Chapter 4. the Genomic Biologist's Toolkit

Total Page:16

File Type:pdf, Size:1020Kb

Chapter 4. the Genomic Biologist's Toolkit Chapter 4. The Genomic Biologist’s Toolkit Contents 4.7. Genome Annotation 4. Genomic Biologists tool kit 4.7.1. Using Bioinformatic Tools to Identify Putative 4.1. Restriction Endonucleases – making “sticky ends” Protein Coding Genes 4.7.2. Comparison of predicted sequences with known 4.2. Cloning Vectors sequences (at NCBI) 4.2.1. Simple Cloning Vectors 4.7.3. Published Genomes 4.2.2. Expression Vectors 4.2.3. Shuttle Vectors 4.2.4. Phage Vectors 4.2.5. Artificial Chromosome Vectors 4.3. Methods for Sequence Amplification 4.3.1. Polymerase Chain Reaction 4.3.2. Cloning Recombinant DNA 4.3.3. Cloning DNA in Expression Vectors 4.3.4. Making Complementary DNA (cDNA) 4.3.5. Cloning a cDNA Library 4.4. Genomic Libraries 4.4.1. Cloning in YAC Vectors 4.4.2. Cloning in BAC Vectors 4.5. DNA sequencing 4.5.1. Electrophoresis 4.5.2. Sanger Dideoxy Sequencing 4.5.3. Capillary Sequencers 4.5.4. Next Generation Sequencing 4.5.5. 3rd Generation Sequencing 4.6. DNA Sequencing Strategies 4.6.1. Map-based Strategies 4.6.2. Whole Genome Shotgun Sequencing CONCEPTS OF GENOMIC BIOLOGY Page 4-1 4.1. RESTRICTION ENDONUCLEASES (RETURN) CHAPTER 4. THE GENOMIC BIOLOGIST’S Restriction endonucleases (restriction enzymes) each TOOLKIT (RETURN) recognize a specific DNA sequence (restriction site), and break a phosphodiester linkage between a 3’ carbon and phosphate within that sequence. Restriction enzymes are used to create DNA fragments for cloning and to Genomic Biology has 3 important branches, i.e. analyze positions of restriction sites in cloned or Structural Genomics, Comparative genomics, and genomic DNA. A specific restriction enzyme digests cut Functional genomics. The ultimate goal of these DNA at the same sites in every molecule if allowed to branches is, respectively; the sequencing of genes and cut to completion. Thus, this is a method whereby all genomes; the comparison of these sequenced genes copies of genomes or any other longer sequence can be and genomes, and an understanding of how genes and reproducibly cut into identical fragments. genomes work to produce the complex phenotypes of The first three letters of the name of a restriction all organisms. enzyme are derived from the genus and species of the A set of molecular genetic technologies was/is critical organism from which it was isolated. Additional letters to our ability to pursue the goals described above. The often denote the bacterial strain from which the Genomic Biologists Tool Kit is provides a brief restriction enzyme was isolated, and if multiple enzymes understanding of these critical tools, and how they are are isolated from the same strain, they are given Roman used in the investigation of genomes. While the numerals. For example, the restriction enzyme EcoRI, is techniques are intrinsically laboratory tools, the nature the first enzyme isolated from the RY13-strain of of what they can do and how they work can be readily Escherichia coli. studied using bioinformatic resources. Bacteria produce restriction endonucleases to defend against bacteriophages (viruses), and each restriction CONCEPTS OF GENOMIC BIOLOGY Page 4-2 Table 4.1. Characteristics of Some Restriction Enzymes CONCEPTS OF GENOMIC BIOLOGY Page 4-3 enzyme recognizes a completely unique DNA sequence from degrading host cell DNA, while invading bacter- where it cuts the DNA strands (see Table 4.1 & Figure iophage DNA is unmethylated and readily degraded. 4.1). The specific restriction enzyme recognition sites in Many restriction sites are sequences of 4, 6, or 8 the bacterial DNA are often limited in the genome of the base pairs in length and have identical sequences from organism from which it comes, but they are abundant in 5’ to 3’ on each strand. These sequences are referred to the genome of the bacteriophage. Also the DNA of the as palindromic DNA sequences. Other restriction sites host cell can be modified by methylation, which are not completely symmetrical and/or differ in length prevents the restriction enzymes of the host cell from 4, 6, or 8 nucleotide pairs (Table 4.1 & Figure 4.1). As shown in the figure on the left, the nature of the fragment ends produced when a restriction enzyme produces DNA fragments can vary. Some enzymes produce fragments where the two strands are equal in length. This is referred to as blunt ends. Other enzymes produce fragments where the two strands are unequal in length. These are referred to as either 5’ sticky ends, or 3’ sticky ends. Overhanging sticky ends provide a basis for combining DNA fragments produced by the same restriction enzyme from different DNA sources. This process was the original method used to produce recombinant DNA molecules. The application of restriction endonucleases to the cloning of DNA is further discussed in DNA Cloning video that can be viewed by clicking on the link. Note that part of this video will be discussed in detail in the next Figure 4.1. Restriction site sequences and section of the Genomic Biologist’s Toolkit, but the first cut locations of: a) SmaI; b) BamHI, and c) part of the video is a good demonstration of how PstI. CONCEPTS OF GENOMIC BIOLOGY Page 4-4 restriction enzymes work and how they can be used to Note that we have previously discussed SNPs as a create recombinant DNA molecules for cloning DNA. type of Sequence Tagged Site (STS). As single nucleotide changes in the genome sequence, consider the effect of an SNP that happens to occur in a restriction endonuclease recognition site. The result would be the loss of a restriction site at that SNP. This site would no longer be cut by the enzyme, and thus new fragments having different sizes would be produced. This is called Restriction Fragment Length Polymorphism (RFLP). Thus, and RFLP is an SNP that happens to occur in a restriction site in the DNA. A famous RFLP is associated with Sickle Cell Disease, and is further described in the accompanying video. Figure 4.2. Using restriction enzyme, EcoRI to make recombin-ant 4.2. CLONING VECTORS (RETURN) DNA. The procedure relies on the 3’-overhanging “sticky ends”. The process of “DNA cloning” involves a set of An additional application of restriction enzymes experimental methods in molecular biology that are involves the production of a res-triction map. A used to assemble recombinant DNA molecules and to restriction map is shows the relative position of direct their replication within host organisms. The use restriction sites for multiple restriction enzymes in a of the word cloning refers to the fact that the method piece of linear or circular DNA. Prior to the availability involves the replication of one molecule to produce a of genomic sequences, restriction mapping was an population of cells with identical DNA molecules. important tool used to characterize cloned DNA Molecular cloning generally uses DNA sequences from fragments. The production of a restriction map for a two different organisms: 1) the organism that is the circular DNA is shown in the Restriction Mapping video. source of the DNA to be cloned, and 2) the organism that will serve as the living host for replication of the CONCEPTS OF GENOMIC BIOLOGY Page 4-5 recombinant DNA. Molecular cloning methods are antibiotic or that permits cells to make an amino acid central to many areas of biology, biotechnology, and required for growth. medicine, including DNA sequencing. These are the basic requirements that all modern The DNA from host organism in a cloning cloning vectors contain, but beyond these basic experiment, often called a vector, typically has 3 things: requirements, there can be a number of additional features that make specific vectors useful for various 1) Sequences necessary to produce recombinant DNA purposes. Thus, several types of cloning vectors have and facilitate entry into the host organism. Typically, been constructed, each with different molecular this can be one or more “unique” restriction sites. properties and cloning capacities. “Unique” in this context means that these are restriction sites will permit cutting the vector at only 4.2.1. Simple Cloning Vectors (RETURN) one location. Most vectors contain unique restriction The most common vectors are used to clone sites for a number of different restriction enzymes. recombinant DNA in bacterial cells, typically E. coli. This is called a polylinker or multiple cloning site, and Simple cloning vectors are constructed from plasmids can make the use of the vector much easier. common in many bacterial cells. In fact plasmids are 2) An origin of replication for the host organism to circles of dsDNA (double stranded) much smaller than facilitate replication of the recombinant DNA in the the bacterial chromosome that include replication host cell. Typically this sequence controls the origins (ori sequence) needed for replication in bacterial number of copies of the vector that can be made in cells that naturally carry DNA between different one cell. bacteria. An example of a typical E. coli cloning vector is 3) In order to facilitate identification of cells that contain pUC19 (2,686bp). The more modern version of pUC19 is the vector containing recombinant DNA, a gene that pBluescript II. The features of this plasmid are shown in can be expressed in the host and that provides a Figrue 4.2. “selectable” marker for the presence of recombinant More information about cloning DNA in plasmid DNA is provided. Often the selectable marker gene vectors can be found in Molecular Cell Biology, 4th will be a gene that makes cells resistant to a specific edition, Section 7.1. This can be downloaded from NCBI by clicking on the link. The use of simple cloning vectors CONCEPTS OF GENOMIC BIOLOGY Page 4-6 Figure 4.3.
Recommended publications
  • New York Science Journal 2016;9(10) 19 Gene Library Ma Hongbao Brookdale University Hospital A
    New York Science Journal 2016;9(10) http://www.sciencepub.net/newyork Gene Library Ma Hongbao Brookdale University Hospital and Medical Center, Brooklyn, New York 11212, USA [email protected] Abstract: A gene library is a collection of gene clones that represents the genetic material of an organism. There are different types of gene libraries, including cDNA libraries, genomic libraries and randomized mutant libraries. The applications of these libraries depend on the source of the original DNA fragments. Generally in a gene library each DNA fragment is uniquely inserted into a cloning vector and the pool of recombinant DNA molecules is then transferred into a population of bacteria or yeast such that each organism contains on average one construct. As the population of organisms is grown in culture, the DNA molecules contained within them are copied and propagated. [Ma Hongbao. Gene Library. N Y Sci J 2016;9(10):19-23]. ISSN 1554-0200 (print); ISSN 2375-723X (online). http://www.sciencepub.net/newyork. 4. doi:10.7537/marsnys091016.04. Keywords: gene; library; clone; organism; DNA; molecule; copy A gene library is a collection of gene clones that cDNA libraries are useful in reverse genetics, but they represents the genetic material of an organism. In only represent a very small (less than 1%) portion of molecular biology, a library is a collection of DNA the overall genome in a given organism. The fragments stored and propagated in a population of applications of cDNA libraries include: (1) Discovery micro-organisms through the process of molecular of novel genes; (2) Cloning of full-length cDNA cloning.
    [Show full text]
  • Proquesttm Pre-Made Cdna Libraries
    Instruction Manual TM ProQuest Pre-made cDNA Libraries For detecting protein-protein interactions Version B December 12, 2002 25-0617 Table of Contents General Information ..............................................................2 Overview...............................................................................5 Using ProQuest™ Libraries....................................................8 pPC86.................................................................................13 pEXP-AD502.......................................................................15 Recipe.................................................................................17 Accessory Products ............................................................18 Purchaser Notification.........................................................19 Technical Service................................................................22 References..........................................................................24 1 General Information Contents 2 x 0.5 ml aliquots and Storage Each cDNA library is supplied in 80% SOB medium, 20% (v/v) glycerol. Store the library at -80°C. The cDNA library is stable for six months when stored properly. Titer of the Each library has greater than 5 x 109 cfu (colony Libraries forming units) derived from > 107 primary clones to ensure complete representation of rare sequences. ProQuest™ The following ProQuest™ Pre-made cDNA Libraries are Pre-made available from Invitrogen. For more information on cDNA preparing the library, see page
    [Show full text]
  • In-Fusion Smarter Directional Cdna Library Construction Kit User Manual Table of Contents I
    Takara Bio USA In-Fusion® SMARTer® Directional cDNA Library Construction Kit User Manual Cat. No. 634933 (050421) Takara Bio USA, Inc. 1290 Terra Bella Avenue, Mountain View, CA 94043, USA U.S. Technical Support: [email protected] United States/Canada Asia Pacific Europe Japan Page 1 of 40 800.662.2566 +1.650.919.7300 +33.(0)1.3904.6880 +81.(0)77.565.6999 In-Fusion SMARTer Directional cDNA Library Construction Kit User Manual Table of Contents I. List of Components .................................................................................................................................................. 4 II. Additional Materials Required .................................................................................................................................. 5 III. Introduction .......................................................................................................................................................... 6 IV. RNA Preparation & Handling ..............................................................................................................................11 A. Assessing the Quality of the RNA Template ........................................................................................................11 V. SMARTer cDNA Synthesis by LD-PCR .................................................................................................................13 A. Recommended Products ......................................................................................................................................13
    [Show full text]
  • Library Construction and Screening
    Library construction and screening • A gene library is a collection of different DNA sequences from an organism, • which has beenAlso called genomic libraries or gene banks. • cloned into a vector for ease of purification, storage and analysis. Uses of gene libraries • To obtain the sequences of genes for analysis, amplification, cloning, and expression. • Once the sequence is known probes, primers, etc. can be synthesized for further diagnostic work using, for example, hybridization reactions, blots and PCR. • Knowledge of a gene sequence also offers the possibility of gene therapy. • Also, gene expression can be used to synthesize a product in particular host cells, e.g. synthesis of human gene products in prokaryotic cells. two types of gene library depending upon the source of the DNA used. 1.genomic library. 2.cDNA library Types of GENE library: • genomic library contains DNA fragments representing the entire genome of an organism. • cDNA library contains only complementary DNA molecules synthesized from mRNA molecules in a cell. Genomic Library : • Made from nuclear DNA of an organism or species. • DNA is cut into clonable size pieces as randomly possible using restriction endonuclease • Genomic libraries contain whole genomic fragments including gene exons and introns, gene promoters, intragenic DNA,origins of replication, etc Construction of Genomic Libraries 1. Isolation of genomic DNA and vector. 2.Cleavage of Genomic DNA and vector by Restriction Endonucleases. 3.Ligation of fragmented DNA with the vector. 4.Transformation of
    [Show full text]
  • Construction of Small-Insert Genomic DNA Libraries Highly Enriched
    Proc. Natl. Acad. Sci. USA Vol. 89, pp. 3419-3423, April 1992 Genetics Construction of small-insert genomic DNA libraries highly enriched for microsatellite repeat sequences (marker-selected libraries/CA repeats/sequence-tagged sites/genetic mapping/dog genome) ELAINE A. OSTRANDER*tt, PAM M. JONG*t, JASPER RINE*t, AND GEOFFREY DUYKt§ *Department of Molecular and Cellular Biology, 401 Barker Hall, University of California, Berkeley, CA 94720; tHuman Genome Center, Lawrence Berkeley Laboratory, 1 Cyclotron Road, 74-157, Berkeley, CA 94720; and §Department of Genetics, Howard Hughes Medical Institute, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115 Communicated by Philip Leder, January 8, 1992 ABSTRACT We describe an efficient method for the con- Generation of a high-density map of markers for an entire struction of small-insert genomic libraries enriched for highly genome or a single chromosome requires the isolation and polymorphic, simple sequence repeats. With this approach, characterization of hundreds of markers such as microsatel- libraries in which 40-50% of the members contain (CA). lite repeats (10, 11). Two simple yet tedious approaches have repeats are produced, representing an =50-fold enrichment generally been used for this task. One approach is to screen over conventional small-insert genomic DNA libraries. Briefly, a large-insert genomic library with an end-labeled (CA),, or a genomic library with an average insert size of less than 500 (TG),, oligonucleotide (n > 15). Clones that hybridize to the base pairs was constructed in a phagemid vector. Ampliflcation probe are purified and divided into subclones, which are of this library in a dut ung strain ofEscherchia coli allowed the screened by hybridization for a fragment containing the recovery of the library as closed circular single-stranded DNA repeat.
    [Show full text]
  • Global Tissue-Specific Transcriptome Analysis of Citrus Sinensis
    www.nature.com/scientificdata opeN Global tissue-specifc transcriptome Data DeScrIpTor analysis of Citrus sinensis fruit across six developmental stages Received: 9 May 2019 Guizhi Feng, Juxun Wu & Hualin Yi Accepted: 23 July 2019 Published: xx xx xxxx Citrus sinensis fruit is a type of nonclimacteric fruit that mainly consists of four tissues: the epicarp, albedo, segment membrane and juice sac. The fruit quality is determined by the characteristics of these four tissues. However, our knowledge of the molecular processes that occur in these four tissues during citrus fruit development and ripening is limited. Tissue-specifc transcriptomes provide a comprehensive and detailed molecular regulatory network of citrus fruit development and ripening. In our study, we collected four types of tissue from C. sinensis fruits at six developmental stages. A total of 72 libraries were constructed from 24 samples (each sample had three replicates), and the transcriptomes were sequenced by an Illumina HiSeq 4000. The comprehensive analyses of the transcriptomes from the four tissues and six developmental stages presented here provide a valuable resource for the discovery of the molecular networks underlying citrus fruit development and ripening. Background & Summary Citrus, a nonclimacteric fruit, is widely cultivated worldwide. Citrus is mainly composed of the inedible epicarp (EP) and albedo (AL) and the edible segment membrane (SM) and juice sac (JS). Te development and ripening of citrus fruit is a complex and sophisticated regulatory process that can be divided into three stages: cell division stage; expansion stage involving cell enlargement and water, sugar accumulation; and ripening stage1. At present, most studies investigating citrus fruit development and ripening are based on the organ-wide or mixed-tissue level, which inevitably obscures many tissue-specifc phenomena.
    [Show full text]
  • Multiplexed Microbial Library Preparation Using Smrtbell
    Technical Overview: Multiplexed Microbial Library Preparation Using SMRTbell Express Template Prep Kit 2.0 Sequel System ICS v8.0 / Sequel Chemistry 3.0 / SMRT Link v9.0 Sequel II System ICS v9.0 / Sequel II Chemistry 2.0 / SMRT Link v9.0 Sequel IIe System ICS v10.0 / Sequel II Chemistry 2.0 / SMRT Link v10.0 For Research Use Only. Not for use in diagnostic procedures. © Copyright 2021 by Pacific Biosciences of California, Inc. All rights reserved. PN 101-742-600 Ver 2021-02-01-A (February 2021) Multiplexed Microbial Library Preparation Using SMRTbell Express Template Prep Kit 2.0 1. Multiplexed Microbial Sample Preparation Workflow Overview 2. Multiplexed Microbial Sample Preparation Workflow Details 3. Multiplexed Microbial Sequencing Workflow Details 4. Multiplexed Microbial Data Analysis Workflow Details 5. Multiplexed Microbial Library Example Performance Data 6. Technical Documentation & Applications Support Resources 7. Appendix: General Recommendations for High-Molecular Weight gDNA QC and Handling for Multiplexed Microbial SMRTbell Library Construction MULTIPLEXED MICROBIAL SEQUENCING: HOW TO GET STARTED Application-Specific Application-Specific Application Consumable Library Construction, Best Practices Guide Procedure & Checklist Bundle Purchasing Guide Sequencing & Analysis gDNA QC & Shearing ≥1 µg Input gDNA / Microbial Sample 10 kb – 15 kb Target DNA Shear Size Library Construction Multiplex Up To 48 Microbial Samples with the Sequel II and IIe Systems using Barcoded Overhang Adapters (BOA) SMRT Sequencing Use the Sequel,
    [Show full text]
  • The Human Genome Project
    TO KNOW OURSELVES ❖ THE U.S. DEPARTMENT OF ENERGY AND THE HUMAN GENOME PROJECT JULY 1996 TO KNOW OURSELVES ❖ THE U.S. DEPARTMENT OF ENERGY AND THE HUMAN GENOME PROJECT JULY 1996 Contents FOREWORD . 2 THE GENOME PROJECT—WHY THE DOE? . 4 A bold but logical step INTRODUCING THE HUMAN GENOME . 6 The recipe for life Some definitions . 6 A plan of action . 8 EXPLORING THE GENOMIC LANDSCAPE . 10 Mapping the terrain Two giant steps: Chromosomes 16 and 19 . 12 Getting down to details: Sequencing the genome . 16 Shotguns and transposons . 20 How good is good enough? . 26 Sidebar: Tools of the Trade . 17 Sidebar: The Mighty Mouse . 24 BEYOND BIOLOGY . 27 Instrumentation and informatics Smaller is better—And other developments . 27 Dealing with the data . 30 ETHICAL, LEGAL, AND SOCIAL IMPLICATIONS . 32 An essential dimension of genome research Foreword T THE END OF THE ROAD in Little has been rapid, and it is now generally agreed Cottonwood Canyon, near Salt that this international project will produce Lake City, Alta is a place of the complete sequence of the human genome near-mythic renown among by the year 2005. A skiers. In time it may well And what is more important, the value assume similar status among molecular of the project also appears beyond doubt. geneticists. In December 1984, a conference Genome research is revolutionizing biology there, co-sponsored by the U.S. Department and biotechnology, and providing a vital of Energy, pondered a single question: Does thrust to the increasingly broad scope of the modern DNA research offer a way of detect- biological sciences.
    [Show full text]
  • Combinatorial Cdna Library by Complementation of an Auxotrophic Escherichia Coli: Antibodies for Orotate Decarboxylation JEFFREY A
    Proc. Natd. Acad. Sci. USA Vol. 91, pp. 8319-8323, August 1994 Biochemistry Selection of catalytic antibodies for a biosynthetic reaction from a combinatorial cDNA library by complementation of an auxotrophic Escherichia coli: Antibodies for orotate decarboxylation JEFFREY A. SMILEY AND STEPHEN J. BENKOVIC* Department of Chemistry, The Pennsylvania State University, University Park, PA 16802 Contributed by Stephen J. Benkovic, May 23, 1994 ABSTRACT Antibodies capable of decarboxylating oro- tate were sought by immunization with a hapten designed to elicit antibodies with combining sites that resemble the orotate- binding and catalytic portion of the active site of the enzyme OPRTase ODCase orotidine 5'-monophosphate (OMP) decarboxylase (orotidine- 0 '00 \\ 5'-monophosphate carboxy-lyase, EC 4.1.1.23). Active recom- binant antibody fragments (Fabs) were selected from a com- HN 'PO4 binatorial cDNA library by complementation of a pyrF strain UMP ofEscherichia cofl and growth ofthe library-expressing cells on pyrimidine-free medium. In this biological screen, a suffi- H " 0 ciently active antibody from the library would decarboxylate Antibody \ Urasi orotate to produce uracil, a pyrimidine source for the aux- Catalysis PRTase otroph, and would provide the cells with a growth advantage compared to cells without an active antibody. Six recombinant AN Fabs yielded identifiable colonies in a screen of 16,000 trans- H formants. To enhance its stability and expression level, one of the six positive fragments was converted into single-chain form. FIG. 1. Pathways for UMP biosynthesis. Upper route involves In this form, the antibody a naturally occurring enzymes orotate phosphoribosyltransferase fragment conferred definite growth (OPRTase) and OMP decarboxylase (ODCase).
    [Show full text]
  • Cdna Libraries and Expression Libraries
    Solutions for Practice Problems for Recombinant DNA, Session 4: cDNA Libraries and Expression Libraries Question 1 In a hypothetical scenario you wake up one morning to your roommate exclaiming about her sudden hair growth. She has been supplementing her diet with a strange new fungus purchased at the local farmer’s market. You take samples of the fungus to your lab and you find that this fungus does indeed make a protein (the harE protein) that stimulates hair growth. You construct a fungal genomic DNA library in E. Coli with the hope of cloning the harE gene. If you succeed you will be a billionaire! You obtain DNA from the fungus, digest it with a restriction enzyme, and clone it into a vector. a) What features must be present on your plasmid that will allow you to use this as a cloning vector to make fungal genomic DNA library. Your vector would certainly need to have a unique restriction enzyme site, a selectable marker such as the ampicillin resistance gene, and a bacterial origin of replication. Other features may be required depending upon how you plan to use this library. b) You clone your digested genomic DNA into this vector. The E. coli (bacteria) cells that you will transform to create your library will have what phenotype prior to transformation? Prior to transformation, the E. coli cells that you will transform will be sensitive to antibiotic. This allows you to select for cells that obtained a plasmid. c) How do you distinguish bacterial cells that carry a vector from those that do not? Cells that obtained a vector will have obtained the selectable marker (one example is the ampicillin resistance gene).
    [Show full text]
  • Gene Cloningcloningcloning
    GeneGeneGene CloningCloningCloning 20042004 SeungwookSeungwookKim Kim Chem.Chem. && Bio.Bio. Eng.Eng. Reference z T.A. Brown, Gene Cloning, Chapman and Hall z S.B. Primrose, Molecular Biotechnology, Blackwell 1 Why Gene Cloning is Important? z A century ago, Gregor Mendel : { Basic assumption (each heritable property of an organism) is controlled by a factor (gene). z In 1900, Mandel's law Æ the birth of genetics. z what these genes are and exactly how they work The Early Development of Genetics z In 1903, Sutton, W { Proposed that genes reside on chromosomes 2 z In 1910, Morgan, TH { Experimental backing on that --> development of the techniques for gene mapping (To establish the structure or structural details or location) { By 1922, a comprehensive analysis of the relative positions of over 2000 genes on the four chromosomes of the fruit fly. (Drosophilia melanogaster) z In 1944, Avery, MacLeod and McCarty z In 1952, Hershey and Chase { Experimental results were shown that DNA is the genetic material. { Conventional idea : genes were made of protein z In 1952-1966, Delbruck, Chargaff, Crick and Monod { The structure of DNA was elucidated. { The genetic code was cracked. { The process of transcription and translation were described. 3 The Advent of Gene Cloning z In the late 1960's ; The experimental techniques were not sophisticated. z In 1971 ~ 1973 ; A new experimental techniques were developed. { Recombinant DNA technology or Genetic engineering based on the process of gene cloning { This led to rapid and efficient DNA sequencing techniques that enabled the structures of individual genes to be determined. z In the 1990s ; started with massive genome sequencing projects including the human project.
    [Show full text]
  • 10. E. Coli Cloning Vector Pbr322
    10. E. coli cloning vector pBR322 Important questions based on it: A. (a) Name the organism in which the vector shown is inserted to get the copies of the desired gene. (b) Mention the area labelled in the vector responsible for controlling the copy number of the inserted gene. (c) Name and explain the role of a selectable marker in the vector shown. (AI 2010) B. (a) Identify the selectable markers in the diagram of E. coli vector shown below. (b) How is the coding sequence of -galactosidase considered a better marker than the ones identified by you in the diagram? Explain. (Delhi 2009) A. Explain the importance of (a) ori, (b) ampR and (c) rop in the E. coli vector shown below. (AI 2008) B. Draw pBR322 cloning vector. Label ‘ori’, ‘rop’ and any one antibiotic resistance site on it and state their functions. (AI 2015C) C. Draw a schematic diagram of the E. coli cloning vector pBR322 and mark the following in it: (a) ori (b) rop (c) ampicillin resistance gene (d) tetracycline resistance gene (e) restriction site BamHI (f) restriction site EcoR I (AI 2014C) D. Draw a schematic sketch of pBR322 plasmid and label the following in it: (a) Any two restriction sites. (b) Ori and rop genes. (c) An antibiotic resistant gene. (Delhi 2012) E. Identify A, B, C and D in the given diagram. (a) A-ori, B-ampR, C-tetR, D-HindIII (b) A-HindIII, B-tetR, C-ampR, D-ori (c) A-ampR, B-tetR, C-HindIII, D-ori (d) A-tetR, B-HindIII, C-ori, D-ampR (COMEDK) F.
    [Show full text]