Effect of Plasmid Copy Number and Lac Operator Sequence on Antibiotic-Free Plasmid Selection by Operator-Repressor Titration in Escherichia Coli

Total Page:16

File Type:pdf, Size:1020Kb

Effect of Plasmid Copy Number and Lac Operator Sequence on Antibiotic-Free Plasmid Selection by Operator-Repressor Titration in Escherichia Coli Research Article J Mol Microbiol Biotechnol 2004;7:197–203 DOI: 10.1159/000079828 Effect of Plasmid Copy Number and lac Operator Sequence on Antibiotic-Free Plasmid Selection by Operator-Repressor Titration in Escherichia coli Rocky M. Cranenburgh Kathryn S. Lewis Julian A.J. Hanak Cobra Biomanufacturing Plc, The Science Park, Keele , Staffs., UK Key Words Introduction Recombinant protein · Metabolic burden · DNA vaccine · lac repressor · DAP · DH1 lacdapD The use of antibiotics and antibiotic resistance genes in the production of recombinant biotherapeutics is unde- sirable for a number of reasons. These include the risk of Abstract antibiotic gene transfer to pathogenic organisms [David- The Escherichia coli strain DH1 lacdapD enables plasmid son, 1999], plasmid loss due to plasmid size and metabol- selection and maintenance that is free from antibiotics ic stress [Smith and Bidochka, 1998] or antibiotic break- and selectable marker genes. This is achieved by using down during culture and the risk of contamination of the only the lac operator sequence as a selectable element. product with antibiotics [Baneyx, 1999]. Strategies have This strain is currently used to generate high copy num- been developed to avoid the use of antibiotics, including ber plasmids with no antibiotic resistance genes for use plasmids enabling complementation of a host auxotrophy, as DNA vaccines and for expression of recombinant pro- or possessing post-segregational killing (PSK) mechanisms teins. Until now these have been limited to pUC-based [Hanak and Cranenburgh, 2001]. However, these share plasmids containing a high copy number pMB1-derived another major disadvantage with the antibiotic-selected origin of replication, and the principle lacO1 and auxil- plasmids: the metabolic burden associated with constitu- iary lacO3 operators. In this study we have shown that tively expressed plasmid-borne genes resulting in lower this system can also be used to select and maintain rates of growth [Bentley et al., 1990]. The solution to this pBR322-based plasmids with the lower copy number problem is to use a plasmid with a non-expressed selectable pMB1 origin of replication, and that lacO 1 alone or a pal- marker. The Operator-Repressor Titration (ORT) system indromic version of lacO1 can provide a suffi cient level enables the selection and maintenance of plasmids that are of repressor titration for plasmid selection. This is advan- free from expressed selectable marker genes and require tageous for recombinant protein production, where low only the short, non-expressed lac operator for selection and copy number plasmids are often used and plasmid main- maintenance [Williams et al., 1998]. The principle Esch- tenance is important. The degree of repressor titration erichia coli ORT strain, DH1lacdapD [Cranenburgh et al., due to these plasmids was measured using the natural 2001], has been used to produce several important DNA lactose operon in E. coli DH1 as a model. vaccine candidates such as the HIV-1 vaccine pTHr.HIVA Copyright © 2004 S. Karger AG, Basel [Hanke and McMichael, 2000]. © 2004 S. Karger AG, Basel Rocky M. Cranenburgh 1464–1801/04/0074–0197$21.00/0 Cobra Biomanufacturing Plc Fax +41 61 306 12 34 The Science Park E-Mail [email protected] Accessible online at: Keele ST5 5SP (UK) www.karger.com www.karger.com/mmb Tel. +44 1782 714181, Fax +44 1782 799817, E-Mail [email protected] Although DNA vaccine and gene therapy applications require the highest possible plasmid copy number, recom- binant protein expression can benefi t from using low copy number plasmids instead [Jones et al., 2000], so it was important to determine if these could be selected and maintained by ORT. In addition to plasmid copy num- ber, we investigated the effect of different sequences of lac operators on repressor titration. For those plasmids that do not possess the lacO 1 and lacO 3 operators with the optimum spacing found in the pUC series, we inves- tigated lacO 1 alone and a palindromic version of lacO as potential selectable markers. This would make the con- version of conventionally selected plasmids to ORT plas- mids easier, and reduce the size of the ORT plasmid. The results presented here test the versatility of the ORT sys- tem and determine its potential for recombinant protein production. Fig. 1. The mechanism of repressor titration. A representation of the chromosome of DH1 lacdapD in ( A) the absence, and (B ) pres- ence of a lacO -containing multicopy plasmid. Results and Discussion Plasmid Elements Repressor titration occurs in a cell containing the fol- Virtually all E. coli plasmids in common use as cloning lowing three components: (i) a chromosomal gene under or expression vectors were originally derived from the negative regulation by a promoter that incorporates an natural E. coli plasmid pMB1 [Yoshimori et al., 1972]. operator, (ii) a multicopy plasmid that possesses an op- The pMB1 derivative pBR345 was used to construct erator (with a similar, but not necessarily identical, se- pBR322 [Bolivar et al., 1977]. The pBR322 derivative quence to the chromosomal operator) and (iii) a second pUR1 was the ancestor of the higher copy number pUC chromosomal gene that expresses a repressor protein series [Vieira and Messing 1982], including pUC18 [Nor- that is able to bind to both plasmid and chromosomal rander et al., 1983]. Both the pUC18- and pBR322-de- operators. In DH1lacdapD the chromosomal gene con- rived plasmids constructed for these experiments have a trolled by P lac is dapD [Richaurd et al., 1984], which degree of sequence identity including bla (retained to en- encodes the enzyme tetrahydrodipicolinate N-succinyl able the identifi cation of plasmid-containing cells by an- transferase that catalyses a step in the lysine/diami- tibiotic selection) and the pMB1 origin of replication nopimelate (DAP) biosynthesis pathway. DAP cross- ( ori ). The plasmids were designed to be small and to not links peptidoglycan in the bacterial cell wall, so in the contain any unnecessary expressed elements, so that met- absence of dapD expression, DH1lacdapD cells will lyse. abolic burden would not be a differentiating factor. There- There is no DAP present even in rich media such as fore, the tetracycline resistance gene tet was removed Luria-Bertani (LB) or Terrifi c Broth, as they do not con- from all the pBR322-based plasmids. tain components derived from bacteria. The LacI re- There are two important differences with respect to pressor protein binds to the lacO 1 and lacO 3 operators copy number between the pBR322 and pUC plasmids. and blocks transcription of dapD . Therefore, an un- Twigg and Sherratt [1980] deleted a section of the pMB1- transformed cell of DH1lacdapD can only grow to form derived plasmid pAT153 that resulted in up to a 3-fold a single colony on a nutrient agar plate if an inducer of increase in copy number. This was later found to encode the lac operon such as isopropyl- ß-D-thiogalactopyrani- the Rom protein, present in pBR322 but absent from side (IPTG) is present. However, when a plasmid pos- pUC18. The pMB1 ori encodes two overlapping RNA sessing lacO sequences is introduced into the cell, the transcripts: RNAII is the primer for plasmid DNA syn- binding of the repressor protein to the plasmid-borne thesis, and RNAI is the antisense inhibitor of RNAII [To- operator derepresses the chromosomal operator and al- mizawa, 1984]. Rom stabilises the binding of RNAI to lows dapD expression ( fi g. 1 ). RNAII [Tomizawa and Som, 1984]; in the absence of 198 J Mol Microbiol Biotechnol 2004;7:197–203 Cranenburgh/Lewis/Hanak 5,000 LB 4,500 Ap +IPTG 4,000 3,500 3,000 2,500 Fig. 2. Transformation effi ciency of 2,000 DH1lacdapD . Following transformation, 1,500 cultures were plated onto LB agar with no 1,000 (colonies per fmol DNA) 500 additives (ORT selection) and with ampi- Transformation efficiency 0 cillin (Ap) plus IPTG (antibiotic selection). I I t 8 8 1 0 0 2 1 e 1 1 0 c c 2 0 t C C 8 la la 3 2 ∆ Results represent the number transformant U 1 ∆ 2 R 2 2 p U C 8 2 3 2 p U 1 3 B R 3 p C R p B R colonies per femtomole of plasmid DNA U B p B used in the transformation, and are the p p p mean of three separate experiments with Plasmid standard deviation displayed as error bars. Rom, RNAII is able to dissociate from RNAI, and there- Table 1. Plasmids used in this study fore to prime plasmid replication, at a greater rate. The second factor is a G KA mutation in the pMB1 ori from Plasmid Size, bp Operator Source or reference pBR322 to the pUC series [Minton et al., 1988] that pUC18 2,686 lacO , lacO Norrander et al., 1983 - 1 3 causes a further copy number increase in rom plasmids pUC18O1 2,085 lacO1 This study by altering RNAII conformation [Lin-Chao et al., pUC18I 2,084 Ideal lacO This study 1992]. pUC18¢lacO 2,364 None Cranenburgh et al., 2001 pBR322lacO 3,188 lacO1, lacO3 This study These mutations enable pUC plasmids to reach 500– pBR322O1 3,104 lacO1 This study 700 copies per cell [Minton et al., 1988]. The single chro- pBR322I 3,103 Ideal lacO This study mosomal copy of lacI expresses LacI repressor protein at pBR322¢tet 2,866 None This study ~20 copies per cell [Müller-Hill et al., 1968]. It was previ- ously thought that this signifi cant molar excess of plasmid was necessary to achieve suffi cient levels of repressor ti- tration in ORT E. coli strains. It was not known if lower with the optimal spacing (71 bp between the elements), copy number pBR322 plasmids with 39–55 copies per (ii) a single lacO 1 , (iii) a single ‘ideal’ lacO , and (iv) no cell [Lin- Chao and Bremer, 1986] would achieve the same lacO sequences, as described in table 1 .
Recommended publications
  • Ampicillin Versus Tetracycline in the Selection of Pbr322 Transformants
    Journal of Experimental Microbiology and Immunology (JEMI) Vol. 2:189-193 Copyright April 2002, M&I UBC The Effects of Ampicillin versus Tetracycline in the Selection of pBR322 Transformants JOYCE S. LAW, SHARON LEE, AMY TSENG, KO WING TSUI, AND NANCY YU Department of Microbiology and Immunology, UBC Escherichia coli DH5α cells were transformed with pBR322 plasmids, which encode both ampicillin and tetracycline resistance genes. After 45- and 60-minute recovery periods, the transformed cells were plated on three types of selective plates, containing 1) ampicillin only, 2) tetracycline only, and 3) ampicillin plus tetracycline. It was found that tetracycline selection from these recovery periods resulted in a lower level of transformant survival than ampicillin selection. However, after the transformants were allowed to recover for several generations, their survival rates were similar on ampicillin plates and on tetracycline plates. The pBR322 plasmid is a commonly used cloning vector that contains both the ampicillin and tetracycline resistance genes as selectable markers. Escherichia coli cells transformed with pBR322 plasmids have a selective advantage in antibiotic-treated environments. Results from a previous experiment indicate that different selective pressures affect the survival of transformed cells, as considerably more transformants survived ampicillin-only selection than ampicillin-tetracycline selection (1). Many possible reasons can explain this difference. Firstly, the mechanisms of ampicillin resistance and tetracycline resistance encoded on the pBR322 plasmid are very different. Ampicillin resistance on the pBR322 plasmid encodes the enzyme β-lactamase, which is secreted to the periplasm and acts by binding and inactivating the ampicillin molecule (http://wine1.sb.fsu.edu/bch5425/lec13/lect13.htm).
    [Show full text]
  • Transformation of Bacteria with Different Plasmids
    Molecular Biology of Life Laboratory BIOL 123 TRANSFORMATION OF BACTERIA WITH DIFFERENT PLASMIDS Objectives • To understand the concept of DNA as genetic material through the process of transformation. • To test the conditions that make cells competent for use in DNA-mediated transformation. • To study the characteristics of plasmid vectors. Introduction Transformation Modern molecular biology began with the experiments of Avery, MacLeod and McCarty (1944) on two strains of Pneumococcus bacteria. When grown on an agar plate, the wild type virulent strain had smooth glistening colonies designated as type S while an avirulent strain had colonies with irregular shape and rough surface, designated as type R. The change from type R to S could be mediated if a DNA extract from S was added to type R bacteria in a test tube. The term "transformation" was coined for such a change. Other contemporary scientists did not easily accept these experiments and what they implicated, mainly because the method of identifying DNA was not yet well established at the time. It took a decade before the validity of such experiments and their conclusions became fully appreciated as a result of rapidly increasing knowledge and understanding of the chemical and physical nature of DNA. Normally grown E. coli cells can not take up the exogenously supplied DNA. However, if the cells are soaked in an ice cold calcium chloride solution for a short time before the addition of DNA and a brief (90 seconds) heat shock (42°C) is given, DNA uptake by the cells is facilitated (Hanahan, 1983). When bacteria have been prepared in this special manner to easily accept the foreign DNA, they are said to be "competent".
    [Show full text]
  • 10. E. Coli Cloning Vector Pbr322
    10. E. coli cloning vector pBR322 Important questions based on it: A. (a) Name the organism in which the vector shown is inserted to get the copies of the desired gene. (b) Mention the area labelled in the vector responsible for controlling the copy number of the inserted gene. (c) Name and explain the role of a selectable marker in the vector shown. (AI 2010) B. (a) Identify the selectable markers in the diagram of E. coli vector shown below. (b) How is the coding sequence of -galactosidase considered a better marker than the ones identified by you in the diagram? Explain. (Delhi 2009) A. Explain the importance of (a) ori, (b) ampR and (c) rop in the E. coli vector shown below. (AI 2008) B. Draw pBR322 cloning vector. Label ‘ori’, ‘rop’ and any one antibiotic resistance site on it and state their functions. (AI 2015C) C. Draw a schematic diagram of the E. coli cloning vector pBR322 and mark the following in it: (a) ori (b) rop (c) ampicillin resistance gene (d) tetracycline resistance gene (e) restriction site BamHI (f) restriction site EcoR I (AI 2014C) D. Draw a schematic sketch of pBR322 plasmid and label the following in it: (a) Any two restriction sites. (b) Ori and rop genes. (c) An antibiotic resistant gene. (Delhi 2012) E. Identify A, B, C and D in the given diagram. (a) A-ori, B-ampR, C-tetR, D-HindIII (b) A-HindIII, B-tetR, C-ampR, D-ori (c) A-ampR, B-tetR, C-HindIII, D-ori (d) A-tetR, B-HindIII, C-ori, D-ampR (COMEDK) F.
    [Show full text]
  • Psoxs::Lacz Recombinant Pbr322 Plasmid As a Sensitive Reporter of Internal Reactive Oxygen Species in Escherichia Coli Dh5α
    Journal of Experimental Microbiology and Immunology (JEMI) Vol. 18: 121 – 128 Copyright © April 2014, M&I UBC Attempted construction of a soxR::PsoxS::lacZ recombinant pBR322 plasmid as a sensitive reporter of internal reactive oxygen species in Escherichia coli DH5α Dominique Haag, Tony Hui, Seo Young Kim, Jane Nguyen Department Microbiology & Immunology, University of British Columbia This study attempted to engineer an internal reactive oxygen species probe using lacZ expression driven by the soxS promoter in response to intracellular superoxide presence being sensed by SoxR. Using polymerase chain reaction amplification, soxR fused to the promoter of soxS (PsoxS) and lacZ amplicons were obtained. Double restriction digests and sticky-end ligations were then performed in an attempt to clone soxR::PsoxS::lacZ into the pBR322 plasmid vector. Following ligation, transformation of competent Escherichia coli DH5α by calcium chloride-heatshock transformation was performed, and resulting transformants were screened for the soxR::PsoxS::lacZ::pBR322 construct. Even though the amplicons were made, a successful ligation was not achieved. The lack of success in obtaining the desired construct prevented further examination of the potential of the proposed reactive oxygen species probe. - Reactive oxygen species (ROS), such as superoxide (O2 ) compared to the previously studied katG::luxCDABE and hydrogen peroxide (H2O2), are radicals that can be probe (9). generated by various mechanisms including exposure to A possible reason for the lack of sensitivity of the UV-A, paraquat, and side reactions involving quinones katG::luxCDABE probe used in a previous study may be a from the electron transport chain (1,2,3). Excessive levels consequence of luminescence activity inhibited by the of ROS are potentially harmful towards microorganisms growth media (9).
    [Show full text]
  • Download Author Version (PDF)
    Environmental Science: Water Research & Technology Elimination of transforming activity and gene degradation during UV and UV/H2O2 treatment of plasmid-encoded antibiotic resistance genes Journal: Environmental Science: Water Research & Technology Manuscript ID EW-ART-03-2018-000200.R2 Article Type: Paper Date Submitted by the Author: 27-May-2018 Complete List of Authors: Yoon, Younggun; Gwangju Institute of Science and Technology, School of Earth Sciences and Environmental Engineering Dodd, Michael; University of Washington, Civil and Environmental Engineering Lee, Yunho; Gwangju Institute of Science and Technology, Environmental Science and Engineering Page 1 of 40 Environmental Science: Water Research & Technology Water Impact Statement The efficiency and mode of actions for deactivating and degrading antibiotic resistance genes (ARGs) during water treatment with UV (254 nm) and UV/H2O2 have been poorly understood. Here, we show that efficiency of elimination of the transforming activity for a plasmid-encoded ARG during the UV-based treatments depends on the rate of formation of cyclobutane-pyrimidine dimers (CPDs) in the plasmid and the repair of such DNA damage during the transformation process in host cells. This work has important contributions to optimizing the monitoring and operation of UV-based water disinfection and oxidation processes for removing ARGs. Environmental Science: Water Research & Technology Page 2 of 40 1 Elimination of transforming activity and gene degradation during 2 UV and UV/H2O2 treatment of plasmid-encoded
    [Show full text]
  • The Effects of Sub-Inhibitory Levels of Chloramphenicol on Pbr322
    Journal of Experimental Microbiology and Immunology (JEMI) Vol. 7:82-88 Copyright © April 2005, M&I UBC The Effects of Sub-Inhibitory Levels of Chloramphenicol on pBR322 Plasmid Copy Number in Escherichia coli DH5α Cells SARAH BEGBIE, GIULIO DOMINELLI, KIA DUTHIE, JOANNA HOLLAND, MARISSA JITRATKOSOL Department of Microbiology and Immunology, UBC While humans use antibiotics at inhibitory levels to prevent microbial growth, antibiotics are normally found at sub-inhibitory concentrations in nature. The role and effects of sub-inhibitory levels of antibiotics is one of the key areas of research in microbial science today. In this experiment, the effects of sub-inhibitory levels of chloramphenicol on pBR322 plasmid copy number in Escherichia coli DH5α cells were examined. E. coli DH5α cells with pBR322 plasmid were grown in different concentrations of chloramphenicol ranging from 1 to 5 µg/ml. The cells were enzymatically lysed and the DNA extracted through a phenol:chloroform:isoamyl alcohol extraction. The total bacterial DNA was run on a 0.8% agarose gel; using the ratio of genomic DNA to pBR322 DNA, the plasmid copy numbers per genome were calculated. It was found that 1 µg/ml chloramphenicol quantities had no significant affect when compared to the control; however, 3-5 µg/ml of chloramphenicol caused pBR322 concentrations to double. Due to assay insensitivity, there was no significant difference between the 3 µg/ml and 5 µg/ml samples. ___________________________________________________________ Chloramphenicol is a commonly used bacterial cultures prior to overnight incubation. bacteriostatic antibiotic that reversibly binds to the 50S Following growth in the presence of the antibiotic, subunit (L10 protein) and inhibits peptidyl transferase yield of plasmid DNA was analyzed and compared.
    [Show full text]
  • Characterization of Copy Number Mutants of Plasmid Psc101
    J. Gen. App!. Microbiol., 43, 309-316 (1997) Characterization of copy number mutants of plasmid pSC1O1 Abdul Wadood, Mitsuko Dohmoto, Shigeki Sugiura, and Kazuo Yamaguchi* Institute for Gene Research, Kanazawa University, Kanazawa 920, Japan (Received September 19,1997; Accepted November 28, 1997) We have characterized three copy number mutants of the plasmid pSC101. These mutations caused single amino acid substitutions at the 46th, 83rd and 115th codons in the rep gene and an increase in the copy number by 4- to 8-fold. Although the in vivo and in vitro repressor activities of these mutated Rep proteins were quite different from each other, the intracellular concentrations of the proteins were maintained at higher levels than the wild-type protein. It has been reported that ex- cess amounts of Rep inhibit pSC101 replication (Ingmer and Cohen, 1993). This inhibitory activity of Rep was markedly decreased in all three mutants. When both the wild-type and one of the mu- tated rep genes were retained in the same plasmids, the copy number of these plasmids was de- creased compared with plasmids retaining a single mutated rep gene. These results support the theory that the inhibitory activity of Rep for its own replication plays an important role in copy num- ber regulation. Key Words copy number; DNA replication; dominance test; plasmid; pSC101 Plasmid pSC101 (Cohen and Chang, 1977), 9.2 1995). Furthermore, overproduction of the Rep protein kilobase pairs (kb) in size (Yamaguchi and Yama- can inhibit the replication of plasmid pSC101 (Ingmer guchi, 1984b), is present at approximately 5 copies and Cohen, 1993).
    [Show full text]
  • Effect of RNA I Gene Dosage on Plasmid Copy Number and Incompatability DAVID R
    JOURNAL OF BACTERIOLOGY, May 1983, p. 809-818 Vol. 154, No. 2 0021-9193/83/050809-10$02.00/0 Copyright C 1983, American Society for Microbiology Characterization and Complementation of pMB1 Copy Number Mutant: Effect of RNA I Gene Dosage on Plasmid Copy Number and Incompatability DAVID R. MOSER AND JUDITH L. CAMPBELL* Department of Chemistry, California Institute of Technology, Pasadena, California 91125 Received 2 July 1982/Accepted 20 January 1983 A 16-base-pair insertion has been identified as the mutation responsible for the high-copy-number phenotype of the plasmid copy number mutant pFH118. The mutation is located near the plasmid origin of replication in a region ofthe genome that encodes two overlapping RNA transcripts. One of these transcripts, RNA I, acts as a negative regulator of plasmid replication. The second transcript is the precursor to the primer for the initiation of DNA synthesis. We demonstrate through complementation that the pFH118 DNA overproduction phenotype is a consequence of the reduced effectiveness of the mutant RNA I at inhibiting plasmid replication and not a consequence of an altered target site on the primer precursor. In addition, a series of plasmids containing multiple RNA I-coding genes was constructed for investigating the effects of RNA I gene dosage on plasmid copy number and incompatibility. The results of this study strongly support the inhibitor dilution model of plasmid copy control with RNA I as the plasmid-specified inhibitor responsible for both copy number control and incom- patibility. The stable inheritance of multicopy bacterial number, were found to have deleted the inser- plasmids at defined copy numbers implies a tion sequence and produced a normal RNA I.
    [Show full text]
  • RNAII Transcribed by IPTG-Induced T7 RNA Polymerase Is Non-Functional As a Replication Primer for Colel-Type Plasmids in Escherichia Coli Michael Y
    1995 Oxford University Press Nucleic Acids Research, 1995, Vol. 23, No. 10 1691-1695 RNAII transcribed by IPTG-induced T7 RNA polymerase is non-functional as a replication primer for ColEl-type plasmids in Escherichia coli Michael Y. Chao, Ming-Chung Kan and Sue Lin-Chao* Institute of Molecular Biology, Academia Sinica, Nankang, Taipei, Taiwan 11529, Republic of China Received February 17, 1995; Revised and Accepted March 30, 1995 ABSTRACT advantageous for the expression of certain gene products would be a cloning vector that has an inducible high copy number. RNAII, an RNA species encoded by ColEl-type plas- Several RI-derived plasmids that show temperature-dependent mids, serves as a primer for plasmid DNA replication. regulation of copy number have been described (7); these Previous work has shown that overproduction of plasmids replicate at a low copy number at 30°C and exhibit RNAII transcribed by Escherichia coliRNA polymerase 'runaway replication' at 370C, resulting in an exponential results in elevated plasmid copy number. To produce increase in the concentration ofplasmid DNA. However, the host a plasmid in which the elevation of its copy number is cells carrying these plasmids lyse under 'runaway' conditions. inducible, we placed transcription of RNAII under the Recent work by Bacharov et al. (8) has shown that IPTG- control of a bacteriophage T7 late promoter regulated induced overproduction of RNAII transcribed from a strong by IPTG-inducible T7 RNA polymerase. During induc- synthetic promoter by E.coli RNA polymerase results in a 4-fold tion of T7 RNA polymerase by IPTG, we found that increase in plasmid copy number (8).
    [Show full text]
  • Stability of Plasmid Pbr322 Within Escherichia Coli Cells
    MOJ Biology and Medicine Research Article Open Access Stability of plasmid pBR322 within Escherichia coli cells Abstract Volume 6 Issue 1 - 2021 Insertion of plasmids into the bacterial cells is of great significance especially in course Tahsin Tabassum, Tasmin Tabassum, Nafisa of the transfer of drug resistance, virulence and other traits. Retention of plasmids within Tabassum, Syeda Muntaka Maniha, Rashed the host bacteria is therefore an important factor for bacterial homeostasis. Current study inferred the pBR322 plasmid stability within the Escherichia coli competent cells. The Noor Department of Life Sciences (DLS), School of Environment and calcium chloride heat shock method was used for the transformation purpose. The plasmid Life Sciences (SELS), Independent University, Bangladesh retention phenomenon was assessed through the replica plating. The results positively showed the plasmid retention within E. coli. Correspondence: Rashed Noor, Associate Professor, Department of Life Sciences (DLS), School of Environment and Keywords: pBR322, plasmid stability, Escherichia coli, replica plating Life Sciences (SELS), Independent University, Bangladesh (IUB), Plot 16, Block B, Bashundhara, Dhaka 1229, Bangladesh, Tel +8801749401451, Email Received: December 11, 2020 | Published: January 27, 2021 Introduction Such segregation and selection model (SS) further suggested the inclusive study of the growth dynamics of two bacterial populations: Plasmids, the self-replicating genetic elements, separated from the one, consisting of plasmid containing
    [Show full text]
  • A Plasmid System with Tunable Copy Number
    bioRxiv preprint doi: https://doi.org/10.1101/2021.07.13.451660; this version posted July 13, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. 1 A Plasmid System with Tunable Copy Number 2 Miles V. Rouches and Yasu Xu 3 Field of Biophysics, Cornell University, Ithaca, NY 14853, USA ∗ 4 Louis Cortes and Guillaume Lambert 5 School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA 6 (Dated: July 13, 2021) Plasmids are one of the most commonly used and time-tested molecular biology platforms for genetic engineering and recombinant gene expression in bacteria. Despite their ubiquity, little consideration is given to metabolic effects and fitness costs of plasmid copy numbers on engineered genetic systems. Here, we introduce two systems that allow for the finely-tuned control of plasmid copy number: a plasmid with an anhydrotetracycline-controlled copy number, and a massively parallel assay that is used to generate a continuous spectrum of ColE1-based copy number variants. Using these systems, we investigate the effects of plasmid copy number on cellular growth rates, gene expression, biosynthesis, and genetic circuit performance. We perform single-cell timelapse measurements to characterize plasmid loss, runaway plasmid replication, and quantify the impact of plasmid copy number on the variability of gene expression. Using our massively parallel assay, we find that each plasmid imposes a 0.063% linear metabolic burden on their hosts, hinting at a simple relationship between metabolic burdens and plasmid DNA synthesis.
    [Show full text]
  • Cloning Vector Puc19
    Cloning Vector pUC19 Product Information Sheet # V33202 SUMMARY shipped at RT; store at 4 °C For research use only Product pUC19 high copy cloning vector for replication in E. coli, suitable for “blue-white screening” technique. Description pUC19 is a small, high copy cloning vector for replication in E. coli. It has been constructed using the ampicillin resistance gene and the pMB1 origin of replication from pBR322. The pMB1 of pUC19 differs from the pBR322 origin by a single point mutation and the lack of the rop gene, leading to a high copy number. Additionally, pUC19 contains the lac operon of E. coli with CAP binding site, lac promoter (Plac), Lac repressor (LacR) binding site, and the 5’-terminal part of the lacZ gene encoding for the N-terminal part of β-galactosidase (source – M13mp19 phage vector). This 5’-terminal part of the lacZ gene contains the multiple cloning site (MCS), and its expression is IPTG inducible. It is capable of intra-allelic α- complementation of a partial deleted chromosomal lacZ copy (E. coli host strain: lacZΔM15, e.g., DH5α, DH10B, JM101, JM109). In the presence of IPTG, transformants expressing both fragments of the ß- galactosidase (the vector encoded N-terminal part and the chromosomal encoded C-terminal part) will form a functional enzyme and can be detected as blue colonies on agar plates containing X-Gal. Cloning into the multiple cloning site will lead to a nonfunctional N-terminal fragment of the ß-galactosidase and to the abolishment of α-complementation. White colonies will form on X-Gal/IPTG plates.
    [Show full text]