10. E. Coli Cloning Vector Pbr322

Total Page:16

File Type:pdf, Size:1020Kb

10. E. Coli Cloning Vector Pbr322 10. E. coli cloning vector pBR322 Important questions based on it: A. (a) Name the organism in which the vector shown is inserted to get the copies of the desired gene. (b) Mention the area labelled in the vector responsible for controlling the copy number of the inserted gene. (c) Name and explain the role of a selectable marker in the vector shown. (AI 2010) B. (a) Identify the selectable markers in the diagram of E. coli vector shown below. (b) How is the coding sequence of -galactosidase considered a better marker than the ones identified by you in the diagram? Explain. (Delhi 2009) A. Explain the importance of (a) ori, (b) ampR and (c) rop in the E. coli vector shown below. (AI 2008) B. Draw pBR322 cloning vector. Label ‘ori’, ‘rop’ and any one antibiotic resistance site on it and state their functions. (AI 2015C) C. Draw a schematic diagram of the E. coli cloning vector pBR322 and mark the following in it: (a) ori (b) rop (c) ampicillin resistance gene (d) tetracycline resistance gene (e) restriction site BamHI (f) restriction site EcoR I (AI 2014C) D. Draw a schematic sketch of pBR322 plasmid and label the following in it: (a) Any two restriction sites. (b) Ori and rop genes. (c) An antibiotic resistant gene. (Delhi 2012) E. Identify A, B, C and D in the given diagram. (a) A-ori, B-ampR, C-tetR, D-HindIII (b) A-HindIII, B-tetR, C-ampR, D-ori (c) A-ampR, B-tetR, C-HindIII, D-ori (d) A-tetR, B-HindIII, C-ori, D-ampR (COMEDK) F. The given figure is the diagrammatic representation of the E. coli vector pBR 322. Which one of the given options correctly identifies its certain component(s)? (a) ori-original restriction enzyme (b) rop-reduced osmotic pressure (c) HindIII, EcoRI - selectable markers (d) ampR, tetR–antibiotic resistance genes. (AIPMT Prelims) .
Recommended publications
  • Ampicillin Versus Tetracycline in the Selection of Pbr322 Transformants
    Journal of Experimental Microbiology and Immunology (JEMI) Vol. 2:189-193 Copyright April 2002, M&I UBC The Effects of Ampicillin versus Tetracycline in the Selection of pBR322 Transformants JOYCE S. LAW, SHARON LEE, AMY TSENG, KO WING TSUI, AND NANCY YU Department of Microbiology and Immunology, UBC Escherichia coli DH5α cells were transformed with pBR322 plasmids, which encode both ampicillin and tetracycline resistance genes. After 45- and 60-minute recovery periods, the transformed cells were plated on three types of selective plates, containing 1) ampicillin only, 2) tetracycline only, and 3) ampicillin plus tetracycline. It was found that tetracycline selection from these recovery periods resulted in a lower level of transformant survival than ampicillin selection. However, after the transformants were allowed to recover for several generations, their survival rates were similar on ampicillin plates and on tetracycline plates. The pBR322 plasmid is a commonly used cloning vector that contains both the ampicillin and tetracycline resistance genes as selectable markers. Escherichia coli cells transformed with pBR322 plasmids have a selective advantage in antibiotic-treated environments. Results from a previous experiment indicate that different selective pressures affect the survival of transformed cells, as considerably more transformants survived ampicillin-only selection than ampicillin-tetracycline selection (1). Many possible reasons can explain this difference. Firstly, the mechanisms of ampicillin resistance and tetracycline resistance encoded on the pBR322 plasmid are very different. Ampicillin resistance on the pBR322 plasmid encodes the enzyme β-lactamase, which is secreted to the periplasm and acts by binding and inactivating the ampicillin molecule (http://wine1.sb.fsu.edu/bch5425/lec13/lect13.htm).
    [Show full text]
  • Transformation of Bacteria with Different Plasmids
    Molecular Biology of Life Laboratory BIOL 123 TRANSFORMATION OF BACTERIA WITH DIFFERENT PLASMIDS Objectives • To understand the concept of DNA as genetic material through the process of transformation. • To test the conditions that make cells competent for use in DNA-mediated transformation. • To study the characteristics of plasmid vectors. Introduction Transformation Modern molecular biology began with the experiments of Avery, MacLeod and McCarty (1944) on two strains of Pneumococcus bacteria. When grown on an agar plate, the wild type virulent strain had smooth glistening colonies designated as type S while an avirulent strain had colonies with irregular shape and rough surface, designated as type R. The change from type R to S could be mediated if a DNA extract from S was added to type R bacteria in a test tube. The term "transformation" was coined for such a change. Other contemporary scientists did not easily accept these experiments and what they implicated, mainly because the method of identifying DNA was not yet well established at the time. It took a decade before the validity of such experiments and their conclusions became fully appreciated as a result of rapidly increasing knowledge and understanding of the chemical and physical nature of DNA. Normally grown E. coli cells can not take up the exogenously supplied DNA. However, if the cells are soaked in an ice cold calcium chloride solution for a short time before the addition of DNA and a brief (90 seconds) heat shock (42°C) is given, DNA uptake by the cells is facilitated (Hanahan, 1983). When bacteria have been prepared in this special manner to easily accept the foreign DNA, they are said to be "competent".
    [Show full text]
  • Cdna Libraries and Expression Libraries
    Solutions for Practice Problems for Recombinant DNA, Session 4: cDNA Libraries and Expression Libraries Question 1 In a hypothetical scenario you wake up one morning to your roommate exclaiming about her sudden hair growth. She has been supplementing her diet with a strange new fungus purchased at the local farmer’s market. You take samples of the fungus to your lab and you find that this fungus does indeed make a protein (the harE protein) that stimulates hair growth. You construct a fungal genomic DNA library in E. Coli with the hope of cloning the harE gene. If you succeed you will be a billionaire! You obtain DNA from the fungus, digest it with a restriction enzyme, and clone it into a vector. a) What features must be present on your plasmid that will allow you to use this as a cloning vector to make fungal genomic DNA library. Your vector would certainly need to have a unique restriction enzyme site, a selectable marker such as the ampicillin resistance gene, and a bacterial origin of replication. Other features may be required depending upon how you plan to use this library. b) You clone your digested genomic DNA into this vector. The E. coli (bacteria) cells that you will transform to create your library will have what phenotype prior to transformation? Prior to transformation, the E. coli cells that you will transform will be sensitive to antibiotic. This allows you to select for cells that obtained a plasmid. c) How do you distinguish bacterial cells that carry a vector from those that do not? Cells that obtained a vector will have obtained the selectable marker (one example is the ampicillin resistance gene).
    [Show full text]
  • Gene Cloningcloningcloning
    GeneGeneGene CloningCloningCloning 20042004 SeungwookSeungwookKim Kim Chem.Chem. && Bio.Bio. Eng.Eng. Reference z T.A. Brown, Gene Cloning, Chapman and Hall z S.B. Primrose, Molecular Biotechnology, Blackwell 1 Why Gene Cloning is Important? z A century ago, Gregor Mendel : { Basic assumption (each heritable property of an organism) is controlled by a factor (gene). z In 1900, Mandel's law Æ the birth of genetics. z what these genes are and exactly how they work The Early Development of Genetics z In 1903, Sutton, W { Proposed that genes reside on chromosomes 2 z In 1910, Morgan, TH { Experimental backing on that --> development of the techniques for gene mapping (To establish the structure or structural details or location) { By 1922, a comprehensive analysis of the relative positions of over 2000 genes on the four chromosomes of the fruit fly. (Drosophilia melanogaster) z In 1944, Avery, MacLeod and McCarty z In 1952, Hershey and Chase { Experimental results were shown that DNA is the genetic material. { Conventional idea : genes were made of protein z In 1952-1966, Delbruck, Chargaff, Crick and Monod { The structure of DNA was elucidated. { The genetic code was cracked. { The process of transcription and translation were described. 3 The Advent of Gene Cloning z In the late 1960's ; The experimental techniques were not sophisticated. z In 1971 ~ 1973 ; A new experimental techniques were developed. { Recombinant DNA technology or Genetic engineering based on the process of gene cloning { This led to rapid and efficient DNA sequencing techniques that enabled the structures of individual genes to be determined. z In the 1990s ; started with massive genome sequencing projects including the human project.
    [Show full text]
  • Large-Insert BAC/YAC Libraries for Selective Re-Isolation of Genomic Regions by Homologous Recombination in Yeast
    doi:10.1006/geno.2001.6616, available online at http://www.idealibrary.com on IDEAL Article Large-Insert BAC/YAC Libraries for Selective Re-isolation of Genomic Regions by Homologous Recombination in Yeast Changjiang Zeng,1,5 Natalay Kouprina,2 Baoli Zhu,1,5 Al Cairo,1 Maarten Hoek,3 George Cross,3 Kazutoyo Osoegawa,1,5 Vladimir Larionov,2 and Pieter de Jong1,5,* 1Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, New York 14263, USA 2Laboratory of Biosystems and Cancer, National Cancer Institute, Bethesda, Maryland 20892, USA 3Laboratory of Molecular Parasitology, Rockefeller University, New York, New York 10021, USA 4Present address: Exelixis, South San Francisco, California 94080, USA 5Present address: Children’s Hospital Oakland, BACPAC Resources, 747-52nd Street, Oakland, California 94609, USA *To whom correspondence and reprint requests should be addressed. Fax: (510) 749-4266. E-mail: [email protected]. We constructed representative large-insert bacterial artificial chromosome (BAC) libraries of two human pathogens (Trypanosoma brucei and Giardia lamblia) using a new hybrid vector, pTARBAC1, containing a yeast artificial chromosome (YAC) cassette (a yeast selectable marker and a centromere). The cassette allows transferring of BACs into yeast for their fur- ther modification. Furthermore, the new hybrid vector provides the opportunity to re-isolate each DNA insert without construction of a new library of random clones. Digestion of a BAC DNA by an endonuclease that has no recognition site in the vector, but which deletes most of the internal insert sequence and leaves the unique flanking sequences, converts a BAC into a TAR vector, thus allowing direct gene isolation.
    [Show full text]
  • Molecular Cloning Plasmid-Based Cloning Vectors
    Page: 1 Molecular Cloning A glaring problem in most areas of biochemical research is obtaining sufficient amounts of the substance of interest. For example, a 10 L culture of E. coli grown to its maximum titer will only contain about 7 mg of DNA polymerase I, and many other proteins in much lesser amounts. Furthermore, only rarely can as much as half of any protein originally present in an organism be recovered in pure form. Eucaryotic proteins are even more difficult to obtain because tissue samples are usually only available in small quantities. With regards to the amount of DNA present, the 10 L E. coli culture would contain about 0.1mg of any 1000 bp length chromosomal DNA but its purification in the presence of the rest of the chromosomal DNA would be a very difficult task. These difficulties have been greatly reduced through the development of molecular cloning techniques. These methods, which are also referred to as genetic engineering and recombinant DNA technology, deserve much of the credit for the enormous progress in biochemistry and the dramatic rise of the biotechnology industry. The main idea of molecular cloning is to insert a DNA segment of interest into an autonomously replicating DNA molecule, a so-called cloning vector, so that the DNA segment is replicated with the vector. Cloning such a chimeric vector in a suitable host organism such as E. coli or yeast results in the production of large amounts of the inserted DNA segment. If a cloned gene is flanked by the properly positioned control sequences for RNA and protein synthesis, the host may also produce large quantities of the mRNA and protein specified by that gene.
    [Show full text]
  • Effect of Plasmid Copy Number and Lac Operator Sequence on Antibiotic-Free Plasmid Selection by Operator-Repressor Titration in Escherichia Coli
    Research Article J Mol Microbiol Biotechnol 2004;7:197–203 DOI: 10.1159/000079828 Effect of Plasmid Copy Number and lac Operator Sequence on Antibiotic-Free Plasmid Selection by Operator-Repressor Titration in Escherichia coli Rocky M. Cranenburgh Kathryn S. Lewis Julian A.J. Hanak Cobra Biomanufacturing Plc, The Science Park, Keele , Staffs., UK Key Words Introduction Recombinant protein · Metabolic burden · DNA vaccine · lac repressor · DAP · DH1 lacdapD The use of antibiotics and antibiotic resistance genes in the production of recombinant biotherapeutics is unde- sirable for a number of reasons. These include the risk of Abstract antibiotic gene transfer to pathogenic organisms [David- The Escherichia coli strain DH1 lacdapD enables plasmid son, 1999], plasmid loss due to plasmid size and metabol- selection and maintenance that is free from antibiotics ic stress [Smith and Bidochka, 1998] or antibiotic break- and selectable marker genes. This is achieved by using down during culture and the risk of contamination of the only the lac operator sequence as a selectable element. product with antibiotics [Baneyx, 1999]. Strategies have This strain is currently used to generate high copy num- been developed to avoid the use of antibiotics, including ber plasmids with no antibiotic resistance genes for use plasmids enabling complementation of a host auxotrophy, as DNA vaccines and for expression of recombinant pro- or possessing post-segregational killing (PSK) mechanisms teins. Until now these have been limited to pUC-based [Hanak and Cranenburgh, 2001]. However, these share plasmids containing a high copy number pMB1-derived another major disadvantage with the antibiotic-selected origin of replication, and the principle lacO1 and auxil- plasmids: the metabolic burden associated with constitu- iary lacO3 operators.
    [Show full text]
  • Psoxs::Lacz Recombinant Pbr322 Plasmid As a Sensitive Reporter of Internal Reactive Oxygen Species in Escherichia Coli Dh5α
    Journal of Experimental Microbiology and Immunology (JEMI) Vol. 18: 121 – 128 Copyright © April 2014, M&I UBC Attempted construction of a soxR::PsoxS::lacZ recombinant pBR322 plasmid as a sensitive reporter of internal reactive oxygen species in Escherichia coli DH5α Dominique Haag, Tony Hui, Seo Young Kim, Jane Nguyen Department Microbiology & Immunology, University of British Columbia This study attempted to engineer an internal reactive oxygen species probe using lacZ expression driven by the soxS promoter in response to intracellular superoxide presence being sensed by SoxR. Using polymerase chain reaction amplification, soxR fused to the promoter of soxS (PsoxS) and lacZ amplicons were obtained. Double restriction digests and sticky-end ligations were then performed in an attempt to clone soxR::PsoxS::lacZ into the pBR322 plasmid vector. Following ligation, transformation of competent Escherichia coli DH5α by calcium chloride-heatshock transformation was performed, and resulting transformants were screened for the soxR::PsoxS::lacZ::pBR322 construct. Even though the amplicons were made, a successful ligation was not achieved. The lack of success in obtaining the desired construct prevented further examination of the potential of the proposed reactive oxygen species probe. - Reactive oxygen species (ROS), such as superoxide (O2 ) compared to the previously studied katG::luxCDABE and hydrogen peroxide (H2O2), are radicals that can be probe (9). generated by various mechanisms including exposure to A possible reason for the lack of sensitivity of the UV-A, paraquat, and side reactions involving quinones katG::luxCDABE probe used in a previous study may be a from the electron transport chain (1,2,3). Excessive levels consequence of luminescence activity inhibited by the of ROS are potentially harmful towards microorganisms growth media (9).
    [Show full text]
  • Download Author Version (PDF)
    Environmental Science: Water Research & Technology Elimination of transforming activity and gene degradation during UV and UV/H2O2 treatment of plasmid-encoded antibiotic resistance genes Journal: Environmental Science: Water Research & Technology Manuscript ID EW-ART-03-2018-000200.R2 Article Type: Paper Date Submitted by the Author: 27-May-2018 Complete List of Authors: Yoon, Younggun; Gwangju Institute of Science and Technology, School of Earth Sciences and Environmental Engineering Dodd, Michael; University of Washington, Civil and Environmental Engineering Lee, Yunho; Gwangju Institute of Science and Technology, Environmental Science and Engineering Page 1 of 40 Environmental Science: Water Research & Technology Water Impact Statement The efficiency and mode of actions for deactivating and degrading antibiotic resistance genes (ARGs) during water treatment with UV (254 nm) and UV/H2O2 have been poorly understood. Here, we show that efficiency of elimination of the transforming activity for a plasmid-encoded ARG during the UV-based treatments depends on the rate of formation of cyclobutane-pyrimidine dimers (CPDs) in the plasmid and the repair of such DNA damage during the transformation process in host cells. This work has important contributions to optimizing the monitoring and operation of UV-based water disinfection and oxidation processes for removing ARGs. Environmental Science: Water Research & Technology Page 2 of 40 1 Elimination of transforming activity and gene degradation during 2 UV and UV/H2O2 treatment of plasmid-encoded
    [Show full text]
  • High-Throughput Cloning and Characterization of Emerging Adenovirus Types 70, 73, 74, and 75
    International Journal of Molecular Sciences Article High-Throughput Cloning and Characterization of Emerging Adenovirus Types 70, 73, 74, and 75 Wenli Zhang 1, Kemal Mese 1, Sebastian Schellhorn 1 , Nora Bahlmann 1, Nicolas Mach 1, Oskar Bunz 1 , Akshay Dhingra 2, Elias Hage 2, Marie-Edith Lafon 3, Harald Wodrich 3 , Albert Heim 2 and Anja Ehrhardt 1,* 1 Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, Witten/Herdecke University, 58453 Witten, Germany; [email protected] (W.Z.); [email protected] (K.M.); [email protected] (S.S.); [email protected] (N.B.); [email protected] (N.M.); [email protected] (O.B.) 2 Institut für Virologie, Adenovirus Konsiliarlabor, Medizinische Hochschule, 30625 Hannover, Germany; [email protected] (A.D.); [email protected] (E.H.); [email protected] (A.H.) 3 Microbiologie Fondamentale et Pathogénicité, Université de Bordeaux, 33076 Bordeaux, France; [email protected] (M.-E.L.); [email protected] (H.W.) * Correspondence: [email protected]; Tel.: +49-2302-926273 Received: 31 July 2020; Accepted: 31 August 2020; Published: 2 September 2020 Abstract: Recently an increasing number of new adenovirus types associated with type-dependent pathogenicity have been identified. However, identification of these clinical isolates represents the very first step to characterize novel pathogens. For deeper analyses, these adenoviruses need to be further characterized in basic virology experiments or they could be applied in translational research. To achieve this goal, it is essential to get genetic access and to enable genetic modification of these novel adenovirus genomes (deletion, insertion, and mutation).
    [Show full text]
  • Chapter 13 an Introduction to Cloning and Recombinant DNA Clones
    Chapter 13 An Introduction to Cloning and Recombinant DNA Clones • Genetically identical organisms or molecules derived from a common ancestor Cloning Plants from Single Cells Fig. 13.1 Cloning Animals • Animals were cloned more than 20 years ago • Two techniques – Embryo splitting – Nuclear transfer animalscience.ucdavis.edu library.thinkquest.org Embryo Splitting • Egg collected • Fertilized by in vitro fertilization (IVF) • Embryo is grown to 8–16 cells • Cells are separated • Separated cells grown into separate embryos • Embryos transplanted into surrogate mothers • May be used to clone any mammalian embryos, including humans Cloning by nuclear transfer www.biotechnologyonline.gov.au Cloning by nuclear transfer www.pnas.org Nuclear Transfer • First done in 1986 • More difficult • Nucleus is removed from an egg • Enucleated eggs are fused with other cells • Embryos are transplanted into a surrogate mother • In 1997, Dolly the sheep was the first mammalian clone from an adult donor cell Cloned animals Second addition Second chance Also cloned animals about to go extinct - gaur etc at Texas A&M Fig. 13.5 Cloning Mice by Injection of Nuclei from Adult Cells Problems - don’t live as long not carbon copies/identical develop diseases early very low success rate - 0.1 - 3% Dedifferentiation/reprogramming may not be complete or accurate Gene Cloning GOAL: To get enough copies of the gene to manipulate Gene Cloning vector Recombinant DNA Host Multiply Started with: few copies Ended with: Many copies. All identical to starting gene - CLONES Restriction enzymes Nobel Prize Werner Arber, Daniel Nathans and Hamilton O. Smith 1978 Restriction Enzymes Fig. 13.6 Inserting foreign DNA using restriction enzymes Ligase BamHI BamHI GGATCC GGATCC CCTAG G CCTAG G GATCC G G CCTAG Frequency of occurrence of restriction sites If DNA sequence has equal amounts of each base If bases are distributed randomly 6 base cutter (1/4)6 = 1 site in ~4000 bp 4 base cutter (1/4)4 = 1 site in 256 bp Common Restriction Enzymes Fig.
    [Show full text]
  • 3 Main Classification of Vectors (With Diagram)
    4/20/2020 3 Main Classification of Vectors (With Diagram) Privacy Policy | Join our Community :- Upload Now 3 Main Classification of Vectors (With Diagram) Article shared by : The classifications are: 1. On the Basis of Our Aim with Gene of Interest 2. On the Basis of Host Cell Used 3. On the Basis of Cellular Nature of Host Cell. Vector Classification # 1. On the Basis of Our Aim with Gene of Interest: The point is what we are targeting from our gene of interest — its multiple copies or its protein product. Depending on these criteria vec tors are of following two types: 1. Cloning Vectors: We use a cloning vec tor when our aim is to just obtain numer ous copies (clones) of our gene of interest (hence the name cloning vectors). These are mostly used in construction of gene libraries. A number of organisms can be used as sources for cloning vectors. Some are created synthetically, as in the case of yeast artificial chromosomes and bacte rial artificial chromosomes, while others are taken from bacteria and bacteriopha ges. In all cases, the vector needs to be genetically modified in order to accommo date the foreign DNA by creating an in sertion site where the new DNA will fit ted. Example: PUC cloning vectors, pBR322 cloning vectors, etc. 2. Expression Vectors or Expression construct: www.biotechnologynotes.com/recombinant-dna-technology/3-main-classification-of-vectors-with-diagram/395 1/64 4/20/2020 3 Main Classification of Vectors (With Diagram) We use an expression vector when our aim is to obtain the protein prod uct of our gene of interest.
    [Show full text]