Obtained from the New Bacterial Candidates with Insecticidal Activity
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Increased Biological Activity of Aneurinibacillus Migulanus Strains Correlates with the Production of New Gramicidin Secondary Metabolites
fmicb-08-00517 April 5, 2017 Time: 15:34 # 1 ORIGINAL RESEARCH published: 07 April 2017 doi: 10.3389/fmicb.2017.00517 Increased Biological Activity of Aneurinibacillus migulanus Strains Correlates with the Production of New Gramicidin Secondary Metabolites Faizah N. Alenezi1,2, Imen Rekik2, Ali Chenari Bouket2,3, Lenka Luptakova2,4, Hedda J. Weitz1, Mostafa E. Rateb5, Marcel Jaspars6, Stephen Woodward1 and Lassaad Belbahri2,7* 1 Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, UK, 2 NextBiotech, Rue Ali Edited by: Belhouane, Agareb, Tunisia, 3 Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Peter Neubauer, Japan, 4 Department of Biology and Genetics, Institute of Biology, Zoology and Radiobiology, University of Veterinary Technische Universität Berlin, Medicine and Pharmacy, Košice, Slovakia, 5 School of Science and Sport, University of the West of Scotland, Paisley, UK, Germany 6 Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Aberdeen, UK, 7 Laboratory of Soil Biology, Reviewed by: University of Neuchatel, Neuchatel, Switzerland Sanna Sillankorva, University of Minho, Portugal The soil-borne gram-positive bacteria Aneurinibacillus migulanus strain Nagano shows Jian Li, University of Northwestern – St. Paul, considerable potential as a biocontrol agent against plant diseases. In contrast, USA A. migulanus NCTC 7096 proved less effective for inhibition of plant pathogens. Nagano Maria Lurdes Inacio, Instituto Nacional de Investigação strain exerts biocontrol activity against some gram-positive and gram-negative bacteria, Agrária e Veterinária, Portugal fungi and oomycetes through the production of gramicidin S (GS). Apart from the *Correspondence: antibiotic effects, GS increases the rate of evaporation from the plant surface, reducing Lassaad Belbahri periods of surface wetness and thereby indirectly inhibiting spore germination. -
Developing a Genetic Manipulation System for the Antarctic Archaeon, Halorubrum Lacusprofundi: Investigating Acetamidase Gene Function
www.nature.com/scientificreports OPEN Developing a genetic manipulation system for the Antarctic archaeon, Halorubrum lacusprofundi: Received: 27 May 2016 Accepted: 16 September 2016 investigating acetamidase gene Published: 06 October 2016 function Y. Liao1, T. J. Williams1, J. C. Walsh2,3, M. Ji1, A. Poljak4, P. M. G. Curmi2, I. G. Duggin3 & R. Cavicchioli1 No systems have been reported for genetic manipulation of cold-adapted Archaea. Halorubrum lacusprofundi is an important member of Deep Lake, Antarctica (~10% of the population), and is amendable to laboratory cultivation. Here we report the development of a shuttle-vector and targeted gene-knockout system for this species. To investigate the function of acetamidase/formamidase genes, a class of genes not experimentally studied in Archaea, the acetamidase gene, amd3, was disrupted. The wild-type grew on acetamide as a sole source of carbon and nitrogen, but the mutant did not. Acetamidase/formamidase genes were found to form three distinct clades within a broad distribution of Archaea and Bacteria. Genes were present within lineages characterized by aerobic growth in low nutrient environments (e.g. haloarchaea, Starkeya) but absent from lineages containing anaerobes or facultative anaerobes (e.g. methanogens, Epsilonproteobacteria) or parasites of animals and plants (e.g. Chlamydiae). While acetamide is not a well characterized natural substrate, the build-up of plastic pollutants in the environment provides a potential source of introduced acetamide. In view of the extent and pattern of distribution of acetamidase/formamidase sequences within Archaea and Bacteria, we speculate that acetamide from plastics may promote the selection of amd/fmd genes in an increasing number of environmental microorganisms. -
A Study About Protective Effect of Brevibacillus Laterosporus Texasporus Culture on Broiler Chickens Infected with Salmonella Pullorum
International Journal Of Science, Technology & Management ISSN: 2722 - 4015 A study about Protective Effect of Brevibacillus laterosporus texasporus Culture on Broiler Chickens Infected with Salmonella Pullorum Mhd Adanan Purba1,, Shoaib Ahmed Pirzado1,,Huiyi Cai1, Tesfay Hagos Haile 1 ,Aijuan Zheng1, Jiao Liu1, Jiang Chen1, Nurzainah Ginting2, Yunilas2 and Guohua Liu1* 1The Key Laboratory of Feed Biotechnology of Ministry of Agriculture, National Engineering Research Center of Biological Feed,Feed Research Institute, Chinese Academy of Agricultural Sciences, Zhongguancun Nandajie 12, Beijing, China 2Animal Production Program Study, Faculty Of Agriculture, University Of Sumatera Utara, Medan, Indonesia. *Corresponding Author: Prof. Liu Guohua Tel.:+86-1082105477, Fax number:+86-1082106077, Email : [email protected] Abstract A demand for chicken-meat is growing enormously which requires intensification in the production, so it iscrucial to improve the chicken health condition.The aim of this study is to investigate the effects of Brevibacillus laterosporus texasporus culture (BT) to the growth, immunity and blood parameters of broilers and also to determine whether the culture has a potential to act as a probiotic supplement of the fodder. A total of 300 one-day-old male Arbor Acres broilers chickens were randomly assigned to 5 treatments with 6 replications (10 individualsin each replicate) i.e.the positive control (PC)which had no challenge ofSalmonella Pullorum wasadministered inthe basal diet. Meanwhile, the negative control (NC) challenged by Salmonella Pullorumper os was administered in three form of diets, and these were included inthe diet with the composition of kitasamycin for 10 mg/kg as antibiotics growth promotor, BT for 50 mg/kg, and BT for 100 mg/kg. -
Biochemical Characterization and 16S Rdna Sequencing of Lipolytic Thermophiles from Selayang Hot Spring, Malaysia
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Available online at www.sciencedirect.com ScienceDirect IERI Procedia 5 ( 2013 ) 258 – 264 2013 International Conference on Agricultural and Natural Resources Engineering Biochemical Characterization and 16S rDNA Sequencing of Lipolytic Thermophiles from Selayang Hot Spring, Malaysia a a a a M.J., Norashirene , H., Umi Sarah , M.H, Siti Khairiyah and S., Nurdiana aFaculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia. Abstract Thermophiles are well known as organisms that can withstand extreme temperature. Thermoenzymes from thermophiles have numerous potential for biotechnological applications due to their integral stability to tolerate extreme pH and elevated temperature. Because of the industrial importance of lipases, there is ongoing interest in the isolation of new bacterial strain producing lipases. Six isolates of lipases producing thermophiles namely K7S1T53D5, K7S1T53D6, K7S1T53D11, K7S1T53D12, K7S2T51D14 and K7S2T51D19 were isolated from the Selayang Hot Spring, Malaysia. The sampling site is neutral in pH with a highest recorded temperature of 53°C. For the screening and isolation of lipolytic thermopiles, selective medium containing Tween 80 was used. Thermostability and the ability to degrade the substrate even at higher temperature was proved and determined by incubation of the positive isolates at temperature 53°C. Colonies with circular borders, convex in elevation with an entire margin and opaque were obtained. 16S rDNA gene amplification and sequence analysis were done for bacterial identification. The isolate of K7S1T53D6 was derived of genus Bacillus that is the spore forming type, rod shaped, aerobic, with the ability to degrade lipid. -
Food Waste Composting and Microbial Community Structure Profiling
processes Review Food Waste Composting and Microbial Community Structure Profiling Kishneth Palaniveloo 1,* , Muhammad Azri Amran 1, Nur Azeyanti Norhashim 1 , Nuradilla Mohamad-Fauzi 1,2, Fang Peng-Hui 3, Low Hui-Wen 3, Yap Kai-Lin 3, Looi Jiale 3, Melissa Goh Chian-Yee 3, Lai Jing-Yi 3, Baskaran Gunasekaran 3,* and Shariza Abdul Razak 4,* 1 Institute of Ocean and Earth Sciences, Institute for Advanced Studies Building, University of Malaya, Wilayah Persekutuan Kuala Lumpur 50603, Malaysia; [email protected] (M.A.A.); [email protected] (N.A.N.) 2 Institute of Biological Sciences, Faculty of Science, University of Malaya, Wilayah Persekutuan Kuala Lumpur 50603, Malaysia; [email protected] 3 Faculty of Applied Science, UCSI University (South Wing), Cheras, Wilayah Persekutuan Kuala Lumpur 56000, Malaysia; [email protected] (F.P.-H.); [email protected] (L.H.-W.); [email protected] (Y.K.-L.); [email protected] (L.J.); [email protected] (M.G.C.-Y.); [email protected] (L.J.-Y.) 4 Nutrition and Dietetics Program, School of Health Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia * Correspondence: [email protected] (K.P.); [email protected] (B.G.); [email protected] (S.A.R.); Tel.: +60-3-7967-4640 (K.P.); +60-16-323-4159 (B.G.); +60-19-964-4043 (S.A.R.) Received: 20 May 2020; Accepted: 16 June 2020; Published: 22 June 2020 Abstract: Over the last decade, food waste has been one of the major issues globally as it brings a negative impact on the environment and health. -
Proposal for Two New Genera, Brevibacillus Gen. Nov. and Aneurinibacillus Gen
INTERNATIONAL JOURNALOF SYSTEMATIC BACTERIOLOGY,OCt. 1996, p. 939-946 Vol. 46, No. 4 0020-7713/96/$04.00+0 Copyright 0 1996, International Union of Microbiological Societies Proposal for Two New Genera, Brevibacillus gen. nov. and Aneurinibacillus gen. nov. OSAMU SHIDA,'" HIROAKI TAKAGI,' KIYOSHI KADOWAKI,l AND KAZUO KOMAGATA' Research Laboratory, Higeta Shoyu Co., Ltd., Choshi, Chiba 288, and Department of Agricultural Chemistry, Faculty of Agriculture, Tokyo University of Agriculture, Setagaya-ku, Tokyo 156, Japan 16s rRNA gene sequences of the type strains of 11 species belonging to the Bacillus brevis and Bacillus aneurinolyticus groups were determined. On the basis of the results of gene sequence analyses, these species were separated into two clusters. The B. brevis cluster included 10 species, namely, Bacillus brevis, Bacillus agri, Bacillus centrosporus, Bacillus choshinensis, Bacillus parabrevis, Bacillus reuszeri, Bacillus formosus, Bacillus borstelensis, Bacillus luterosporus, and Bacillus thermoruber. Bacillus aneurinolyticus and Bacillus migulunus belonged to the B. aneurinolyticus cluster. Moreover, the two clusters were phylogenetically distinct from other Bacillus, Amphibacillus, Sporoluctobacillus, Paenibacillus, and Alicyclobacillus species. On the basis of our data, we propose reclassification of the B. brevis cluster as Brevibacillus gen. nov. and reclassification of the B. aneurinolyticus cluster as Aneurinibacillus gen. nov. By using 16s rRNA gene sequence alignments, two specific PCR amplification primers were designed for differentiating the two new genera from each other and from other aerobic, endospore-formingorganisms. The aerobic, rod-shaped, endospore-forming genus Bacillus is a systematically diverse taxon (5).The members of this genus exhibit a wide range of DNA base compositions, and the major amino acid compositions of the cell walls of these organisms 8. -
Brevibacillus Laterosporus, a Pathogen of Invertebrates and a Broad-Spectrum Antimicrobial Species
Insects 2013, 4, 476-492; doi:10.3390/insects4030476 OPEN ACCESS insects ISSN 2075-4450 www.mdpi.com/journal/insects/ Review Brevibacillus laterosporus, a Pathogen of Invertebrates and a Broad-Spectrum Antimicrobial Species Luca Ruiu Dipartimento di Agraria, University of Sassari, Via E. De Nicola, 07100 Sassari, Italy; E-Mail: [email protected]; Tel.: +39-079-229326; Fax: +39-079-229329 Received: 18 August 2013; in revised form: 30 August 2013 / Accepted: 30 August 2013 / Published: 5 September 2013 Abstract: Brevibacillus laterosporus, a bacterium characterized by the production of a unique canoe-shaped lamellar body attached to one side of the spore, is a natural inhabitant of water, soil and insects. Its biopesticidal potential has been reported against insects in different orders including Coleoptera, Lepidoptera, Diptera and against nematodes and mollusks. In addition to its pathogenicity against invertebrates, different B. laterosporus strains show a broad-spectrum antimicrobial activity including activity against phytopathogenic bacteria and fungi. A wide variety of molecules, including proteins and antibiotics, have been associated with the observed pathogenicity and mode of action. Before being considered as a biological control agent against plant pathogens, the antifungal and antibacterial properties of certain B. laterosporus strains have found medical interest, associated with the production of antibiotics with therapeutic effects. The recent whole genome sequencing of this species revealed its potential to produce polyketides, nonribosomal peptides, and toxins. Another field of growing interest is the use of this bacterium for bioremediation of contaminated sites by exploiting its biodegradation properties. The aim of the present review is to gather and discuss all recent findings on this emerging entomopathogen, giving a wider picture of its complex and broad-spectrum biocontrol activity. -
Paenibacillaceae Cover
The Family Paenibacillaceae Strain Catalog and Reference • BGSC • Daniel R. Zeigler, Director The Family Paenibacillaceae Bacillus Genetic Stock Center Catalog of Strains Part 5 Daniel R. Zeigler, Ph.D. BGSC Director © 2013 Daniel R. Zeigler Bacillus Genetic Stock Center 484 West Twelfth Avenue Biological Sciences 556 Columbus OH 43210 USA www.bgsc.org The Bacillus Genetic Stock Center is supported in part by a grant from the National Sciences Foundation, Award Number: DBI-1349029 The author disclaims any conflict of interest. Description or mention of instrumentation, software, or other products in this book does not imply endorsement by the author or by the Ohio State University. Cover: Paenibacillus dendritiformus colony pattern formation. Color added for effect. Image courtesy of Eshel Ben Jacob. TABLE OF CONTENTS Table of Contents .......................................................................................................................................................... 1 Welcome to the Bacillus Genetic Stock Center ............................................................................................................. 2 What is the Bacillus Genetic Stock Center? ............................................................................................................... 2 What kinds of cultures are available from the BGSC? ............................................................................................... 2 What you can do to help the BGSC ........................................................................................................................... -
Identification and Classification of Known and Putative Antimicrobial Compounds Produced by a Wide Variety of Bacillales Species Xin Zhao1,2 and Oscar P
Zhao and Kuipers BMC Genomics (2016) 17:882 DOI 10.1186/s12864-016-3224-y RESEARCH ARTICLE Open Access Identification and classification of known and putative antimicrobial compounds produced by a wide variety of Bacillales species Xin Zhao1,2 and Oscar P. Kuipers1* Abstract Background: Gram-positive bacteria of the Bacillales are important producers of antimicrobial compounds that might be utilized for medical, food or agricultural applications. Thanks to the wide availability of whole genome sequence data and the development of specific genome mining tools, novel antimicrobial compounds, either ribosomally- or non-ribosomally produced, of various Bacillales species can be predicted and classified. Here, we provide a classification scheme of known and putative antimicrobial compounds in the specific context of Bacillales species. Results: We identify and describe known and putative bacteriocins, non-ribosomally synthesized peptides (NRPs), polyketides (PKs) and other antimicrobials from 328 whole-genome sequenced strains of 57 species of Bacillales by using web based genome-mining prediction tools. We provide a classification scheme for these bacteriocins, update the findings of NRPs and PKs and investigate their characteristics and suitability for biocontrol by describing per class their genetic organization and structure. Moreover, we highlight the potential of several known and novel antimicrobials from various species of Bacillales. Conclusions: Our extended classification of antimicrobial compounds demonstrates that Bacillales provide a rich source of novel antimicrobials that can now readily be tapped experimentally, since many new gene clusters are identified. Keywords: Antimicrobials, Bacillales, Bacillus, Genome-mining, Lanthipeptides, Sactipeptides, Thiopeptides, NRPs, PKs Background (bacteriocins) [4], as well as non-ribosomally synthesized Most of the species of the genus Bacillus and related peptides (NRPs) and polyketides (PKs) [5]. -
WO 2016/086210 Al 2 June 2016 (02.06.2016) P O P C T
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2016/086210 Al 2 June 2016 (02.06.2016) P O P C T (51) International Patent Classification: (74) Agents: MELLO, Jill, Ann et al; McCarter & English, A61P 1/00 (2006.01) A61P 37/00 (2006.01) LLP, 265 Franklin Street, Boston, MA 021 10 (US). A61P 29/00 (2006.01) A61K 35/74 (2015.01) (81) Designated States (unless otherwise indicated, for every (21) International Application Number: kind of national protection available): AE, AG, AL, AM, PCT/US20 15/0628 10 AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, (22) International Filing Date: DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, 25 November 2015 (25.1 1.2015) HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, (25) Filing Language: English KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, (26) Publication Language: English PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, (30) Priority Data: SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, 62/084,537 25 November 2014 (25. 11.2014) US TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. 62/084,536 25 November 2014 (25. -
Bacillus Subtilis Spore Resistance Towards Low Pressure Plasma Sterilization = Bacillus Subtilis Sporenresistenz Gegenüber Plas
Bacillus subtilis Spore Resistance towards Low Pressure Plasma Sterilization Dissertation to obtain the degree Doctor Rerum Naturalium (Dr. rer. nat.) at the Faculty of Biology and Biotechnology Ruhr University Bochum International Graduate School of Biosciences Ruhr University Bochum (Chair of Microbiology) Submitted by Marina Raguse from KönigsWusterhausen, Germany Bochum, April 2016 First supervisor: Prof. Dr. Franz Narberhaus Second supervisor: Prof. Dr. Peter Awakowicz Bacillus subtilis Sporenresistenz gegenüber Plasmasterilisation im Niederdruck Dissertation zur Erlangung des Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) der Fakultät für Biologie und Biotechnologie der Ruhr-Universität Bochum Internationale Graduiertenschule für Biowissenschaften Ruhr-Universität Bochum (Lehrstuhl für Biologie der Mikroorganismen) Vorgelegt von Marina Raguse aus KönigsWusterhausen, Germany Bochum, April 2016 Erstbetreuer: Prof. Dr. Franz Narberhaus Zweitbetreuer: Prof. Dr. Peter Awakowicz This work was conducted externally at the German Aerospace Center, Institute for Aerospace Medicine, Department of Radiation Biology, Research Group Astrobiology/Space Microbiology, in 51147, Cologne, Germany, under the supervision of Dr. Ralf Möller from 01.12.2012 until 31.07.2016. Diese Arbeit wurde extern durchgeführt am Deutschen Zentrum für Luft- und Raumfahrt, Institut für Luft-und Raumfahrtmedizin, Abteilung Strahlenbiologie, Arbeitsgruppe Astrobiologie/Weltraummikrobiologie in 51147, Köln, unter der Betreuung von Dr. Ralf Möller im Zeitrahmen vom 01.12.2012 – 31.07.2016. Danksagung Zuerst möchte ich mich herzlich bei meinem Doktorvater Prof. Dr. Franz Narberhaus für die Unterstützung bedanken und für die Möglichkeit auch extern am Lehrstuhl für Biologie der Mikroorganismen der Ruhr-Universität Bochum zu promovieren. Mein großer Dank gilt ebenfalls meinem Korreferenten Prof. Dr. Peter Awakowicz, für sein allzeit großes Interesse an der Arbeit mit Sporen und die anregenden Diskussionen in den PlasmaDecon- Meetings. -
Genome Diversity of Spore-Forming Firmicutes MICHAEL Y
Genome Diversity of Spore-Forming Firmicutes MICHAEL Y. GALPERIN National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894 ABSTRACT Formation of heat-resistant endospores is a specific Vibrio subtilis (and also Vibrio bacillus), Ferdinand Cohn property of the members of the phylum Firmicutes (low-G+C assigned it to the genus Bacillus and family Bacillaceae, Gram-positive bacteria). It is found in representatives of four specifically noting the existence of heat-sensitive vegeta- different classes of Firmicutes, Bacilli, Clostridia, Erysipelotrichia, tive cells and heat-resistant endospores (see reference 1). and Negativicutes, which all encode similar sets of core sporulation fi proteins. Each of these classes also includes non-spore-forming Soon after that, Robert Koch identi ed Bacillus anthracis organisms that sometimes belong to the same genus or even as the causative agent of anthrax in cattle and the species as their spore-forming relatives. This chapter reviews the endospores as a means of the propagation of this orga- diversity of the members of phylum Firmicutes, its current taxon- nism among its hosts. In subsequent studies, the ability to omy, and the status of genome-sequencing projects for various form endospores, the specific purple staining by crystal subgroups within the phylum. It also discusses the evolution of the violet-iodine (Gram-positive staining, reflecting the pres- Firmicutes from their apparently spore-forming common ancestor ence of a thick peptidoglycan layer and the absence of and the independent loss of sporulation genes in several different lineages (staphylococci, streptococci, listeria, lactobacilli, an outer membrane), and the relatively low (typically ruminococci) in the course of their adaptation to the saprophytic less than 50%) molar fraction of guanine and cytosine lifestyle in a nutrient-rich environment.