marine Fisheries Service Scientific Publications Office 7600 Sand Point Way NE Seattle, Washington 98115 Editorial Committee Ann C. Matarese National Marine Fisheries Service James W. Orr National Marine Fisheries Service The NOAA Professional Paper NMFS (ISSN 1931-4590) series is pub- lished by the Scientific Publications Of- *Bruce Mundy (PIFSC) was Scientific Editor during the fice, National Marine Fisheries Service, scientific editing and preparation of this report. NOAA, 7600 Sand Point Way NE, Seattle, WA 98115. The Secretary of Commerce has The NOAA Professional Paper NMFS series carries peer-reviewed, lengthy original determined that the publication of research reports, taxonomic keys, species synopses, flora and fauna studies, and data- this series is necessary in the transac- intensive reports on investigations in fishery science, engineering, and economics. tion of the public business required by law of this Department.
    [Show full text]
  • Fisheries Centre Research Reports 2011 Volume 19 Number 6
    ISSN 1198-6727 Fisheries Centre Research Reports 2011 Volume 19 Number 6 TOO PRECIOUS TO DRILL: THE MARINE BIODIVERSITY OF BELIZE Fisheries Centre, University of British Columbia, Canada TOO PRECIOUS TO DRILL: THE MARINE BIODIVERSITY OF BELIZE edited by Maria Lourdes D. Palomares and Daniel Pauly Fisheries Centre Research Reports 19(6) 175 pages © published 2011 by The Fisheries Centre, University of British Columbia 2202 Main Mall Vancouver, B.C., Canada, V6T 1Z4 ISSN 1198-6727 Fisheries Centre Research Reports 19(6) 2011 TOO PRECIOUS TO DRILL: THE MARINE BIODIVERSITY OF BELIZE edited by Maria Lourdes D. Palomares and Daniel Pauly CONTENTS PAGE DIRECTOR‘S FOREWORD 1 EDITOR‘S PREFACE 2 INTRODUCTION 3 Offshore oil vs 3E‘s (Environment, Economy and Employment) 3 Frank Gordon Kirkwood and Audrey Matura-Shepherd The Belize Barrier Reef: a World Heritage Site 8 Janet Gibson BIODIVERSITY 14 Threats to coastal dolphins from oil exploration, drilling and spills off the coast of Belize 14 Ellen Hines The fate of manatees in Belize 19 Nicole Auil Gomez Status and distribution of seabirds in Belize: threats and conservation opportunities 25 H. Lee Jones and Philip Balderamos Potential threats of marine oil drilling for the seabirds of Belize 34 Michelle Paleczny The elasmobranchs of Glover‘s Reef Marine Reserve and other sites in northern and central Belize 38 Demian Chapman, Elizabeth Babcock, Debra Abercrombie, Mark Bond and Ellen Pikitch Snapper and grouper assemblages of Belize: potential impacts from oil drilling 43 William Heyman Endemic marine fishes of Belize: evidence of isolation in a unique ecological region 48 Phillip Lobel and Lisa K.
    [Show full text]
  • Sulfated Steroid–Amino Acid Conjugates from the Irish Marine Sponge Polymastia Boletiformis
    Mar. Drugs 2015, 13, 1632-1646; doi:10.3390/md13041632 OPEN ACCESS marine drugs ISSN 1660-3397 www.mdpi.com/journal/marinedrugs Communication Sulfated Steroid–Amino Acid Conjugates from the Irish Marine Sponge Polymastia boletiformis Vangelis Smyrniotopoulos 1, Margaret Rae 2,3, Sylvia Soldatou 1, Yuanqing Ding 4, Carsten W. Wolff 5, Grace McCormack 5, Christina M. Coleman 4, Daneel Ferreira 4 and Deniz Tasdemir 1,†,* 1 School of Chemistry, National University of Ireland Galway, University Road, Galway, Ireland; E-Mails: [email protected] (V.S.); [email protected] (S.S.) 2 Ryan Institute, National University of Ireland Galway, University Road, Galway, Ireland; E-Mail: [email protected] 3 Marine Biodiscovery Laboratory, Marine Institute, Rinville, Oranmore, Co. Galway, Ireland 4 Department of BioMolecular Sciences, Division of Pharmacognosy, and the National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, MS 38677, USA; E-Mails: [email protected] (Y.D.); [email protected] (C.M.C.); [email protected] (D.F.) 5 Zoology, Ryan Institute, School of Natural Sciences, National University of Ireland Galway, University Road, Galway, Ireland; E-Mails: [email protected] (C.W.W.); [email protected] (G.M.) † Current Address: GEOMAR Helmholtz Centre for Ocean Research Kiel, Marine Natural Products Chemistry, Am Kiel-Kanal 44, Kiel 24106, Germany. * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +49-431-600-4430; Fax: +49-431-600-4441. Academic Editor: Miguel O. Mitchell Received: 12 December 2014 / Accepted: 16 March 2015 / Published: 24 March 2015 Abstract: Antifungal bioactivity-guided fractionation of the organic extract of the sponge Polymastia boletiformis, collected from the west coast of Ireland, led to the isolation of two new sulfated steroid-amino acid conjugates (1 and 2).
    [Show full text]
  • (Demospongiae: Hadromerida) with Ornamented Exotyles
    Journal of the Marine Biological Association of the United Kingdom, page 1 of 56. # Marine Biological Association of the United Kingdom, 2016. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. doi:10.1017/S0025315416000655 Polymastiidae (Demospongiae: Hadromerida) with ornamented exotyles: a review of morphological affinities and description of a new genus and three new species alexander plotkin1, christine morrow2, elena gerasimova3 and hans tore rapp1,4,5 1Department of Biology, University of Bergen, Postbox 7803, 5020 Bergen, Norway, 2Department of Zoology, Ryan Institute, National University of Ireland Galway, University Road, Galway, Ireland, 3Ra˚dgivende Biologer AS, Bredsga˚rden, Bryggen, 5003 Bergen, Norway, 4Centre for Geobiology, University of Bergen, Postbox 7803, 5020 Bergen, Norway, 5Uni Environment, Uni Research AS, Postbox 7810, 5020 Bergen, Norway All polymastiid sponges displaying ornamented exotyles are reviewed and their morphological affinities are reconsidered. The study embraces all known species of Proteleia, Sphaerotylus, Trachyteleia and Tylexocladus as well as several species of Polymastia. A new genus, Koltunia, is established for the Antarctic species Proteleia burtoni based on the unique shape of distal ornamentations of its giant exotyles and on the absence of a spicule palisade in its cortex, a rare feature among the polymastiids. Three new species of Sphaerotylus are described – S. renoufi from the British Isles, S. strobilis from South Africa and S. tjalfei from West Greenland. Transfer of one New Zealand species from Polymastia to Proteleia and of one Chilean species from Polymastia to Sphaerotylus is proposed.
    [Show full text]
  • Scs18-23 WG-ESA Report 2018
    Northwest Atlantic Fisheries Organization Serial No N6900 NAFO SCS Doc. 18/23 SC WORKING GROUP ON ECOSYSTEM SCIENCE AND ASSESSMENT – NOVEMBER 2018 Report of the 11th Meeting of the NAFO Scientific Council Working Group on Ecosystem Science and Assessment (WG-ESA) NAFO Headquarters, Dartmouth, Canada 13 - 22 November 2018 Contents Introduction ........................................................................................................................................................................................................3 Theme 1: spatial considerations................................................................................................................................................................4 1.1. Update on VME indicator species data and distribution .............................................................................4 1.2 Progress on implementation of workplan for reassessment of VME fishery closures. .................9 1.3. Discussion on updating Kernel Density Analysis and SDM’s .....................................................................9 1.4. Update on the Research Activities related to EU-funded Horizon 2020 ATLAS Project ...............9 1.5. Non-sponge and non-coral VMEs (e.g. bryozoan and sea squirts). ..................................................... 14 1.6 Ecological diversity mapping and interactions with fishing on the Flemish Cap .......................... 14 1.7 Sponge removal by bottom trawling in the Flemish Cap area: implications for ecosystem functioning ...................................................................................................................................................................
    [Show full text]
  • Southeastern Regional Taxonomic Center South Carolina Department of Natural Resources
    Southeastern Regional Taxonomic Center South Carolina Department of Natural Resources http://www.dnr.sc.gov/marine/sertc/ Southeastern Regional Taxonomic Center Invertebrate Literature Library (updated 9 May 2012, 4056 entries) (1958-1959). Proceedings of the salt marsh conference held at the Marine Institute of the University of Georgia, Apollo Island, Georgia March 25-28, 1958. Salt Marsh Conference, The Marine Institute, University of Georgia, Sapelo Island, Georgia, Marine Institute of the University of Georgia. (1975). Phylum Arthropoda: Crustacea, Amphipoda: Caprellidea. Light's Manual: Intertidal Invertebrates of the Central California Coast. R. I. Smith and J. T. Carlton, University of California Press. (1975). Phylum Arthropoda: Crustacea, Amphipoda: Gammaridea. Light's Manual: Intertidal Invertebrates of the Central California Coast. R. I. Smith and J. T. Carlton, University of California Press. (1981). Stomatopods. FAO species identification sheets for fishery purposes. Eastern Central Atlantic; fishing areas 34,47 (in part).Canada Funds-in Trust. Ottawa, Department of Fisheries and Oceans Canada, by arrangement with the Food and Agriculture Organization of the United Nations, vols. 1-7. W. Fischer, G. Bianchi and W. B. Scott. (1984). Taxonomic guide to the polychaetes of the northern Gulf of Mexico. Volume II. Final report to the Minerals Management Service. J. M. Uebelacker and P. G. Johnson. Mobile, AL, Barry A. Vittor & Associates, Inc. (1984). Taxonomic guide to the polychaetes of the northern Gulf of Mexico. Volume III. Final report to the Minerals Management Service. J. M. Uebelacker and P. G. Johnson. Mobile, AL, Barry A. Vittor & Associates, Inc. (1984). Taxonomic guide to the polychaetes of the northern Gulf of Mexico.
    [Show full text]
  • NATIONAL BIODIVERSITY ASSESSMENT 2011: Technical Report
    NATIONAL BIODIVERSITY ASSESSMENT 2011: Technical Report Volume 4: Marine and Coastal Component National Biodiversity Assessment 2011: Marine & Coa stal Component NATIONAL BIODIVERSITY ASSESSMENT 2011: Technical Report Volume 4: Marine and Coastal Component Kerry Sink 1, Stephen Holness 2, Linda Harris 2, Prideel Majiedt 1, Lara Atkinson 3, Tamara Robinson 4, Steve Kirkman 5, Larry Hutchings 5, Robin Leslie 6, Stephen Lamberth 6, Sven Kerwath 6, Sophie von der Heyden 4, Amanda Lombard 2, Colin Attwood 7, George Branch 7, Tracey Fairweather 6, Susan Taljaard 8, Stephen Weerts 8 Paul Cowley 9, Adnan Awad 10 , Ben Halpern 11 , Hedley Grantham 12 and Trevor Wolf 13 1 South African National Biodiversity Institute 2 Nelson Mandela Metropolitan University 3 South African Environmental Observation Network 4 Stellenbosch University 5 Department of Environmental Affairs 6 Department of Agriculture, Forestry and Fisheries 7 University of Cape Town 8 Council for Scientific and Industrial Research 9 South African Institute for Aquatic Biodiversity 10 International Ocean Institute, South Africa 11 National Centre for Ecological Analyses and Synthesis, University of California, USA 12 University of Queensland, Australia 13 Trevor Wolf GIS Consultant 14 Oceanographic Research Institute 15 Capfish 16 Ezemvelo KZN Wildlife 17 KwaZulu-Natal Sharks Board Other contributors: Cloverley Lawrence 1, Ronel Nel 2, Eileen Campbell 2, Geremy Cliff 17 , Bruce Mann 14 , Lara Van Niekerk 8, Toufiek Samaai 5, Sarah Wilkinson 15, Tamsyn Livingstone 16 and Amanda Driver 1 This report can be cited as follows: Sink K, Holness S, Harris L, Majiedt P, Atkinson L, Robinson T, Kirkman S, Hutchings L, Leslie R, Lamberth S, Kerwath S, von der Heyden S, Lombard A, Attwood C, Branch G, Fairweather T, Taljaard S, Weerts S, Cowley P, Awad A, Halpern B, Grantham H, Wolf T.
    [Show full text]
  • Incorporation, Morphology, and Extinction of Framework-Building
    University of Wisconsin Milwaukee UWM Digital Commons Theses and Dissertations May 2019 Incorporation, Morphology, and Extinction of Framework-Building Metazoans in Early Cambrian Reef Ecosystems from the Western Usa and Mongolia and Their ffecE ts on Reef Diversity David Russell Cordie University of Wisconsin-Milwaukee Follow this and additional works at: https://dc.uwm.edu/etd Part of the Ecology and Evolutionary Biology Commons, Geology Commons, and the Paleontology Commons Recommended Citation Cordie, David Russell, "Incorporation, Morphology, and Extinction of Framework-Building Metazoans in Early Cambrian Reef Ecosystems from the Western Usa and Mongolia and Their Effects on Reef Diversity" (2019). Theses and Dissertations. 2055. https://dc.uwm.edu/etd/2055 This Dissertation is brought to you for free and open access by UWM Digital Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of UWM Digital Commons. For more information, please contact [email protected]. INCORPORATION, MORPHOLOGY, AND EXTINCTION OF FRAMEWORK-BUILDING METAZOANS IN EARLY CAMBRIAN REEF ECOSYSTEMS FROM THE WESTERN USA AND MONGOLIA AND THEIR EFFECTS ON REEF DIVERSITY by David Russell Cordie A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Geosciences at The University of Wisconsin-Milwaukee May 2019 ABSTRACT INCORPORATION, MORPHOLOGY, AND EXTINCTION OF FRAMEWORK-BUILDING METAZOANS IN EARLY CAMBRIAN REEF ECOSYSTEMS FROM THE WESTERN USA AND MONGOLIA AND THEIR EFFECTS ON REEF DIVERSITY by David Russell Cordie The University of Wisconsin-Milwaukee, 2019 Under the Supervision of Professor Stephen Q. Dornbos The early Cambrian represents an important transition in the evolution of life, perhaps most vividly exemplified by reef ecosystems as they changed from microbial-supported to metazoan-supported framework reefs.
    [Show full text]
  • Marine Conservation Society Sponges of The
    MARINE CONSERVATION SOCIETY SPONGES OF THE BRITISH ISLES (“SPONGE V”) A Colour Guide and Working Document 1992 EDITION, reset with modifications, 2007 R. Graham Ackers David Moss Bernard E. Picton, Ulster Museum, Botanic Gardens, Belfast BT9 5AB. Shirley M.K. Stone Christine C. Morrow Copyright © 2007 Bernard E Picton. CAUTIONS THIS IS A WORKING DOCUMENT, AND THE INFORMATION CONTAINED HEREIN SHOULD BE CONSIDERED TO BE PROVISIONAL AND SUBJECT TO CORRECTION. MICROSCOPIC EXAMINATION IS ESSENTIAL BEFORE IDENTIFICATIONS CAN BE MADE WITH CONFIDENCE. CONTENTS Page INTRODUCTION ................................................................................................................... 1 1. History .............................................................................................................. 1 2. “Sponge IV” .................................................................................................... 1 3. The Species Sheets ......................................................................................... 2 4. Feedback Required ......................................................................................... 2 5. Roles of the Authors ...................................................................................... 3 6. Acknowledgements ........................................................................................ 3 GLOSSARY AND REFERENCE SECTION .................................................................... 5 1. Form ................................................................................................................
    [Show full text]
  • Bay Du Nord Development Project Environmental Impact Statement
    Bay du Nord Development Project Environmental Impact Statement TABLE OF CONTENTS 6.0 EXISTING BIOLOGICAL ENVIRONMENT ........................................................................6-1 6.1 Marine Fish and Fish Habitat .............................................................................................. 6-1 6.1.1 Approach and Key Information Sources ............................................................6-4 6.1.1.1 Canadian Research Vessel Multi-Species Surveys ......................... 6-6 6.1.1.2 International Research Vessel Surveys ........................................... 6-6 6.1.1.3 Other Information Sources ............................................................... 6-7 6.1.1.4 Indigenous Knowledge ..................................................................... 6-7 6.1.1.5 Equinor Canada Seabed Surveys .................................................... 6-7 6.1.2 Trophic Linkages and Community Change ..................................................... 6-10 6.1.3 Key Marine Assemblages ................................................................................6-11 6.1.4 Plants and Macroalgae ....................................................................................6-12 6.1.5 Plankton ...........................................................................................................6-13 6.1.5.1 Phytoplankton ................................................................................ 6-13 6.1.5.2 Zooplankton ..................................................................................
    [Show full text]