Will Trade Bans Stop a Deadly Salamander Plague from Invading the US? by Jeremy Hance 30 October 2018 Mongabay Series: Salamanders

Total Page:16

File Type:pdf, Size:1020Kb

Will Trade Bans Stop a Deadly Salamander Plague from Invading the US? by Jeremy Hance 30 October 2018 Mongabay Series: Salamanders Will trade bans stop a deadly salamander plague from invading the US? By Jeremy Hance 30 October 2018 Mongabay Series: Salamanders · In 2008, scientists started noticing that populations of fire salamanders were disap- pearing in Western Europe. A few years later, nearly all had vanished from large portions of Germany, Belgium and the Netherlands. The culprit turned out to be a fungus called Batrachochytrium salamandrivorans, or Bsal, which infects the skin of salamanders and of- A wild rough-skinned newt (Taricha granu- ten kills them. Research indicates Bsal came losa) is swabbed for Bsal in Oregon. Photo from Asia and was spread to Europe via the courtesy of the U.S. Geological Survey importation of Asian salamanders. •The U.S. is home to the world’s highest di- versity of salamander species, many of which If it happens, it’ll likely go something like are thought to be susceptible to Bsal infec- this: American parents decide to buy some- tion. So far, scientists haven’t detected the thing special for their child’s birthday – a pet pathogen in North America, but many believe salamander. Although immediately excited, it’s just a matter of time until it gets here un- the child quickly loses interest and the sala- less drastic action is taken. mander languishes. The parents tire just as •In response, the U.S. Fish and Wildlife Ser- rapidly. One night, they let it loose outside, vice imposed a ban on the trade of 201 spe- telling their child it escaped. The salamander, cies of salamander species in 2016. However, little-prepared for the world beyond the ter- the recent discovery that frogs can also carry rarium, quickly perishes. But it leaves some- Bsal led to an outcry from scientists urging thing behind: spores of the deadly Batra- government to ban the import of all salaman- chochytrium salamandrivorans (Bsal) fungus. der and frog species. A decade later, salamander species in the U.S. •However, many hobbyists think a total ban are in crisis; populations are plummeting as is overkill. They instead favor a “clean trade” the fungus spreads, some species are believed in which some imported animals would tested totally gone. Extinction is marching across for Bsal. the land. Physical signs and symptoms from Batrachochytrium salamandrivorans (Bsal) infection: a) A naturally infected fire salamander (Salamandra salamandra) found during a Bsal outbreak in Belgium showing several ulcers (white arrows) and excessive skin shedding; b) extensive ulcer- ation (white arrows) on the belly of an infected fire salamander; c) skin section through an ulcer shows abundant fungal colonies inside the cells; d) further magnification of infected skin cells. Image from Pascale van Rooij et al., 2015, via Wikimedia Commons (CC BY 4.0). In an effort to stem this eco-tragedy, the U.S. At stake Fish and Wildlife Service (FWS) published a rule in January 2016 that banned 201 spe- In 2008, scientists started noticing popula- cies of salamander from being imported into tions of fire salamanders (Salamandra sala- the U.S. under the Lacey Act. But now some mandra) were vanishing from the wild in scientists — given new information about Western Europe. Five years later they were the spread of Bsal and its potential carriers able to officially describe the culprit, until — say this ban doesn’t go nearly far enough. then unknown to science: Bsal — a fungal disease that literally eats the skin off sala- “This deadly disease has the potential to manders. Closely related to Batrachochy- wipe out entire species. More needs to be trium dendrobatidis(Bd), which scientists done to protect salamanders and other wild- have implicated in hundreds of declines and life from international trade,” says Tiffany at least a few extinctions in frog species Yap, a staff scientist at the Center for Bio- worldwide, Bsal appears to only affect sala- logical Diversity (CBD) who specializes in manders. amphibian disease. Where it has hit — in parts of the Nether- She calls the USFWS listing “momentous” lands, Belgium, Germany — the fungus has but no longer up to speed with current scien- wiped out up to 99.9 percent of fire salaman- tific findings. ders. Others, including some herp (reptile and Researchers believe the European outbreak amphibian) hobbyists believe the USFWS is directly connected to the international pet rule may go too far and a different approach trade. is necessary. Scientists point to an animal that was im- It’s a debate about the legalities around pet ported in 2010 that three years later tested ownership and the strength and effectiveness positive for Bsal as at least indirect evidence of various regulations. that the first Bsal in Europe likely arrived via the pet trade. Research indicates Bsal How far do we go? stems from Asia, and salamander species there have evolved resistance to the disease When the USFWS banned 201 salamander after millions of years of co-evolution. Eu- species – about a third of all species – from ropean species have not — and lab studies being imported into the U.S., it was largely have shown that many U.S. species are also seen by scientists as a much-needed measure vulnerable. to do our utmost to prevent Bsal from getting onto North American shores. They did this by Scientists now fear the same fungal outbreak listing these species as “injurious wildlife” could wipe out salamanders across the U.S. under the Lacey Act, a conservation law that — if it arrives and gains a foothold. A recent regulates the trade in animals or plants. effort, testing 10,000 salamanders across the U.S., fortunately found no evidence of Bsal, Salamanders are strange. They’re strange not but it would only take one animal under a just because they can breathe through their worst-case-scenario to change that. skin, or because they can regenerate long limbs, or because they have a super long The debate over Bsal isn’t a debate over the genome. Salamanders are biological oddities science; it’s not a debate over how threaten- because they are found in their greatest diver- ing the fungal disease might be for North sity not in the rainforests of the Amazon or America’s salamander species — everyone the tropics of Southeast Asia, but in the decid- agrees that it could have a very destructive uous, temperate, and subtropical forests of the impact. eastern U.S. Unlike trees, beetles, birds, frogs or most terrestrial family you can think of, the “We take the threat very seriously,” said salamander doesn’t really prefer the tropics. Robert Likins, vice president of government affairs at the Pet Industry Joint Advisory Indeed, of the 600-700 species found world- Council (PIJAC). “If Bsal were to become wide, around 25 percent of them are found established in North America the results in the U.S. The U.S. includes representatives could be devastating.” from all families of salamanders with the exception of one – Hynobiidae, or primitive PIJAC is the world’s largest pet trade as- Asian salamanders. The U.S. hosts a particu- sociation, lobbying for pet-favorable laws larly large number of species that belong to across the U.S. Plethodontidae, a family that scientists think is one of the most susceptible to Bsal. The debate is really to what extent we should go to prevent it from happening and what’s the best strategy. Comprising nearly 400 species, Plethodon- Scientists have since discovered that a new tidae is by far the largest family of salaman- Bsal fungal spore can survive for up to 30 ders. Plethodontids, also called lungless days in the water or air and may even survive salamanders, breathe through their skin, on the feet of water birds, potentially travel- tend to be on the smaller side, and are found ing from waterway to waterway with ease. in a wide variety of habitats. Most species, like this tree-climbing arboreal salamander “These discoveries help to explain how Bsal (Aneides lugubris), are found in North Amer- can spread across landscapes and suggest that ica; scientists believe the first plethodontids it will be extremely difficult to eradicate it evolved in the eastern U.S. since non-susceptible species act as reservoir species,” reads a letter to the USFWS from a However, PIJAC felt the USFWS was tak- dozen experts about expanding the ban to all ing the wrong strategy in banning so many salamanders and frogs. salamanders. In 2015, PIJAC recommended an immediate and voluntary ban on the Chi- One of these experts was Reid Harris, the nese firebelly newt (Cynops orientalis) and Director of International Disease Mitiga- the paddletail newt (Pachytriton labiatus), tion at Amphibian Survival Alliance. Calling both from China, in a bid to keep Bsal out. Bsal, an “existential” threat to North Ameri- But Likins says PIJAC does not support the can salamanders, he agrees with Yap that all current ban because it “does not provide a salamanders need to be added to the banned mechanism for being lifted if an effective de- list. He says he doesn’t know of a “mecha- tection and treatment regimen is developed.” nism” to add new species to the list when new information comes out, but “there are a He added that “we do not believe that the lot more data now.” USFWS has the authority under [the Lacey Act] to ban vectors, making this an issue bet- Not just salamanders ter handled by USDA.” Last year, news hit that changed the debate But a year before the ruling, two conser- even further. Researchers discovered Bsal in vation groups, the CBD and SAVE THE a frog species in the pet trade in Germany.
Recommended publications
  • Zoology SYLLABUS 2016
    ST. PHILOMENA’S COLLEGE (AUTONOMOUS), MYSORE-570 015 Subject- ZOOLOGY Syllabus for B.A, Course under Semester Scheme. The Scheme of Teaching & Examination FROM THE ACADEMIC YEAR- 2016 Onwards Semester Title of the Paper Q. P. Code Teaching Scheme Examination Scheme Number Hours per Week Theory/ I A Total Practical Max Marks Proper Max. Marks hours Marks Theory Credits Practical Duration in in Duration MA 630 MA 631 IA T-60 T IA-10 3 I Animal Diversity I MA 632 PR-1 3 4.5 6 P-20 P IA-10 100 MA 633 PR- IA MB 630 MB 631 IA T-60 T IA-10 3 II Animal Diversity II MB632 PR-1 3 4.5 6 P-20 P IA-10 100 MB 633 PR- IA MC 630 T-60 T IA-10 MC 631 IA 3 III Animal Diversity III 3 4.5 6 P-20 P IA-10 100 MC 632 PR-1 MC 633 PR-1 MD 630 T-60 T IA-10 Biochemistry and MD 631 IA 3 IV 3 4.5 6 P-20 P IA-10 100 physiology MD 632 PR-1 MD 633 PR-1 ME 630 T IA T IA -20 Cell biology & ME 631 T IA 3 T- 80 3 4.5 6 P IA- 150 Immunology (P-5) ME 634 PR P- 40 10 ME 635 PR IA V ME 632 T IA Development biology T IA -20 ME 633 T IA 3 T- 80 & endocrinology 3 4.5 6 P IA- 150 ME 636 PR P- 40 (P-6) 10 ME 637 PR IA MF 630 T IA T IA -20 Genetics & evolution MF 631 T IA 3 T- 80 3 4.5 6 P IA- 150 (P-7) MF 634 PR P- 40 10 MF 635 PR IA VI MF 632 T IA Environmental T IA -20 MF 633 T IA 3 T- 80 Biology & Ethnology 3 4.5 6 P IA- 150 MF 636 PR P- 40 (P-8) 10 MF 637 PR IA ST.
    [Show full text]
  • Title a New Species of Pachytriton from China (Amphibia: Urodela
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Kyoto University Research Information Repository A New Species of Pachytriton from China (Amphibia: Urodela: Title Salamandridae) Author(s) Nishikawa, Kanto; Matsui, Masafumi; Jiang, Jian-Ping Citation Current Herpetology (2012), 31(1): 21-27 Issue Date 2012-06 URL http://hdl.handle.net/2433/216840 Right © 2012 by The Herpetological Society of Japan Type Journal Article Textversion publisher Kyoto University Current Herpetology 31(1): 21–27, June 2012 doi 10.5358/hsj.31.21 © 2012 by The Herpetological Society of Japan A New Species of Pachytriton from China (Amphibia: Urodela: Salamandridae) 1 1 2 KANTO NISHIKAWA *, MASAFUMI MATSUI , AND JIAN-PING JIANG 1 Graduate School of Human and Environmental Studies, Kyoto University, Yoshida Nihonmatsu-cho, Sakyo-ku, Kyoto 606–8501, Japan 2 Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China Abstract: A new species of the salamandrid genus Pachytriton is described based on two individuals purchased from pet shops in Japan. The original locality of these specimens is known only as “China”, and further details are not known. Morphologically, this species differs from all other congeners in the combination of coloration, body size, snout length, head width, tail length and width, and length of upper jaw tooth series and vomerine tooth series. Genetically, this species is separated from all other congeners by substantial genetic distances in mitochondrial DNA sequences. Key words: China; DNA bar-coding; New species; Pachytriton; Pet trade INTRODUCTION After these specimens were obtained from two pet shops in Japan in 2007, we tried to The salamandrid genus Pachytriton Bou- discover their origin by visiting China every lenger, 1878, occurs in eastern and southeast- year to collect specimens in the wild, but with- ern China (Fei et al., 2006), and currently out success.
    [Show full text]
  • Amphibiaweb's Illustrated Amphibians of the Earth
    AmphibiaWeb's Illustrated Amphibians of the Earth Created and Illustrated by the 2020-2021 AmphibiaWeb URAP Team: Alice Drozd, Arjun Mehta, Ash Reining, Kira Wiesinger, and Ann T. Chang This introduction to amphibians was written by University of California, Berkeley AmphibiaWeb Undergraduate Research Apprentices for people who love amphibians. Thank you to the many AmphibiaWeb apprentices over the last 21 years for their efforts. Edited by members of the AmphibiaWeb Steering Committee CC BY-NC-SA 2 Dedicated in loving memory of David B. Wake Founding Director of AmphibiaWeb (8 June 1936 - 29 April 2021) Dave Wake was a dedicated amphibian biologist who mentored and educated countless people. With the launch of AmphibiaWeb in 2000, Dave sought to bring the conservation science and basic fact-based biology of all amphibians to a single place where everyone could access the information freely. Until his last day, David remained a tirelessly dedicated scientist and ally of the amphibians of the world. 3 Table of Contents What are Amphibians? Their Characteristics ...................................................................................... 7 Orders of Amphibians.................................................................................... 7 Where are Amphibians? Where are Amphibians? ............................................................................... 9 What are Bioregions? ..................................................................................10 Conservation of Amphibians Why Save Amphibians? .............................................................................
    [Show full text]
  • Zootaxa, a New Species of Paramesotriton (Caudata
    Zootaxa 1775: 51–60 (2008) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA Copyright © 2008 · Magnolia Press ISSN 1175-5334 (online edition) A new species of Paramesotriton (Caudata: Salamandridae) from Guizhou Province, China HAITAO ZHAO1, 2, 5, JING CHE2,5, WEIWEI ZHOU2, YONGXIANG CHEN1, HAIPENG ZHAO3 & YA-PING ZHANG2 ,4 1Department of Environment and Life Science, Bijie College, Guizhou 551700, China 2State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming 650223, China 3School of Life Science, Southwest University, Chongqing 400715, China 4Corresponding authors. E-mail: [email protected] 5 These authors contributed equally to this work. Abstract We describe a new species of salamander, Paramesotriton zhijinensis, from Guizhou Province, China. The generic allo- cation of the new species is based on morphological and molecular characters. In morphology, it is most similar to Paramesotriton chinensis but differs in having distinct gland emitting a malodorous secretion (here named scent gland), a postocular stripe, and two non-continuous, dorsolateral stripes on the dorsolateral ridges. Furthermore, neoteny was observed in most individuals of the new species. This has not been previously reported to occur in any other species of Paramesotriton. Analysis of our molecular data suggests that this species a third major evolutionary lineage in the genus Paramesotriton. Key words: Caudata; Salamandridae; Paramesotriton zhijinensis; new species; scent gland; Guizhou; China Introduction Guizhou Province, located in the southwestern mountainous region of China, is known for its rich amphibian faunal diversity (Liu and Hu 1961). During recent surveys of the Guizhou herpetofauna (July, September, and November, 2006; January and September, 2007), we collected salamanders superficially resembling Parame- sotriton chinensis (Gray).
    [Show full text]
  • Summary Report of Freshwater Nonindigenous Aquatic Species in U.S
    Summary Report of Freshwater Nonindigenous Aquatic Species in U.S. Fish and Wildlife Service Region 4—An Update April 2013 Prepared by: Pam L. Fuller, Amy J. Benson, and Matthew J. Cannister U.S. Geological Survey Southeast Ecological Science Center Gainesville, Florida Prepared for: U.S. Fish and Wildlife Service Southeast Region Atlanta, Georgia Cover Photos: Silver Carp, Hypophthalmichthys molitrix – Auburn University Giant Applesnail, Pomacea maculata – David Knott Straightedge Crayfish, Procambarus hayi – U.S. Forest Service i Table of Contents Table of Contents ...................................................................................................................................... ii List of Figures ............................................................................................................................................ v List of Tables ............................................................................................................................................ vi INTRODUCTION ............................................................................................................................................. 1 Overview of Region 4 Introductions Since 2000 ....................................................................................... 1 Format of Species Accounts ...................................................................................................................... 2 Explanation of Maps ................................................................................................................................
    [Show full text]
  • About the Book the Format Acknowledgments
    About the Book For more than ten years I have been working on a book on bryophyte ecology and was joined by Heinjo During, who has been very helpful in critiquing multiple versions of the chapters. But as the book progressed, the field of bryophyte ecology progressed faster. No chapter ever seemed to stay finished, hence the decision to publish online. Furthermore, rather than being a textbook, it is evolving into an encyclopedia that would be at least three volumes. Having reached the age when I could retire whenever I wanted to, I no longer needed be so concerned with the publish or perish paradigm. In keeping with the sharing nature of bryologists, and the need to educate the non-bryologists about the nature and role of bryophytes in the ecosystem, it seemed my personal goals could best be accomplished by publishing online. This has several advantages for me. I can choose the format I want, I can include lots of color images, and I can post chapters or parts of chapters as I complete them and update later if I find it important. Throughout the book I have posed questions. I have even attempt to offer hypotheses for many of these. It is my hope that these questions and hypotheses will inspire students of all ages to attempt to answer these. Some are simple and could even be done by elementary school children. Others are suitable for undergraduate projects. And some will take lifelong work or a large team of researchers around the world. Have fun with them! The Format The decision to publish Bryophyte Ecology as an ebook occurred after I had a publisher, and I am sure I have not thought of all the complexities of publishing as I complete things, rather than in the order of the planned organization.
    [Show full text]
  • 35 Finding of the Alpine Salamander (Salamandra Atra Laurenti, 1768; Salamandridae, Caudata) in the Nature Park Žumberak
    HYLA VOL. 2011. No. 1 Str. 35-46 SHORT NOTE Finding of the Alpine salamander (Salamandra atra Laurenti, 1768; Salamandridae, Caudata) in the Nature Park Žumberak - Samoborsko gorje (NW Croatia) 1 2 3 NINA JERAN* , PETRA ĐURIĆ , KREŠIMIR ŽGANEC 1 Požarinje 69, 10000 Zagreb, Croatia, [email protected] 2 State Institute for Nature Protection, Trg Mažuranića 5, 10000 Zagreb, Croatia 3 University of Zagreb, Faculty of Science, Rooseveltov trg 6, 10000 Zagreb, Croatia ABSTRACT This study confirms the presence of Alpine salamander (Salamandra atra) in the Nature Park Žumberak - Samoborsko gorje, where previously only one specimen was recorded in 1989. Species presence and distribution were investigated at ten different localities in stands of montane beech forest, during the vegetation season 2004. In July 2004 five individuals (four males and one female) of Alpine salamander were found in the virgin beech forest at site Kuta (about 900 m a.s.l.), during weather conditions characterized by heavy rain. This is the northernmost finding of the species in Croatia, as well as a confirmed disjunctive part of its areal in the Dinarids. Conservation measures for the species are proposed but for more precise conservation plan further research of species distribution and ecology is needed. Keywords: Alpine salamander, Salamandra atra, Nature Park Žumberak - Samoborsko gorje, distribution, amphibians 35 Alpine salamander (Salamandra atra) is a montane species occurring between 400 and 2,800 m a.s.l., but is usually found from 800 to 2,000 m a.s.l. (ARNOLD & BURTON, 1978). It inhabits mainly forests (beech, mixed deciduous and mixed deciduous-coniferous), but may also be found above the tree-line, in cool, damp alpine meadows, pastureland and other, slightly modified habitats.
    [Show full text]
  • Rapid Enigmatic Decline Drives the Fire Salamander (Salamandra
    Amphibia-Reptilia 34 (2013): 233-239 Rapid enigmatic decline drives the fire salamander (Salamandra salamandra) to the edge of extinction in the Netherlands Annemarieke Spitzen-van der Sluijs1,4,∗, Frank Spikmans1, Wilbert Bosman1, Marnix de Zeeuw2, Tom van der Meij2, Edo Goverse1,MarjaKik3, Frank Pasmans4,AnMartel4 Abstract. In the Netherlands, the fire salamander (Salamandra salamandra) is at the edge of its geographic range and is restricted to three small populations in the extreme south of the country. Despite the species being listed as ‘Endangered’ on the national Red List, the situation was considered to be stable. However, from 2008 onwards dead individuals were seen on more than one occasion. A sharp decline in numbers has been observed since 2010 (96%; P<0.01), but we were unable to attribute this to any known cause of amphibian decline, such as chytridiomycosis, ranavirus or habitat degradation. The present work describes this enigmatic decline, and we discuss these results in the context of possible causes. Keywords: enigmatic decline, local extinction, mortality, Salamandra salamandra, terrestrial salamanders. Introduction ranavirus (Daszak, Cunningham and Hyatt, 2003; Spitzen-van der Sluijs et al., 2010; Kik et Amphibians are experiencing declines globally, al., 2011) no specific decline has been observed. exemplified not only by population declines, However, the sudden, steep decline of the but also by range reductions and extinctions of fire salamander (Salamandra salamandra ter- some species (Houlahan et al., 2000; Stuart et restris) in the Netherlands is a new phe- al., 2004; IUCN, 2012), and they may be part nomenon. In the Netherlands, fire salamanders of a sixth major extinction event (Wake and live at the very edge of their distribution and Vredenburg, 2008), for which there is no single are confined to the old growth stages of de- cause (Blaustein et al., 2011; Hof et al., 2011).
    [Show full text]
  • MAHS Care Sheet Master List *By Eric Roscoe Care Sheets Are Often An
    MAHS Care Sheet Master List *By Eric Roscoe Care sheets are often an excellent starting point for learning more about the biology and husbandry of a given species, including their housing/enclosure requirements, temperament and handling, diet , and other aspects of care. MAHS itself has created many such care sheets for a wide range of reptiles, amphibians, and invertebrates we believe to have straightforward care requirements, and thus make suitable family and beginner’s to intermediate level pets. Some species with much more complex, difficult to meet, or impracticable care requirements than what can be adequately explained in a one page care sheet may be multiple pages. We can also provide additional links, resources, and information on these species we feel are reliable and trustworthy if requested. If you would like to request a copy of a care sheet for any of the species listed below, or have a suggestion for an animal you don’t see on our list, contact us to let us know! Unfortunately, for liability reasons, MAHS is unable to create or publish care sheets for medically significant venomous species. This includes species in the families Crotilidae, Viperidae, and Elapidae, as well as the Helodermatidae (the Gila Monsters and Mexican Beaded Lizards) and some medically significant rear fanged Colubridae. Those that are serious about wishing to learn more about venomous reptile husbandry that cannot be adequately covered in one to three page care sheets should take the time to utilize all available resources by reading books and literature, consulting with, and working with an experienced and knowledgeable mentor in order to learn the ropes hands on.
    [Show full text]
  • The Salamanders of Tennessee
    Salamanders of Tennessee: modified from Lisa Powers tnwildlife.org Follow links to Nongame The Salamanders of Tennessee Photo by John White Salamanders are the group of tailed, vertebrate animals that along with frogs and caecilians make up the class Amphibia. Salamanders are ectothermic (cold-blooded), have smooth glandular skin, lack claws and must have a moist environment in which to live. 1 Amphibian Declines Worldwide, over 200 amphibian species have experienced recent population declines. Scientists have reports of 32 species First discovered in 1967, the golden extinctions, toad, Bufo periglenes, was last seen mainly species of in 1987. frogs. Much attention has been given to the Anurans (frogs) in recent years, however salamander populations have been poorly monitored. Photo by Henk Wallays Fire Salamander - Salamandra salamandra terrestris 2 Why The Concern For Salamanders in Tennessee? Their key role and high densities in many forests The stability in their counts and populations Their vulnerability to air and water pollution Their sensitivity as a measure of change The threatened and endangered status of several species Their inherent beauty and appeal as a creature to study and conserve. *Possible Factors Influencing Declines Around the World Climate Change Habitat Modification Habitat Fragmentation Introduced Species UV-B Radiation Chemical Contaminants Disease Trade in Amphibians as Pets *Often declines are caused by a combination of factors and do not have a single cause. Major Causes for Declines in Tennessee Habitat Modification -The destruction of natural habitats is undoubtedly the biggest threat facing amphibians in Tennessee. Housing, shopping center, industrial and highway construction are all increasing throughout the state and consequently decreasing the amount of available habitat for amphibians.
    [Show full text]
  • Fire Salamander Care Sheet
    Fire salamander Care Sheet Common names: Fire Salamander It is believed that Fire Salamanders received their name by hiding in logs chopped for burning and then running out once the logs were placed on the fire. A myth grew up over this habit and our ancestors believed that they could not only withstand fire, but also that they lived in it. Scientific Name : Salamandra salamandra There are two main sub-species that are commonly found in the pet trade. These are Salamandra salamandra salamandra and Salamandra salamandra terrestis . S.s terrestis is sometimes called the Barred Fire Salamander. This care sheet will focus on these two species, but here is a list of some other Salamanders in the Salamandra salamandra family: Spotted Fire Salamander - Salamandra salamandra almanzoris Yellow Striped Fire Salamander - Salamandra salamandra fastuosa Bernadezi Fire Salamander - Salamandra salamandra bernadezi Near Eastern Fire Salamander - Samandra salamandra inframmaculata Portuguese Fire Salamander - Salamndra salamandra gallaica Corsican Fire Salamander - Salamandra salamandra corsica Los Barrios Fire Salamander - Salamandra salamandra longirostris Description Description: Depending on the type of Fire Salamander you have, their dorsum colours tend to be a glossy black with bright yellow blotches on their bodies. This yellow colouration varies between the species and is usually the way that the sub-species are differentiated from each other. They are quite stocky salamanders with long tails and visible parotoid glands in the area behind their protruding eyes. Size: Fire Salamanders generally grow to between 18 to 25cms (7-10inches) in length, but it is not unknown for them to reach 30cms (12inch) in some cases.
    [Show full text]
  • I Online Supplementary Data – Sexual Size Dimorphism in Salamanders
    Online Supplementary data – Sexual size dimorphism in salamanders Supplementary data S1. Species data used in this study and references list. Males Females SSD Significant test Ref Species n SVL±SD n SVL±SD Andrias davidianus 2 532.5 8 383.0 -0.280 12 Cryptobranchus alleganiensis 53 277.4±5.2 52 300.9±3.4 0.084 Yes 61 Batrachuperus karlschmidti 10 80.0 10 84.8 0.060 26 Batrachuperus londongensis 20 98.6 10 96.7 -0.019 12 Batrachuperus pinchonii 5 69.6 5 74.6 0.070 26 Batrachuperus taibaiensis 11 92.9±12.1 9 102.1±7.1 0.099 Yes 27 Batrachuperus tibetanus 10 94.5 10 92.8 -0.017 12 Batrachuperus yenyuadensis 10 82.8 10 74.8 -0.096 26 Hynobius abei 24 57.8±2.1 34 55.0±1.2 -0.048 Yes 92 Hynobius amakusaensis 22 75.4±4.8 12 76.5±3.6 0.014 No 93 Hynobius arisanensis 72 54.3±4.8 40 55.2±4.8 0.016 No 94 Hynobius boulengeri 37 83.0±5.4 15 91.5±3.8 0.102 Yes 95 Hynobius formosanus 15 53.0±4.4 8 52.4±3.9 -0.011 No 94 Hynobius fuca 4 50.9±2.8 3 52.8±2.0 0.037 No 94 Hynobius glacialis 12 63.1±4.7 11 58.9±5.2 -0.066 No 94 Hynobius hidamontanus 39 47.7±1.0 15 51.3±1.2 0.075 Yes 96 Hynobius katoi 12 58.4±3.3 10 62.7±1.6 0.073 Yes 97 Hynobius kimurae 20 63.0±1.5 15 72.7±2.0 0.153 Yes 98 Hynobius leechii 70 61.6±4.5 18 66.5±5.9 0.079 Yes 99 Hynobius lichenatus 37 58.5±1.9 2 53.8 -0.080 100 Hynobius maoershanensis 4 86.1 2 80.1 -0.069 101 Hynobius naevius 72.1 76.7 0.063 102 Hynobius nebulosus 14 48.3±2.9 12 50.4±2.1 0.043 Yes 96 Hynobius osumiensis 9 68.4±3.1 15 70.2±3.0 0.026 No 103 Hynobius quelpaertensis 41 52.5±3.8 4 61.3±4.1 0.167 Yes 104 Hynobius
    [Show full text]