Increased Biological Activity of Aneurinibacillus Migulanus Strains Correlates with the Production of New Gramicidin Secondary Metabolites
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Molecular Docking Studies of a Cyclic Octapeptide-Cyclosaplin from Sandalwood
Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 11 June 2019 doi:10.20944/preprints201906.0091.v1 Peer-reviewed version available at Biomolecules 2019, 9; doi:10.3390/biom9040123 Molecular Docking Studies of a Cyclic Octapeptide-Cyclosaplin from Sandalwood Abheepsa Mishra1, 2,* and Satyahari Dey1 1Plant Biotechnology Laboratory, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur-721302, West Bengal, India; [email protected] (A.M.); [email protected] (S.D.) 2Department of Internal Medicine, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA *Correspondence: [email protected]; Tel.:+1(518) 881-9196 Abstract Natural products from plants such as, chemopreventive agents attract huge attention because of their low toxicity and high specificity. The rational drug design in combination with structure based modeling and rapid screening methods offer significant potential for identifying and developing lead anticancer molecules. Thus, the molecular docking method plays an important role in screening a large set of molecules based on their free binding energies and proposes structural hypotheses of how the molecules can inhibit the target. Several peptide based therapeutics have been developed to combat several health disorders including cancers, metabolic disorders, heart-related, and infectious diseases. Despite the discovery of hundreds of such therapeutic peptides however, only few peptide-based drugs have made it to the market. Moreover, until date the activities of cyclic peptides towards molecular targets such as protein kinases, proteases, and apoptosis related proteins have never been explored. In this study we explore the in silico kinase and protease inhibitor potentials of cyclosaplin as well as study the interactions of cyclosaplin with other cancer-related proteins. -
Review Cyclic Peptides on a Merry‐
Review Cyclic Peptides on a Merry-Go-Round; Towards Drug Design Anthi Tapeinou,1 Minos-Timotheos Matsoukas,2 Carmen Simal,1 Theodore Tselios1 1Department of Chemistry, University of Patras, 26500, Patras, Greece 2Department of Biostatistics, Laboratory of Computational Medicine, Autonomous University of Barcelona, 08193, Bellaterra, Spain Received 30 January 2015; revised 14 April 2015; accepted 4 May 2015 Published online 13 May 2015 in Wiley Online Library (wileyonlinelibrary.com). DOI 10.1002/bip.22669 past two calendar years by emailing the Biopolymers editorial ABSTRACT: office at [email protected]. Peptides and proteins are attractive initial leads for the rational design of bioactive molecules. Several natural INTRODUCTION cyclic peptides have recently emerged as templates for eptides constitute one of the most promising plat- drug design due to their resistance to chemical or enzy- forms for drug development due to their biocom- matic hydrolysis and high selectivity to receptors. The patibility, chemical diversity, and resemblance to proteins.1 Inspired by the protein assembly in bio- development of practical protocols that mimic the power logical systems, a large number of peptides have of nature’s strategies remains paramount for the P been designed using different amino acids and sequences, advancement of novel peptide-based drugs. The de novo while forming unique folded structures (“fold-on-binding”) design of peptide mimetics (nonpeptide molecules or and providing a broad spectrum of physiological and biolog- ical activities.2 In this regard, peptides have triggered applica- cyclic peptides) for the synthesis of linear or cyclic pep- tions that currently range from drug discovery3 to tides has enhanced the progress of therapeutics and nanomaterials;4 such as nanofibers for biomedical purposes, diverse areas of science and technology. -
United States Patent (10) Patent No.: US 7,323,169 B2 Goldenberg Et Al
USOO7323169B2 (12) United States Patent (10) Patent No.: US 7,323,169 B2 Goldenberg et al. (45) Date of Patent: Jan. 29, 2008 (54) SUSTAINED RELEASE FORMULATIONS 2005/0215470 A1* 9/2005 Ng et al. ...................... 514/12 (75) Inventors: Merrill S. Goldenberg, Thousand FOREIGN PATENT DOCUMENTS Oaks, CA (US); Jian Hua Gu, 3 SA 3. Thousand Oaks, CA (US) WO WO 94,08599 4f1994 WO WO 98,10649 3, 1998 (73) Assignee: Amgen Inc., Thousand Oaks, CA (US) WO WO 99,04764 A1 * 2, 1999 WO WOOO, 51643 9, 2000 (*) Notice: Subject to any disclaimer, the term of this WO WO O1/32.218 5, 2001 patent 1s listed Ojusted under 35 WO WO2004O12522 A 2, 2004 U.S.C. 154(b) by 40 days. OTHER PUBLICATIONS (21)21) AppAppl. No.: 11/114,4739 Hatano et al. Size exclusionn chromatographicgrap analysisy of polyphenol-serum albumin complexes. Phytochemistry. 2003, vol. (22) Filed: Apr. 25, 2005 63, pp. 817-823.* Naurato et al. Interaction of Tannin with Human Salivary Histatins. (65) Prior Publication Data Journal of Agricultural and Food Chemistry. May, 4, 1999, vol. 47. No. 6, pp. 2229-2234.* US 2005/0271722 A1 Dec. 8, 2005 M. Chasin, “Biodegradable Polymers for Controlled Drug Deliv ery J.O. Hollinger Editor, Biomedical Applications of Synthetic Related U.S. Application Data Biodegradable Polymers CRC, Boca Raton, Florida (1995) pp. 1-15. (60) Provisional application No. 60/565,247, filed on Apr. T. Hayashi. “Biodegradable Polympers for Biomedical Uses' Prog. 23, 2004. Polym. Sci. 19:4 (1994) pp. 663-700. Harjit Tamber et al., “Formulation Aspects of Biodegradable Poly (51) Int. -
Role of Surfactin from Bacillus Subtilis in Protection Against Antimicrobial Peptides Produced by Bacillus Species
Role of surfactin from Bacillus subtilis in protection against antimicrobial peptides produced by Bacillus species by Hans André Eyéghé-Bickong BSc. Honours (Biochemistry) February 2011 Dissertation approved for the degree Doctor of Philosophy (Biochemistry) in the Faculty of Science at the University of Stellenbosch Promoter: Prof. Marina Rautenbach Department of Biochemistry University of Stellenbosch ii Declaration By submitting this dissertation electronically, I declare that the entirety of the work contained therein is my own, original work, that I am the sole author thereof (save to the extent explicitly otherwise stated), that reproduction and publication thereof by Stellenbosch University will not infringe any third party rights and that I have not previously in its entirety or in part submitted it for obtaining any qualification. ……………………………………………. ………28/02/2011..…………… Hans André Eyéghé-Bickong Date Copyright©2011 Stellenbosch University All rights reserved iii Summary Antagonism of antimicrobial action represents an alternative survival strategy for cohabiting soil organisms. Under competitive conditions, our group previously showed that surfactin (Srf) produced by Bacillus subtilis acts antagonistically toward gramicidin S (GS) from a cohabiting bacillus, Aneurinibacillus migulanus, causing the loss the antimicrobial activity of GS. This antagonism appeared to be caused by inactive complex formation. This study aimed to elucidate whether the previously observed antagonism of GS activity by Srf is a general resistance mechanism that also extends to related peptides such as the tyrocidines (Trcs) and linear gramicidins (Grcs) from Bacillus aneurinolyticus. Molecular interaction between the antagonistic peptide pairs was investigated using biophysical analytical methods such as electrospray mass spectrometry (ESMS), circular dichroism (CD), fluorescence spectroscopy (FS) and nuclear magnetic resonance (NMR). -
A Global Review on Short Peptides: Frontiers and Perspectives †
molecules Review A Global Review on Short Peptides: Frontiers and Perspectives † Vasso Apostolopoulos 1 , Joanna Bojarska 2,* , Tsun-Thai Chai 3 , Sherif Elnagdy 4 , Krzysztof Kaczmarek 5 , John Matsoukas 1,6,7, Roger New 8,9, Keykavous Parang 10 , Octavio Paredes Lopez 11 , Hamideh Parhiz 12, Conrad O. Perera 13, Monica Pickholz 14,15, Milan Remko 16, Michele Saviano 17, Mariusz Skwarczynski 18, Yefeng Tang 19, Wojciech M. Wolf 2,*, Taku Yoshiya 20 , Janusz Zabrocki 5, Piotr Zielenkiewicz 21,22 , Maha AlKhazindar 4 , Vanessa Barriga 1, Konstantinos Kelaidonis 6, Elham Mousavinezhad Sarasia 9 and Istvan Toth 18,23,24 1 Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia; [email protected] (V.A.); [email protected] (J.M.); [email protected] (V.B.) 2 Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego˙ 116, 90-924 Lodz, Poland 3 Department of Chemical Science, Faculty of Science, Universiti Tunku Abdul Rahman, Kampar 31900, Malaysia; [email protected] 4 Botany and Microbiology Department, Faculty of Science, Cairo University, Gamaa St., Giza 12613, Egypt; [email protected] (S.E.); [email protected] (M.A.) 5 Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego˙ 116, 90-924 Lodz, Poland; [email protected] (K.K.); [email protected] (J.Z.) 6 NewDrug, Patras Science Park, 26500 Patras, Greece; [email protected] 7 Department of Physiology and Pharmacology, -
Biological Function of Gramicidin: Studies on Gramicidin-Negative Mutants (Peptide Antibiotics/Sporulation/Dipicolinic Acid/Bacillus Brevis) PRANAB K
Proc. NatS. Acad. Sci. USA Vol. 74, No. 2, pp. 780-784, February 1977 Microbiology Biological function of gramicidin: Studies on gramicidin-negative mutants (peptide antibiotics/sporulation/dipicolinic acid/Bacillus brevis) PRANAB K. MUKHERJEE AND HENRY PAULUS Department of Metabolic Regulation, Boston Biomedical Research Institute, Boston, Massachusetts 02114; and Department of Biological Chemistry, Harvard Medical School, Boston, Massachusetts 02115 Communicated by Bernard D. Davis, October 28,1976 ABSTRACT By the use of a rapid radioautographic EXPERIMENTAL PROCEDURE screening rocedure, two mutants of Bacillus brevis ATCC 8185 that have lost the ability to produce gramicidin have been iso- lated. These mutants produced normal levels of tyrocidine and Bacterial Strains. Bacillus brevis ATCC 8185, the Dubos sporulated at the same frequency as the parent strain. Their strain, was obtained from the American Type Culture Collec- spores, however, were more heat-sensitive and had a reduced tion. Strain S14 is a streptomycin-resistant derivative of B. brevis 4ipicolinic acid content. Gramicidin-producing revertants oc- ATCC 8185, isolated on a streptomycin-gradient plate without curred at a relatively high frequency among tie survivors of mutagenesis. It grows well at 0.5 mg/ml of streptomycin, but prolonged heat treatment and had also regained the ability to produce heat-resistant spores. A normal spore phenotype could growth is retarded by streptomycin at 1.0 mg/ml. Strain B81 also be restored by the addition of gramicidin to cultures of the is a rifampicin-resistant derivative of strain S14, isolated on mutant strain at the end of exponential growth. On the other rifampicin-gradient plates after mutagenesis of spores with hand, the addition of dipicolinic acid could not cure the spore ethyl methanesulfonate (11). -
Recent Advances in Chiral Analysis of Proteins and Peptides
separations Review Recent Advances in Chiral Analysis of Proteins and Peptides Marine Morvan 1,2,* and Ivan Mikšík 1,2,* 1 Institute of Physiology of the Czech Academy of Sciences, Vídeˇnská 1083, 142 20 Prague, Czech Republic 2 Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic * Correspondence: [email protected] (M.M.); [email protected] (I.M.) Abstract: Like many biological compounds, proteins are found primarily in their homochiral form. However, homochirality is not guaranteed throughout life. Determining their chiral proteinogenic sequence is a complex analytical challenge. This is because certain D-amino acids contained in proteins play a role in human health and disease. This is the case, for example, with D-Asp in elastin, b-amyloid and a-crystallin which, respectively, have an action on arteriosclerosis, Alzheimer’s disease and cataracts. Sequence-dependent and sequence-independent are the two strategies for detecting the presence and position of D-amino acids in proteins. These methods rely on enzymatic digestion by a site-specific enzyme and acid hydrolysis in a deuterium or tritium environment to limit the natural racemization of amino acids. In this review, chromatographic and electrophoretic techniques, such as LC, SFC, GC and CE, will be recently developed (2018–2020) for the enantioseparation of amino acids and peptides. For future work, the discovery and development of new chiral stationary phases and derivatization reagents could increase the resolution of chiral separations. Keywords: chiral separation; proteins; peptides; D-amino acids Citation: Morvan, M.; Mikšík, I. Recent Advances in Chiral Analysis of Proteins and Peptides. -
A Study About Protective Effect of Brevibacillus Laterosporus Texasporus Culture on Broiler Chickens Infected with Salmonella Pullorum
International Journal Of Science, Technology & Management ISSN: 2722 - 4015 A study about Protective Effect of Brevibacillus laterosporus texasporus Culture on Broiler Chickens Infected with Salmonella Pullorum Mhd Adanan Purba1,, Shoaib Ahmed Pirzado1,,Huiyi Cai1, Tesfay Hagos Haile 1 ,Aijuan Zheng1, Jiao Liu1, Jiang Chen1, Nurzainah Ginting2, Yunilas2 and Guohua Liu1* 1The Key Laboratory of Feed Biotechnology of Ministry of Agriculture, National Engineering Research Center of Biological Feed,Feed Research Institute, Chinese Academy of Agricultural Sciences, Zhongguancun Nandajie 12, Beijing, China 2Animal Production Program Study, Faculty Of Agriculture, University Of Sumatera Utara, Medan, Indonesia. *Corresponding Author: Prof. Liu Guohua Tel.:+86-1082105477, Fax number:+86-1082106077, Email : [email protected] Abstract A demand for chicken-meat is growing enormously which requires intensification in the production, so it iscrucial to improve the chicken health condition.The aim of this study is to investigate the effects of Brevibacillus laterosporus texasporus culture (BT) to the growth, immunity and blood parameters of broilers and also to determine whether the culture has a potential to act as a probiotic supplement of the fodder. A total of 300 one-day-old male Arbor Acres broilers chickens were randomly assigned to 5 treatments with 6 replications (10 individualsin each replicate) i.e.the positive control (PC)which had no challenge ofSalmonella Pullorum wasadministered inthe basal diet. Meanwhile, the negative control (NC) challenged by Salmonella Pullorumper os was administered in three form of diets, and these were included inthe diet with the composition of kitasamycin for 10 mg/kg as antibiotics growth promotor, BT for 50 mg/kg, and BT for 100 mg/kg. -
(12) United States Patent (10) Patent No.: US 7,732,399 B2 Goldenberg Et Al
US007732399B2 (12) United States Patent (10) Patent No.: US 7,732,399 B2 Goldenberg et al. (45) Date of Patent: *Jun. 8, 2010 (54) SUSTAINED RELEASE FORMULATIONS 2002fO151582 A1 10, 2002 Dou et al. 2003/O190307 A1* 10, 2003 DiBiase et al. ............. 424,856 (75) Inventors: Merrill S. Goldenberg, Thousand Oaks, 2004/0142048 A1 7/2004 Moore et al. CA (US); Jian Hua Gu, Thousand Oaks 2005/0180925 A1* 8/2005 Chaudry ...................... 424/46 CA (US s s 2005/0215470 A1 9/2005 Ng et al. FOREIGN PATENT DOCUMENTS (73) Assignee: Amgen Inc., Thousand Oaks, CA (US) GB 92.9405 A 6, 1963 (*) Notice: Subject to any disclaimer, the term of this GB 1234.805. A 6, 1971 patent is extended or adjusted under 35 W W 3. t E. U.S.C. 154(b) by 193 days. WO WO99,04764 2, 1999 This patent is Subject to a terminal dis- W W 995, 239, claimer. WO WO 2004/O12522 2, 2004 (21) Appl. No.: 11/847,984 OTHER PUBLICATIONS 1-1. Yan et al. Identification of histatins as tannin-binding proteins in (22) Filed: Aug. 30, 2007 human saliva. Biochemical Journal. 1995, vol. 311, pp. 341-347.* O O Charlton, A. J. et al., “Polyphenol/Peptide Binding and Precipita (65) Prior Publication Data tion.” J. Agric. Food Chem. 50, pp. 1593-1601 (2002); published by US 2007/0292506 A1 Dec. 20, 2007 Chasin,American M.. Chemical “Biodegradable Society. Polymers for Controlled Drug Deliv O O ery,” J.O. Hollinger Editor, Biomedical Applications of Synthetic Related U.S. Application Data Biodegradable Polymers CRC, Boca Raton, FL (1995), pp. -
Proposal for Two New Genera, Brevibacillus Gen. Nov. and Aneurinibacillus Gen
INTERNATIONAL JOURNALOF SYSTEMATIC BACTERIOLOGY,OCt. 1996, p. 939-946 Vol. 46, No. 4 0020-7713/96/$04.00+0 Copyright 0 1996, International Union of Microbiological Societies Proposal for Two New Genera, Brevibacillus gen. nov. and Aneurinibacillus gen. nov. OSAMU SHIDA,'" HIROAKI TAKAGI,' KIYOSHI KADOWAKI,l AND KAZUO KOMAGATA' Research Laboratory, Higeta Shoyu Co., Ltd., Choshi, Chiba 288, and Department of Agricultural Chemistry, Faculty of Agriculture, Tokyo University of Agriculture, Setagaya-ku, Tokyo 156, Japan 16s rRNA gene sequences of the type strains of 11 species belonging to the Bacillus brevis and Bacillus aneurinolyticus groups were determined. On the basis of the results of gene sequence analyses, these species were separated into two clusters. The B. brevis cluster included 10 species, namely, Bacillus brevis, Bacillus agri, Bacillus centrosporus, Bacillus choshinensis, Bacillus parabrevis, Bacillus reuszeri, Bacillus formosus, Bacillus borstelensis, Bacillus luterosporus, and Bacillus thermoruber. Bacillus aneurinolyticus and Bacillus migulunus belonged to the B. aneurinolyticus cluster. Moreover, the two clusters were phylogenetically distinct from other Bacillus, Amphibacillus, Sporoluctobacillus, Paenibacillus, and Alicyclobacillus species. On the basis of our data, we propose reclassification of the B. brevis cluster as Brevibacillus gen. nov. and reclassification of the B. aneurinolyticus cluster as Aneurinibacillus gen. nov. By using 16s rRNA gene sequence alignments, two specific PCR amplification primers were designed for differentiating the two new genera from each other and from other aerobic, endospore-formingorganisms. The aerobic, rod-shaped, endospore-forming genus Bacillus is a systematically diverse taxon (5).The members of this genus exhibit a wide range of DNA base compositions, and the major amino acid compositions of the cell walls of these organisms 8. -
Brevibacillus Laterosporus, a Pathogen of Invertebrates and a Broad-Spectrum Antimicrobial Species
Insects 2013, 4, 476-492; doi:10.3390/insects4030476 OPEN ACCESS insects ISSN 2075-4450 www.mdpi.com/journal/insects/ Review Brevibacillus laterosporus, a Pathogen of Invertebrates and a Broad-Spectrum Antimicrobial Species Luca Ruiu Dipartimento di Agraria, University of Sassari, Via E. De Nicola, 07100 Sassari, Italy; E-Mail: [email protected]; Tel.: +39-079-229326; Fax: +39-079-229329 Received: 18 August 2013; in revised form: 30 August 2013 / Accepted: 30 August 2013 / Published: 5 September 2013 Abstract: Brevibacillus laterosporus, a bacterium characterized by the production of a unique canoe-shaped lamellar body attached to one side of the spore, is a natural inhabitant of water, soil and insects. Its biopesticidal potential has been reported against insects in different orders including Coleoptera, Lepidoptera, Diptera and against nematodes and mollusks. In addition to its pathogenicity against invertebrates, different B. laterosporus strains show a broad-spectrum antimicrobial activity including activity against phytopathogenic bacteria and fungi. A wide variety of molecules, including proteins and antibiotics, have been associated with the observed pathogenicity and mode of action. Before being considered as a biological control agent against plant pathogens, the antifungal and antibacterial properties of certain B. laterosporus strains have found medical interest, associated with the production of antibiotics with therapeutic effects. The recent whole genome sequencing of this species revealed its potential to produce polyketides, nonribosomal peptides, and toxins. Another field of growing interest is the use of this bacterium for bioremediation of contaminated sites by exploiting its biodegradation properties. The aim of the present review is to gather and discuss all recent findings on this emerging entomopathogen, giving a wider picture of its complex and broad-spectrum biocontrol activity. -
Design and Syntheses of Gramicidin S Analogs, Cyclo(-X-Leu-XD
The Journal of Antibiotics (2011) 64, 583–585 & 2011 Japan Antibiotics Research Association All rights reserved 0021-8820/11 $32.00 www.nature.com/ja NOTE Design and syntheses of gramicidin S analogs, cyclo(-X-Leu-X-D-Phe-Pro-)2 (X¼His, Lys, Orn, Dab and Dap) Makoto Tamaki1, Kenta Fujinuma1, Takuji Harada1, Kazumasa Takanashi1, Mitsuno Shindo2, Masahiro Kimura2 and Yoshiki Uchida2 The Journal of Antibiotics (2011) 64, 583–585; doi:10.1038/ja.2011.43; published online 25 May 2011 Keywords: gramicidin S; polycationic analog; structure-activity relationship; synthesis 1,1¢ 2,2¢ 3,3¢ 4,4¢ 5,5¢ 1–3 Gramicidin S (GS), cyclo(-Val -Orn -Leu -D-Phe -Pro -)2, solid phase peptide synthesis on oxime resin (loading of oxime group: is a potent cyclopeptide antibiotic isolated from Bacillus brevis.Its 0.35 mmol gÀ1 resins) (Scheme 1).8 Yresidue(Y¼His(3-Bom), Lys(Z), secondary structure has been established as an antiparallel b-sheet Orn(Z), Dab(Z) and Dap(Z)) as a C-terminal amino acid residue was conformation with amphiphilicity.4,5 The conformation is charac- used based on the propensity of the biosynthetic precursor of GS teristically featured with the orientation of side chains in such a way to form a conformation highly favorable for head–tail cyclization.2,3 that the charged Orn side chains are situated on one side of the The cyclization-cleavage of H-D-Phe-Pro-Y-Leu-Y-D-Phe-Pro-Y-Leu- molecule and the hydrophobic Val and Leu side chains are situated on Y-oxime from the resin was performed in 1,4-dioxane with 2 equiv the other side.