Download Author Version (PDF)

Total Page:16

File Type:pdf, Size:1020Kb

Download Author Version (PDF) Environmental Science: Water Research & Technology Elimination of transforming activity and gene degradation during UV and UV/H2O2 treatment of plasmid-encoded antibiotic resistance genes Journal: Environmental Science: Water Research & Technology Manuscript ID EW-ART-03-2018-000200.R2 Article Type: Paper Date Submitted by the Author: 27-May-2018 Complete List of Authors: Yoon, Younggun; Gwangju Institute of Science and Technology, School of Earth Sciences and Environmental Engineering Dodd, Michael; University of Washington, Civil and Environmental Engineering Lee, Yunho; Gwangju Institute of Science and Technology, Environmental Science and Engineering Page 1 of 40 Environmental Science: Water Research & Technology Water Impact Statement The efficiency and mode of actions for deactivating and degrading antibiotic resistance genes (ARGs) during water treatment with UV (254 nm) and UV/H2O2 have been poorly understood. Here, we show that efficiency of elimination of the transforming activity for a plasmid-encoded ARG during the UV-based treatments depends on the rate of formation of cyclobutane-pyrimidine dimers (CPDs) in the plasmid and the repair of such DNA damage during the transformation process in host cells. This work has important contributions to optimizing the monitoring and operation of UV-based water disinfection and oxidation processes for removing ARGs. Environmental Science: Water Research & Technology Page 2 of 40 1 Elimination of transforming activity and gene degradation during 2 UV and UV/H2O2 treatment of plasmid-encoded antibiotic 3 resistance genes 4 5 Younggun Yoon1, Michael C. Dodd2, Yunho Lee1* 6 7 1School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and 8 Technology (GIST), Gwangju 61005, Republic of Korea 9 2Department of Civil and Environmental Engineering, University of Washington, Seattle, WA 10 98195, USA 11 12 13 *Corresponding author: Yunho Lee; Phone: +82 62715-2468; Fax: +82 62-7152434; Email: 14 [email protected] 15 16 17 Submitted to Environmental Science: Water Research & Technology 18 19 1 Page 3 of 40 Environmental Science: Water Research & Technology 20 Abstract 21 To better understand the elimination of transforming activity of antibiotic resistance genes 22 (ARGs), this study determined deactivation of transforming activity of an ARG (in Escherichia 23 coli as a host) and the ARG degradation (according to quantitative PCR [qPCR] with different 24 amplicon sizes) during UV (254 nm) and UV/H2O2 treatment of plasmid pUC19 containing an R 25 ampicillin resistance gene (amp ). The required UV fluence for each log10 reduction of the 26 transforming activity during UV treatment was ∼37 mJ/cm2 for both extra- and intra-cellular 27 pUC19 (the latter within E. coli). The resulting fluence-based rate constant (k) of ∼6.2×10-2 28 cm2/mJ was comparable to the k determined previously for transforming activity loss of 29 plasmids using host cells capable of DNA repair, but much lower (∼10fold) than that for DNA 30 repair–deficient cells. The k value for pUC19 transforming activity loss was similarly much 31 lower than the k calculated for cyclobutane-pyrimidine dimer (CPD) formation in the entire 32 plasmid. These results indicate a significant role of CPD repair in the host cells. The 33 degradation rate constants (k) of ampR measured by qPCR increased with the increasing target 34 amplicon size (192–851 bp) and were close to the k calculated for the CPD formation in the 35 given amplicons. Further analysis of the degradation kinetics of plasmid-encoded genes from 36 this study and from the literature revealed that qPCR detected most UV-induced DNA damage. 37 In the extracellular plasmid, DNA damage mechanisms other than CPD formation (e.g., base 38 oxidation) were detectable by qPCR and gel electrophoresis, especially during UV/H2O2 39 treatment. Nevertheless, the enhanced DNA damage for the extracellular plasmids did not result 40 in faster elimination of the transforming activity. Our results indicate that calculated CPD 41 formation rates and qPCR analyses are useful for predicting and/or measuring the rate of DNA 42 damage and predicting the efficiency of transforming activity elimination for plasmidencoded 43 ARGs during UV-based water disinfection and oxidation processes. 44 2 Environmental Science: Water Research & Technology Page 4 of 40 45 Keywords: antibiotic resistance, ampicillin resistance gene, qPCR, transforming activity, UV, 46 cyclobutane-pyrimidine dimer 47 48 Introduction 49 Increasing antibiotic resistance is a major threat to human and animal health, as it can lower 50 the therapeutic potential of antibiotics against bacterial infections (WHO, 2014). Although 51 antibiotic resistance can occur naturally, overuse or misuse of antibiotics in modern society is 52 associated with increased antibiotic resistance (Allen et al., 2010). Antibiotics can select 53 antibiotic-resistant bacteria (ARB) that carry genes (ARGs) responsible for antibiotic resistance 54 mechanisms. The presence of ARB and ARGs in aquatic environments is a concern because it 55 can promote the spread of antibiotic resistance through natural and anthropogenic water cycles 56 (Berendonk et al., 2015; Pruden, 2014). In addition, antibiotic resistance can be disseminated 57 among bacterial populations by sharing (mobile) ARGs through horizontal gene transfer (HGT) 58 processes (Thomas and Nielsen, 2005). To minimize dissemination of environmental sources of 59 antibiotic resistance, the necessity of coordinated national and international strategies has been 60 advised for monitoring, risk assessment, and mitigation of antibiotic resistance (Vikesland et al., 61 2017). 62 Municipal wastewater has been identified as one of the hotspots that release ARB and ARGs 63 into aquatic environments (Rizzo et al., 2013; Tan and Shuai, 2015). Conventional wastewater 64 treatment does not fully eliminate ARB and ARGs (Chen and Zhang, 2013; Rizzo et al., 2013). 65 Biological treatment processes (e.g., activation of sludge) can significantly reduce the load of 66 ARB but may select highly (or multi-) resistant bacterial species (Czekalski et al., 2012). 67 Disinfection of wastewater effluents with chlorine or ultraviolet irradiation (UV) has been 68 widely practiced for water resource protection (Jacangelo and Trussell, 2002). Ozonation has 69 recently received renewed attention as an option for treating municipal wastewater effluents to 3 Page 5 of 40 Environmental Science: Water Research & Technology 70 eliminate organic micropollutants (Lee and von Gunten, 2016). Advanced oxidation processes 71 such as UV/H2O2 treatment have also been tested to achieve the same goal (Gerrity et al., 2016; 72 Miklos et al., 2018). There has been growing interest in the efficiency of wastewater 73 disinfection and oxidation processes to lower the levels of ARB and ARGs, in addition to 74 micropollutant elimination (Alexander et al., 2016; Czekalski et al., 2016; Dodd, 2012; Ferro et 75 al., 2017; Lüddeke et al., 2015; McKinney and Pruden, 2012; Pak et al., 2016; Sousaa et al., 76 2017; Yoon et al., 2017). 77 ARGs in wastewaters exist in different forms such as intracellular (within bacteria) and 78 extracellular, as free DNA and viruses (Colomer-Lluch et al., 2011; Zhang et al., 2018). ARGs 79 can transfer resistance by HGT mechanisms such as conjugation, transduction, and 80 transformation. Among these HGT mechanisms, transformation requires only intact ARGs for 81 the resistance transfer, as extracellular ARGs can be taken up and incorporated into the genomes 82 of competent bacteria even in the absence of the original donor ARB cell (Thomas and Nielsen, 83 2005). This mechanism is therefore different from conjugation or transduction in which viable 84 donor cells or infective viruses containing ARGs are needed. Considering the potential for ARG 85 transfer via transformation, it is necessary to assess the efficiency of disinfectants at destroying 86 ARGs and eliminating their associated transforming activities (Dodd, 2012). 87 Molecular mechanisms of DNA damage induced by UV or by hydroxyl radicals (•OH) are 88 well established. UV (particularly UVC) mainly generates DNA base lesions such as 89 cyclobutane-pyrimidine dimers (CPDs) and pyrimidine (64) pyrimidone adducts [(6-4) 90 photoproducts] (Görner, 1994; Sinha and Häder, 2002). Good correlations have been found 91 between the UV-induced degradation rate of ARGs and the number of adjacent pyrimidine 92 dimer sites (Chang et al., 2017; Destiani et al., 2017; McKinney and Pruden, 2012). Genomic 93 modeling, an approach to predict the UV sensitivity of microorganisms based on their DNA 94 sequence characteristics, has been tested to predict the degradation efficiency of ARGs 4 Environmental Science: Water Research & Technology Page 6 of 40 95 (Destiani et al., 2017). For •OH, the DNA damage can range from base oxidation to sugar 96 backbone breakages, where the latter can lead to single strand (ss) and double strand (ds) breaks 97 (von Sonntag, 2006). Despite this knowledge, it is unclear how different types of DNA damage 98 resulting from reactions with disinfectants (e.g., UV, •OH) are related to the loss of ARG 99 transforming activity. 100 Quantitative polymerase chain reaction (qPCR) has been widely used to detect and quantify 101 ARGs present in aquatic environments (Luby et al., 2016). The qPCR method has also been 102 employed to assess the efficacy of disinfection processes for ARG elimination by quantifying 103 target qPCR amplicons (Alexander
Recommended publications
  • Genetic and Phylogenetic Characterization of the Type II Cyclobutane Pyrimidine Dimer Photolyases Encoded by Leporipoxviruses
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Available online at www.sciencedirect.com R Virology 315 (2003) 10–19 www.elsevier.com/locate/yviro Genetic and phylogenetic characterization of the type II cyclobutane pyrimidine dimer photolyases encoded by Leporipoxviruses C. James Bennett, Melissa Webb, David O. Willer,1 and David H. Evans2,* Department of Molecular Biology and Genetics, The University of Guelph, Guelph, Ontario, N1G 2W1, Canada Received 2 May 2003; returned to author for revision 21 May 2003; accepted 23 June 2003 Abstract Shope fibroma virus and myxoma virus encode proteins predicted to be Type II photolyases. These are enzymes that catalyze light-dependent repair of cyclobutane pyrimidine dimers (CPDs). When the Shope fibroma virus S127L gene was expressed in an Escherichia coli strain lacking functional CPD repair pathways, the expressed gene protected the bacteria from 70–75% of the ultraviolet (UV) light-induced cytotoxic DNA damage. This proportion suggests that Leporipoxvirus photolyases can only repair CPDs, which typically comprise ϳ70% of the damage caused by short wavelength UV light. To test whether these enzymes can protect virus genomes from UV, we exposed virus suspensions to UV-C light followed by graded exposure to filtered visible light. Viruses encoding a deletion of the putative photolyase gene were unable to photoreactivate UV damage while this treatment again eliminated 70–90% of the lethal photoproducts in wild-type viruses. Western blotting detected photolyase protein in extracts prepared from purified virions and it can be deduced that the poxvirion interior must be fluid enough to permit diffusion of this ϳ50-kDa DNA-binding protein to the sites where it catalyzes photoreactivation.
    [Show full text]
  • Ampicillin Versus Tetracycline in the Selection of Pbr322 Transformants
    Journal of Experimental Microbiology and Immunology (JEMI) Vol. 2:189-193 Copyright April 2002, M&I UBC The Effects of Ampicillin versus Tetracycline in the Selection of pBR322 Transformants JOYCE S. LAW, SHARON LEE, AMY TSENG, KO WING TSUI, AND NANCY YU Department of Microbiology and Immunology, UBC Escherichia coli DH5α cells were transformed with pBR322 plasmids, which encode both ampicillin and tetracycline resistance genes. After 45- and 60-minute recovery periods, the transformed cells were plated on three types of selective plates, containing 1) ampicillin only, 2) tetracycline only, and 3) ampicillin plus tetracycline. It was found that tetracycline selection from these recovery periods resulted in a lower level of transformant survival than ampicillin selection. However, after the transformants were allowed to recover for several generations, their survival rates were similar on ampicillin plates and on tetracycline plates. The pBR322 plasmid is a commonly used cloning vector that contains both the ampicillin and tetracycline resistance genes as selectable markers. Escherichia coli cells transformed with pBR322 plasmids have a selective advantage in antibiotic-treated environments. Results from a previous experiment indicate that different selective pressures affect the survival of transformed cells, as considerably more transformants survived ampicillin-only selection than ampicillin-tetracycline selection (1). Many possible reasons can explain this difference. Firstly, the mechanisms of ampicillin resistance and tetracycline resistance encoded on the pBR322 plasmid are very different. Ampicillin resistance on the pBR322 plasmid encodes the enzyme β-lactamase, which is secreted to the periplasm and acts by binding and inactivating the ampicillin molecule (http://wine1.sb.fsu.edu/bch5425/lec13/lect13.htm).
    [Show full text]
  • Transformation of Bacteria with Different Plasmids
    Molecular Biology of Life Laboratory BIOL 123 TRANSFORMATION OF BACTERIA WITH DIFFERENT PLASMIDS Objectives • To understand the concept of DNA as genetic material through the process of transformation. • To test the conditions that make cells competent for use in DNA-mediated transformation. • To study the characteristics of plasmid vectors. Introduction Transformation Modern molecular biology began with the experiments of Avery, MacLeod and McCarty (1944) on two strains of Pneumococcus bacteria. When grown on an agar plate, the wild type virulent strain had smooth glistening colonies designated as type S while an avirulent strain had colonies with irregular shape and rough surface, designated as type R. The change from type R to S could be mediated if a DNA extract from S was added to type R bacteria in a test tube. The term "transformation" was coined for such a change. Other contemporary scientists did not easily accept these experiments and what they implicated, mainly because the method of identifying DNA was not yet well established at the time. It took a decade before the validity of such experiments and their conclusions became fully appreciated as a result of rapidly increasing knowledge and understanding of the chemical and physical nature of DNA. Normally grown E. coli cells can not take up the exogenously supplied DNA. However, if the cells are soaked in an ice cold calcium chloride solution for a short time before the addition of DNA and a brief (90 seconds) heat shock (42°C) is given, DNA uptake by the cells is facilitated (Hanahan, 1983). When bacteria have been prepared in this special manner to easily accept the foreign DNA, they are said to be "competent".
    [Show full text]
  • Dynamics and Mechanism of Cyclobutane Pyrimidine Dimer Repair by DNA Photolyase
    Dynamics and mechanism of cyclobutane pyrimidine dimer repair by DNA photolyase Zheyun Liua, Chuang Tana, Xunmin Guoa, Ya-Ting Kaoa, Jiang Lia, Lijuan Wanga, Aziz Sancarb,1, and Dongping Zhonga,1 aDepartments of Physics, Chemistry, and Biochemistry, Programs of Biophysics, Chemical Physics, and Biochemistry, Ohio State University, 191 West Woodruff Avenue, Columbus, OH 43210; and bDepartment of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC 27599 Contributed by Aziz Sancar, July 7, 2011 (sent for review June 28, 2011) Photolyase uses blue light to restore the major ultraviolet (UV)- induced DNA damage, the cyclobutane pyrimidine dimer (CPD), to two normal bases by splitting the cyclobutane ring. Our earlier studies showed that the overall repair is completed in 700 ps through a cyclic electron-transfer radical mechanism. However, the two fundamental processes, electron-tunneling pathways and cyclobutane ring splitting, were not resolved. Here, we use ultra- fast UV absorption spectroscopy to show that the CPD splits in two sequential steps within 90 ps and the electron tunnels between the cofactor and substrate through a remarkable route with an intervening adenine. Site-directed mutagenesis reveals that the active-site residues are critical to achieving high repair efficiency, a unique electrostatic environment to optimize the redox poten- tials and local flexibility, and thus balance all catalytic reactions to maximize enzyme activity. These key findings reveal the com- plete spatio-temporal molecular picture of CPD repair by photo- lyase and elucidate the underlying molecular mechanism of the enzyme’s high repair efficiency. Fig. 1. Enzyme-substrate complex structure and one sequential repair me- DNA repair photocycle ∣ ultrafast enzyme dynamics ∣ thymine dimer chanism with all elementary reactions.
    [Show full text]
  • The Effect of Increasing Plasmid Size on Transformation Efficiency in Escherichia Coli
    Journal of Experimental Microbiology and Immunology (JEMI) Vol. 2:207-223 Copyright April 2002, M&I UBC The Effect of Increasing Plasmid Size on Transformation Efficiency in Escherichia coli VICKY CHAN, LISA F. DREOLINI, KERRY A. FLINTOFF, SONJA J. LLOYD, AND ANDREA A. MATTENLEY Department of Microbiology and Immunology, UBC Based on the observation that the transformation of Escherchia coli was more efficient with pUC19 than with the larger plasmid pBR322, we hypothesized that transformation frequency is somehow affected by size. To test this hypothesis, we attempted to insert a 1.7kb lambda NdeI fragment into pUC19 to generate a plasmid (pHEL) of the same size as pBR322. The two plasmids of equal size were then to be used to transform E. coli in order to compare transformation efficiencies. After two rounds of cloning, we were unable to generate pHEL. In lieu of using pHEL and pBR322, E. coli were transformed with previously prepared plasmids of varying sizes: pUC8 (2.6 kb), pUC8 0-690 (4.3 kb), and pUC8 0-690::pKT210 (16.1 kb). The results of these transformations indicate that increasing plasmid size correlates with a decrease in transformation efficiency. Transformation is an important technique in molecular cloning for transferring genetic material to bacteria. It can be done by either heat shock or electroporation. The former involves the preparation of competent cells, incubation of the cells with DNA at 0oC and the completion of DNA uptake by heat pulse. Competent cells are capable of taking up DNA. They can be prepared by cold treatment with calcium chloride.
    [Show full text]
  • 10. E. Coli Cloning Vector Pbr322
    10. E. coli cloning vector pBR322 Important questions based on it: A. (a) Name the organism in which the vector shown is inserted to get the copies of the desired gene. (b) Mention the area labelled in the vector responsible for controlling the copy number of the inserted gene. (c) Name and explain the role of a selectable marker in the vector shown. (AI 2010) B. (a) Identify the selectable markers in the diagram of E. coli vector shown below. (b) How is the coding sequence of -galactosidase considered a better marker than the ones identified by you in the diagram? Explain. (Delhi 2009) A. Explain the importance of (a) ori, (b) ampR and (c) rop in the E. coli vector shown below. (AI 2008) B. Draw pBR322 cloning vector. Label ‘ori’, ‘rop’ and any one antibiotic resistance site on it and state their functions. (AI 2015C) C. Draw a schematic diagram of the E. coli cloning vector pBR322 and mark the following in it: (a) ori (b) rop (c) ampicillin resistance gene (d) tetracycline resistance gene (e) restriction site BamHI (f) restriction site EcoR I (AI 2014C) D. Draw a schematic sketch of pBR322 plasmid and label the following in it: (a) Any two restriction sites. (b) Ori and rop genes. (c) An antibiotic resistant gene. (Delhi 2012) E. Identify A, B, C and D in the given diagram. (a) A-ori, B-ampR, C-tetR, D-HindIII (b) A-HindIII, B-tetR, C-ampR, D-ori (c) A-ampR, B-tetR, C-HindIII, D-ori (d) A-tetR, B-HindIII, C-ori, D-ampR (COMEDK) F.
    [Show full text]
  • Effect of Plasmid Copy Number and Lac Operator Sequence on Antibiotic-Free Plasmid Selection by Operator-Repressor Titration in Escherichia Coli
    Research Article J Mol Microbiol Biotechnol 2004;7:197–203 DOI: 10.1159/000079828 Effect of Plasmid Copy Number and lac Operator Sequence on Antibiotic-Free Plasmid Selection by Operator-Repressor Titration in Escherichia coli Rocky M. Cranenburgh Kathryn S. Lewis Julian A.J. Hanak Cobra Biomanufacturing Plc, The Science Park, Keele , Staffs., UK Key Words Introduction Recombinant protein · Metabolic burden · DNA vaccine · lac repressor · DAP · DH1 lacdapD The use of antibiotics and antibiotic resistance genes in the production of recombinant biotherapeutics is unde- sirable for a number of reasons. These include the risk of Abstract antibiotic gene transfer to pathogenic organisms [David- The Escherichia coli strain DH1 lacdapD enables plasmid son, 1999], plasmid loss due to plasmid size and metabol- selection and maintenance that is free from antibiotics ic stress [Smith and Bidochka, 1998] or antibiotic break- and selectable marker genes. This is achieved by using down during culture and the risk of contamination of the only the lac operator sequence as a selectable element. product with antibiotics [Baneyx, 1999]. Strategies have This strain is currently used to generate high copy num- been developed to avoid the use of antibiotics, including ber plasmids with no antibiotic resistance genes for use plasmids enabling complementation of a host auxotrophy, as DNA vaccines and for expression of recombinant pro- or possessing post-segregational killing (PSK) mechanisms teins. Until now these have been limited to pUC-based [Hanak and Cranenburgh, 2001]. However, these share plasmids containing a high copy number pMB1-derived another major disadvantage with the antibiotic-selected origin of replication, and the principle lacO1 and auxil- plasmids: the metabolic burden associated with constitu- iary lacO3 operators.
    [Show full text]
  • Psoxs::Lacz Recombinant Pbr322 Plasmid As a Sensitive Reporter of Internal Reactive Oxygen Species in Escherichia Coli Dh5α
    Journal of Experimental Microbiology and Immunology (JEMI) Vol. 18: 121 – 128 Copyright © April 2014, M&I UBC Attempted construction of a soxR::PsoxS::lacZ recombinant pBR322 plasmid as a sensitive reporter of internal reactive oxygen species in Escherichia coli DH5α Dominique Haag, Tony Hui, Seo Young Kim, Jane Nguyen Department Microbiology & Immunology, University of British Columbia This study attempted to engineer an internal reactive oxygen species probe using lacZ expression driven by the soxS promoter in response to intracellular superoxide presence being sensed by SoxR. Using polymerase chain reaction amplification, soxR fused to the promoter of soxS (PsoxS) and lacZ amplicons were obtained. Double restriction digests and sticky-end ligations were then performed in an attempt to clone soxR::PsoxS::lacZ into the pBR322 plasmid vector. Following ligation, transformation of competent Escherichia coli DH5α by calcium chloride-heatshock transformation was performed, and resulting transformants were screened for the soxR::PsoxS::lacZ::pBR322 construct. Even though the amplicons were made, a successful ligation was not achieved. The lack of success in obtaining the desired construct prevented further examination of the potential of the proposed reactive oxygen species probe. - Reactive oxygen species (ROS), such as superoxide (O2 ) compared to the previously studied katG::luxCDABE and hydrogen peroxide (H2O2), are radicals that can be probe (9). generated by various mechanisms including exposure to A possible reason for the lack of sensitivity of the UV-A, paraquat, and side reactions involving quinones katG::luxCDABE probe used in a previous study may be a from the electron transport chain (1,2,3). Excessive levels consequence of luminescence activity inhibited by the of ROS are potentially harmful towards microorganisms growth media (9).
    [Show full text]
  • Gene Cloning
    PLNT2530 2021 Unit 6a Gene Cloning Vectors Molecular Biotechnology (Ch 4) Principles of Gene Manipulation (Ch 3 & 4) Analysis of Genes and Genomes (Ch 5) Unless otherwise cited or referenced, all content of this presenataion is licensed under the Creative Commons License 1 Attribution Share-Alike 2.5 Canada Plasmids Gene 1 Naturally occurring plasmids ori -occur widely in bacteria -are covalently closed circular dsDNA -are replicons, stably inherited as extra-chromosomal DNA -can be 1 kbp to 500 kbp in size (compared to 4000 kbp chromosome) -bacteria can contain several different types of plasmid simultaneously -many naturally occurring plasmids carry genes for restriction enzymes, antibiotic resistance, or other genes 2 Bacterial Vectors All vectors : 1. -must replicate autonomously in ori - origin of replication their specific host even when sequence at which DNA polymerase joined to foreign DNA initiates replication 2. - should be easily separated from host chromosomal DNA E. coli chromosomal DNA: ~ 4 million bp typical plasmid vector: ~ 3 to 10 kb Most modern cloning vectors in E. coli are derived from naturally-ocurring plasmid col E1. Most of col E1 was deleted except for an origin of replication and an antibiotic resistance gene. 3 Vectors Types cloning small plasmids- can occur naturally in as circular dsDNA in fragments bacteria (up to 15 kb) eg. single genes bacteriophage -viruses of bacteria (~10-50 kb) used in the cDNA cloning, high-efficiency construction of cDNA and genomic libraries cloning BAC-bacterial artificial chromosome (130-150 kb genomic libraries YAC-Yeast artificial chromosome (1000-2000 kb) with large inserts Each type of vector has specific applications but primary function is to carry foreign DNA (foreign to bacteria) and have it replicated by the bacteria 4 Introduction of foreign DNA into E.
    [Show full text]
  • A UV-Induced Genetic Network Links the RSC Complex to Nucleotide Excision Repair and Shows Dose-Dependent Rewiring
    Cell Reports Resource A UV-Induced Genetic Network Links the RSC Complex to Nucleotide Excision Repair and Shows Dose-Dependent Rewiring Rohith Srivas,1,6 Thomas Costelloe,2,6 Anne-Ruxandra Carvunis,1 Sovan Sarkar,3 Erik Malta,2 Su Ming Sun,2 Marijke Pool,2 Katherine Licon,1,5 Tibor van Welsem,4 Fred van Leeuwen,4 Peter J. McHugh,3 Haico van Attikum,2,* and Trey Ideker1,5,* 1Department of Medicine, University of California, San Diego, La Jolla, CA 92037, USA 2Department of Toxicogenetics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, the Netherlands 3Department of Oncology, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK 4Division of Gene Regulation, Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands 5Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92037, USA 6These authors contributed equally to this work *Correspondence: [email protected] (H.v.A.), [email protected] (T.I.) http://dx.doi.org/10.1016/j.celrep.2013.11.035 This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-No Derivative Works License, which permits non-commercial use, distribution, and reproduction in any medium, provided the original author and source are credited. SUMMARY nick is sealed by a DNA ligase (Prakash and Prakash, 2000). The NER machinery, however, does not work in isolation. Increasing Efficient repair of UV-induced DNA damage requires evidence points to the precise coordination of NER with several the precise coordination of nucleotide excision repair other biological processes, such as the cell-cycle checkpoint (NER) with numerous other biological processes.
    [Show full text]
  • Cloning Vector Puc119
    Cloning Vector pUC119 Product Information Sheet # V33402 SUMMARY shipped at RT; store at 4 °C For research use only Product pUC119 high copy phagemid vector for cloning and replication in E. coli and production of single-stranded DNA with helper phage M13KO7; suitable for “blue-white screening” technique. Description pUC119 is a high copy phagemid cloning vector for cloning and replication in E. coli and production of single-stranded DNA. It has been constructed by inserting the intergenic region (IG region) of the M13 phage DNA into the NdeI site of the pUC19 plasmid. This IG region contains the M13 origin of replication. Infection by the helper phage M13KO7 induces the production of single stranded pUC119 DNA, which is predominantly packaged into phage particles and then is released from bacterial cells. In addition, there is almost no contamination by the single stranded DNA of the helper phage. Using this system, single stranded DNA from large DNA fragments (up to 7 kb) can be stably obtained without deletion. pUC119 (as pUC19) bears the ampicillin resistance gene and the pMB1 origin of replication from pBR322. However, the pMB1 of pUC119 differs from the pBR322 origin by a single point mutation and the lack of the rop gene, leading to a high copy number. Additionally, pUC119 contains the lac operon of E. coli with CAP binding site, lac promoter (Plac), Lac repressor (LacR) binding site, and the 5’-terminal part of the lacZ gene encoding the N-terminal part of β-galactosidase (source – M13mp19 phage vector). This 5’-terminal part of the lacZ gene contains the multiple cloning site (MCS), and its expression is IPTG inducible.
    [Show full text]
  • The Effects of Sub-Inhibitory Levels of Chloramphenicol on Pbr322
    Journal of Experimental Microbiology and Immunology (JEMI) Vol. 7:82-88 Copyright © April 2005, M&I UBC The Effects of Sub-Inhibitory Levels of Chloramphenicol on pBR322 Plasmid Copy Number in Escherichia coli DH5α Cells SARAH BEGBIE, GIULIO DOMINELLI, KIA DUTHIE, JOANNA HOLLAND, MARISSA JITRATKOSOL Department of Microbiology and Immunology, UBC While humans use antibiotics at inhibitory levels to prevent microbial growth, antibiotics are normally found at sub-inhibitory concentrations in nature. The role and effects of sub-inhibitory levels of antibiotics is one of the key areas of research in microbial science today. In this experiment, the effects of sub-inhibitory levels of chloramphenicol on pBR322 plasmid copy number in Escherichia coli DH5α cells were examined. E. coli DH5α cells with pBR322 plasmid were grown in different concentrations of chloramphenicol ranging from 1 to 5 µg/ml. The cells were enzymatically lysed and the DNA extracted through a phenol:chloroform:isoamyl alcohol extraction. The total bacterial DNA was run on a 0.8% agarose gel; using the ratio of genomic DNA to pBR322 DNA, the plasmid copy numbers per genome were calculated. It was found that 1 µg/ml chloramphenicol quantities had no significant affect when compared to the control; however, 3-5 µg/ml of chloramphenicol caused pBR322 concentrations to double. Due to assay insensitivity, there was no significant difference between the 3 µg/ml and 5 µg/ml samples. ___________________________________________________________ Chloramphenicol is a commonly used bacterial cultures prior to overnight incubation. bacteriostatic antibiotic that reversibly binds to the 50S Following growth in the presence of the antibiotic, subunit (L10 protein) and inhibits peptidyl transferase yield of plasmid DNA was analyzed and compared.
    [Show full text]