Injurious Wildlife Species; Listing Salamanders Due to Risk Of

Total Page:16

File Type:pdf, Size:1020Kb

Injurious Wildlife Species; Listing Salamanders Due to Risk Of Injurious Wildlife Species; Listing Salamanders Due to Risk of Salamander Chytrid Fungus [Genera Chioglossa, Cynops, Euproctus, Hydromantes, Hynobius, Ichthyosaura, Lissotriton, Neurergus, Notophthalmus, Onychodactylus, Paramesotriton, Plethodon, Pleurodeles, Salamandra, Salamandrella, Salamandrina, Siren, Taricha, Triturus, and Tylototriton of the Order Caudata] Draft Economic Analysis & Draft Regulatory Flexibility Analysis Prepared by: Division of Economics U.S. Fish and Wildlife Service November 2015 i TABLE OF CONTENTS ES 1.0 EXECUTIVE SUMMARY .............................................................................................. 1 ES 1.1 Economic Analysis .......................................................................................................... 1 ES 1.2 Regulatory Flexibility Act ............................................................................................... 3 ES 1.3 Need for and Objectives of the Interim Rule ................................................................... 3 ES 1.4 Alternatives Considered .................................................................................................. 4 ES 1.4.1 Alternative 1.............................................................................................................. 4 ES 1.4.2 Alternative 2.............................................................................................................. 5 ES 1.4.3 Alternative 3.............................................................................................................. 5 ES 1.4.4 Alternative 4.............................................................................................................. 6 ES 1.4.5 Alternative 5.............................................................................................................. 7 ES 1.5 Summary .......................................................................................................................... 7 ES 1.5.1 Economic Costs ........................................................................................................ 8 ES 1.5.2 Regulatory Flexibility Analysis Summary................................................................ 9 ES 1.5.2 Economic and Ecological Benefits ......................................................................... 10 ES 1.6 Conclusion ..................................................................................................................... 11 1.0 INTRODUCTION ................................................................................................................ 13 1.1 Background ......................................................................................................................... 13 1.2 Reporting, Recordkeeping, and Compliance Requirements ............................................... 15 1.3 Structure of This Report ...................................................................................................... 15 The remainder of this report is structured as follows: ............................................................... 15 2.0 OVERVIEW .......................................................................................................................... 17 2.1 Ecological Benefits of Action ............................................................................................. 17 2.2 Salamander Market ............................................................................................................. 18 2.2.1 Salamander Importation ............................................................................................... 19 2.3 Industries Affected by the Action Alternatives ................................................................... 20 2.3.1 Entities Breeding and Selling Salamanders of All Species .......................................... 21 2.3.2 Entities Providing Support Services for Salamanders .................................................. 22 2.3.2.1 Shipping Companies .............................................................................................. 23 2.3.2.2 Veterinary Services ................................................................................................ 23 ii 2.3.3 Research, educational, medical, and zoological entities .............................................. 23 2.3.4 Entities Importing Salamanders.................................................................................... 24 2.3.5 U.S. Bred Salamanders ................................................................................................. 27 2.3.6 Pet Owners and Hobbyists ............................................................................................ 28 3.0 METHODOLOGY ............................................................................................................... 30 3.1 Economic Effects ................................................................................................................ 30 3.1.1 Analysis of Economic Benefits .................................................................................... 30 3.1.2 Analysis of Economic Costs ......................................................................................... 31 3.1.2.1 U.S. Bred Salamander Market ............................................................................... 32 3.1.2.2 Small Businesses .................................................................................................... 32 3.1.3 Secondary Economic Impacts and Estimation Method ................................................ 33 4.0 ALTERNATIVES ................................................................................................................. 38 4.1 Alternative Formulation ...................................................................................................... 38 4.1.1 Interim Rule Alternatives ............................................................................................. 38 4.1.1.1 Alternative 1 (Baseline) ......................................................................................... 38 4.1.1.2 Alternative 2 – Listing 27 Salamander Species ..................................................... 39 4.1.1.3 Alternative 3 – Listing 201 Salamander Species ................................................... 39 4.1.1.4 Alternative 4 – Listing all Salamander Species ..................................................... 40 4.1.1.6 Additional Options Considered.............................................................................. 40 4.2 Alternative 1 (No Action) - Baseline Analysis ................................................................... 41 4.3 Alternative 2 Analysis ......................................................................................................... 41 4.4 Alternative 3 (Preferred Alternative) Analysis ................................................................... 43 4.4.1 Regulatory Flexibility Analysis Conclusion................................................................. 45 4.5 Alternative 4 Analysis ......................................................................................................... 48 4.6 Alternative 5 Analysis ......................................................................................................... 50 4.7 Alternatives Summary ......................................................................................................... 52 4.7.1 Effects on Entities Importing and Selling Salamanders ............................................... 52 4.7.2 10–Year Present Value Impacts ................................................................................... 54 iii 5.0 SUMMARY ........................................................................................................................... 55 APPENDIX A: DETAILED TABLES ...................................................................................... 57 APPENDIX B: COMMENTS AND QUESTIONS .................................................................. 62 APPENDIX C: KEY TERMS .................................................................................................... 63 CITATIONS ................................................................................................................................ 65 iv ES 1.0 EXECUTIVE SUMMARY The U.S. Fish and Wildlife Service (Service) published an interim rule (IR) to add 20 genera from the order Caudata commonly referred to as salamanders, newts, and other names (hereafter, salamanders) to the list of injurious wildlife under the Lacey Act (18 U.S.C. 42, as amended) because of the risk of these species carrying a fungus (Batrachochytrium salamandrivorans; Bsal) that can be lethal to U.S. native salamanders. The fungus is not known to be present in the United States, and the Service’s action is intended to prevent Bsal’s introduction, establishment, and spread. If Bsal is introduced into wild populations of salamanders, we expect it to cause significant harm to wildlife and the wildlife resources of the United States and federally endangered and threatened species. Furthermore, once introduced and established, eradicating Bsal would be extremely difficult, if not impossible. An injurious wildlife listing will prohibit both importation into the United States and interstate transportation between States, the District of Columbia, the Commonwealth of Puerto Rico, or any territory or possession of the United States of any live or dead specimen, including parts, of these 20
Recommended publications
  • Effects of Emerging Infectious Diseases on Amphibians: a Review of Experimental Studies
    diversity Review Effects of Emerging Infectious Diseases on Amphibians: A Review of Experimental Studies Andrew R. Blaustein 1,*, Jenny Urbina 2 ID , Paul W. Snyder 1, Emily Reynolds 2 ID , Trang Dang 1 ID , Jason T. Hoverman 3 ID , Barbara Han 4 ID , Deanna H. Olson 5 ID , Catherine Searle 6 ID and Natalie M. Hambalek 1 1 Department of Integrative Biology, Oregon State University, Corvallis, OR 97331, USA; [email protected] (P.W.S.); [email protected] (T.D.); [email protected] (N.M.H.) 2 Environmental Sciences Graduate Program, Oregon State University, Corvallis, OR 97331, USA; [email protected] (J.U.); [email protected] (E.R.) 3 Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN 47907, USA; [email protected] 4 Cary Institute of Ecosystem Studies, Millbrook, New York, NY 12545, USA; [email protected] 5 US Forest Service, Pacific Northwest Research Station, Corvallis, OR 97331, USA; [email protected] 6 Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA; [email protected] * Correspondence [email protected]; Tel.: +1-541-737-5356 Received: 25 May 2018; Accepted: 27 July 2018; Published: 4 August 2018 Abstract: Numerous factors are contributing to the loss of biodiversity. These include complex effects of multiple abiotic and biotic stressors that may drive population losses. These losses are especially illustrated by amphibians, whose populations are declining worldwide. The causes of amphibian population declines are multifaceted and context-dependent. One major factor affecting amphibian populations is emerging infectious disease. Several pathogens and their associated diseases are especially significant contributors to amphibian population declines.
    [Show full text]
  • Cop18 Prop. 39
    Original language: English CoP18 Prop. 39 CONVENTION ON INTERNATIONAL TRADE IN ENDANGERED SPECIES OF WILD FAUNA AND FLORA ____________________ Eighteenth meeting of the Conference of the Parties Colombo (Sri Lanka), 23 May – 3 June 2019 CONSIDERATION OF PROPOSALS FOR AMENDMENT OF APPENDICES I AND II A. Proposal Inclusion of Echinotriton chinhaiensis (Chang, 1932) and Echinotriton maxiquadratus Hou, Wu, Yang, Zheng, Yuan, and Li, 2014, both of which are endemic to China in Appendix Ⅱ, in accordance with Article Ⅱ, paragraph 2 (a) of the Convention and satisfying Criterion B in Annex 2a of Resolution Conf. 9.24 (Rev. CoP17). The international trade of these two newts should be monitored to minimise the impact of illegal hunting driven by international pet trade or collection on the survival of these two critically endangered species B. Proponent China*: C. Supporting statement 1. Taxonomy 1.1 Class: Amphibia 1.2 Order: Caudata 1.3 Family: Salamandridae 1.4 Genus, species or subspecies, including author and year: 1.5 Scientific synonyms: Echinotriton chinhaiensis: Tylototriton chinhaiensis Chang, 1932; Tylototriton (Echinotriton) chinhaiensis; Pleurodeles chinhaiensis (Chang, 1932); Pleurodeles (Tylototrion) chinhaiensis 1.6 Common names: English: E. chinhaiensis: Chinhai Spiny Newt, Chinhai Spiny Crocodile Newt E. maxiquadratus: Mountain Spiny Newt, Mountain Spiny Crocodile Newt French: Spanish: 1.7 Code numbers: N/A * The geographical designations employed in this document do not imply the expression of any opinion whatsoever on the part of the CITES Secretariat (or the United Nations Environment Programme) concerning the legal status of any country, territory, or area, or concerning the delimitation of its frontiers or boundaries. The responsibility for the contents of the document rests exclusively with its author.
    [Show full text]
  • Title a New Species of Pachytriton from China (Amphibia: Urodela
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Kyoto University Research Information Repository A New Species of Pachytriton from China (Amphibia: Urodela: Title Salamandridae) Author(s) Nishikawa, Kanto; Matsui, Masafumi; Jiang, Jian-Ping Citation Current Herpetology (2012), 31(1): 21-27 Issue Date 2012-06 URL http://hdl.handle.net/2433/216840 Right © 2012 by The Herpetological Society of Japan Type Journal Article Textversion publisher Kyoto University Current Herpetology 31(1): 21–27, June 2012 doi 10.5358/hsj.31.21 © 2012 by The Herpetological Society of Japan A New Species of Pachytriton from China (Amphibia: Urodela: Salamandridae) 1 1 2 KANTO NISHIKAWA *, MASAFUMI MATSUI , AND JIAN-PING JIANG 1 Graduate School of Human and Environmental Studies, Kyoto University, Yoshida Nihonmatsu-cho, Sakyo-ku, Kyoto 606–8501, Japan 2 Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China Abstract: A new species of the salamandrid genus Pachytriton is described based on two individuals purchased from pet shops in Japan. The original locality of these specimens is known only as “China”, and further details are not known. Morphologically, this species differs from all other congeners in the combination of coloration, body size, snout length, head width, tail length and width, and length of upper jaw tooth series and vomerine tooth series. Genetically, this species is separated from all other congeners by substantial genetic distances in mitochondrial DNA sequences. Key words: China; DNA bar-coding; New species; Pachytriton; Pet trade INTRODUCTION After these specimens were obtained from two pet shops in Japan in 2007, we tried to The salamandrid genus Pachytriton Bou- discover their origin by visiting China every lenger, 1878, occurs in eastern and southeast- year to collect specimens in the wild, but with- ern China (Fei et al., 2006), and currently out success.
    [Show full text]
  • Zootaxa, a New Species of Paramesotriton (Caudata
    Zootaxa 1775: 51–60 (2008) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA Copyright © 2008 · Magnolia Press ISSN 1175-5334 (online edition) A new species of Paramesotriton (Caudata: Salamandridae) from Guizhou Province, China HAITAO ZHAO1, 2, 5, JING CHE2,5, WEIWEI ZHOU2, YONGXIANG CHEN1, HAIPENG ZHAO3 & YA-PING ZHANG2 ,4 1Department of Environment and Life Science, Bijie College, Guizhou 551700, China 2State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming 650223, China 3School of Life Science, Southwest University, Chongqing 400715, China 4Corresponding authors. E-mail: [email protected] 5 These authors contributed equally to this work. Abstract We describe a new species of salamander, Paramesotriton zhijinensis, from Guizhou Province, China. The generic allo- cation of the new species is based on morphological and molecular characters. In morphology, it is most similar to Paramesotriton chinensis but differs in having distinct gland emitting a malodorous secretion (here named scent gland), a postocular stripe, and two non-continuous, dorsolateral stripes on the dorsolateral ridges. Furthermore, neoteny was observed in most individuals of the new species. This has not been previously reported to occur in any other species of Paramesotriton. Analysis of our molecular data suggests that this species a third major evolutionary lineage in the genus Paramesotriton. Key words: Caudata; Salamandridae; Paramesotriton zhijinensis; new species; scent gland; Guizhou; China Introduction Guizhou Province, located in the southwestern mountainous region of China, is known for its rich amphibian faunal diversity (Liu and Hu 1961). During recent surveys of the Guizhou herpetofauna (July, September, and November, 2006; January and September, 2007), we collected salamanders superficially resembling Parame- sotriton chinensis (Gray).
    [Show full text]
  • Short Note Development and Characterization of Twelve New
    *Manuscript Click here to download Manuscript: Isolation and characterization of microsatellite loci for Pleurodeles waltl_final_rev.docx 1 Short Note 2 Development and characterization of twelve new polymorphic microsatellite loci in 3 the Iberian Ribbed newt, Pleurodeles waltl (Caudata: Salamandridae), with data 4 on cross-amplification in P. nebulosus 5 JORGE GUTIÉRREZ-RODRÍGUEZ1, ELENA G. GONZALEZ1, ÍÑIGO 6 MARTÍNEZ-SOLANO2,3,* 7 1 Museo Nacional de Ciencias Naturales, CSIC, c/ José Gutiérrez Abascal, 2, 28006 8 Madrid, Spain; 2 Instituto de Investigación en Recursos Cinegéticos, CSIC-UCLM- 9 JCCM, Ronda de Toledo, s/n, 13005 Ciudad Real, Spain; 3 (present address: Centro de 10 Investigação em Biodiversidade e Recursos Genéticos (CIBIO), Rua Padre Armando 11 Quintas, s/n, 4485-661 Vairão, Portugal 12 Number of words: 3017; abstract: 138 13 (*) Corresponding author: 14 I. Martínez-Solano 15 Instituto de Investigación en Recursos Cinegéticos (CSIC-UCLM-JCCM) 16 Ronda de Toledo, s/n 17 13005 Ciudad Real, Spain 18 Phone: +34 926 295 450 ext. 6255 19 Fax: +34 926 295 451 20 Email: [email protected] 21 22 Running title: Microsatellite loci in Pleurodeles waltl 23 1 24 Abstract 25 Twelve novel polymorphic microsatellite loci were isolated and characterized for the 26 Iberian Ribbed Newt, Pleurodeles waltl (Caudata, Salamandridae). The distribution of 27 this newt ranges from central and southern Iberia to northwestern Morocco. 28 Polymorphism of these novel loci was tested in 40 individuals from two Iberian 29 populations and compared with previously published markers. The number of alleles 30 per locus ranged from two to eight. Observed and expected heterozygosity ranged from 31 0.13 to 0.57 and from 0.21 to 0.64, respectively.
    [Show full text]
  • Summary Report of Freshwater Nonindigenous Aquatic Species in U.S
    Summary Report of Freshwater Nonindigenous Aquatic Species in U.S. Fish and Wildlife Service Region 4—An Update April 2013 Prepared by: Pam L. Fuller, Amy J. Benson, and Matthew J. Cannister U.S. Geological Survey Southeast Ecological Science Center Gainesville, Florida Prepared for: U.S. Fish and Wildlife Service Southeast Region Atlanta, Georgia Cover Photos: Silver Carp, Hypophthalmichthys molitrix – Auburn University Giant Applesnail, Pomacea maculata – David Knott Straightedge Crayfish, Procambarus hayi – U.S. Forest Service i Table of Contents Table of Contents ...................................................................................................................................... ii List of Figures ............................................................................................................................................ v List of Tables ............................................................................................................................................ vi INTRODUCTION ............................................................................................................................................. 1 Overview of Region 4 Introductions Since 2000 ....................................................................................... 1 Format of Species Accounts ...................................................................................................................... 2 Explanation of Maps ................................................................................................................................
    [Show full text]
  • Maximum Size of the Spectacled Salamander, Salamandrina
    ©Österreichische Gesellschaft für Herpetologie e.V., Wien, Austria, download unter www.biologiezentrum.at 186 SHORT NOTE HERPETOZOA 18 (3/4) Wien, 30. Dezember 2005 SHORT NOTE western Honduras.- Senckenbergiana biologica, ratios than females (e.g., head length/ snout- Frankfurt am Main; 81(1/2): 269-276. MARTINS, M. & vent length, tail length/snout-vent length) as OLIVEIRA, E. (1999): Natural history of snakes in forests of the Manaus Region, Central Amazonia, Brazil.- reported by VANNI (1980), ZUFFI (1999) and Herpetological Natural History, Phoenix; 6 (2):78-150. ANTONELLI (1999). Total length (TL; i.e. PEREZ-SANTOS, C. & MORENO, A. (1990): Anotaciones from the tip of the snout to the end of the tail) biométricas y alimenticias de la serpiente neotropical of the Spectacled Salamander is usually 8-10 Atractus badius (BOIE, 1827) (Serpentes, Colubridae) de la Colección del Museo Nacional de Ciencias Naturales cm (VANNI 1980; ZUFFI 1999; ANGELINI et al. de Madrid.- Revista Espanola de Herpetologia, Madrid; 2001). Until 2001 the maximum TL record- 4: 9-15. PETERS, J. A. (1960): The snakes of the sub- ed in males and females were 9.6 cm family Dipsadinae.- Miscellaneous Publications, (ANTONELLI 1999) and 11.6 cm, respectively Museum of Zoology, Univ. of Michigan, Ann Arbor; (114): 1-224. SAVAGE, J. (1960): A revision of the (ZAGAGLIONI 1978; VANNI 1980). Later, Ecuadorian snakes of the colubrid genus Atractus.- ANGELINI et al. (2001) reported a maximum Miscellaneous Publications, Museum of Zoology, Univ TL of 12.3 cm recorded in two females from of Michigan, Ann Arbor; (112): 1-86. different populations of S.
    [Show full text]
  • <I>Salamandra Salamandra</I>
    International Journal of Speleology 46 (3) 321-329 Tampa, FL (USA) September 2017 Available online at scholarcommons.usf.edu/ijs International Journal of Speleology Off icial Journal of Union Internationale de Spéléologie Subterranean systems provide a suitable overwintering habitat for Salamandra salamandra Monika Balogová1*, Dušan Jelić2, Michaela Kyselová1, and Marcel Uhrin1,3 1Institute of Biology and Ecology, Faculty of Science, P. J. Šafárik University, Šrobárova 2, 041 54 Košice, Slovakia 2Croatian Institute for Biodiversity, Lipovac I., br. 7, 10000 Zagreb, Croatia 3Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Kamýcká 1176, 165 21 Praha, Czech Republic Abstract: The fire salamander (Salamandra salamandra) has been repeatedly noted to occur in natural and artificial subterranean systems. Despite the obvious connection of this species with underground shelters, their level of dependence and importance to the species is still not fully understood. In this study, we carried out long-term monitoring based on the capture-mark- recapture method in two wintering populations aggregated in extensive underground habitats. Using the POPAN model we found the population size in a natural shelter to be more than twice that of an artificial underground shelter. Survival and recapture probabilities calculated using the Cormack-Jolly-Seber model were very constant over time, with higher survival values in males than in females and juveniles, though in terms of recapture probability, the opposite situation was recorded. In addition, survival probability obtained from Cormack-Jolly-Seber model was higher than survival from POPAN model. The observed bigger population size and the lower recapture rate in the natural cave was probably a reflection of habitat complexity.
    [Show full text]
  • <I>In Vivo</I> Sexual Discrimination in <I>Salamandrina Perspicillata</I
    HERPETOLOGICAL JOURNAL 20: 17–24, 2010 In vivo sexual discrimination in Salamandrina perspicillata: a cross-check analysis of annual changes in external cloacal morphology and spermic urine release Leonardo Vignoli1, Romina Silici1, Rossana Brizzi2 & Marco A. Bologna1 1Dipartimento di Biologia Ambientale, Università Roma Tre, Rome, Italy 2Dipartimento di Biologia Evoluzionistica “Leo Pardi”, Università di Firenze, Florence, Italy In Salamandrina, the lack of visible external sexual dimorphism makes the sexing of individuals difficult without sacrifice. The cloaca of Salamandrina in both males and females appears externally as a slit on an unswollen surface, a trait which is consistent throughout the year. Nonetheless, a slight divarication of its borders allows the recognition of three morphs (A, B and C), respectively characterizing male cloaca (all phases), female cloaca without protruding oviductal papillae (courtship phase) and female cloaca with prolapsed oviductal papillae (oviposition phase). Figures and schematic diagrams are provided to illustrate the differences in detail, which are all recognizable to the naked eye or by means of a hand magnifier. In addition to morphology, another reliable method of sexing salamanders is urine examination, albeit only during the courtship and post-courtship phases. Applying these methods for sex determination, we found a male- biased operational sex ratio in two populations, ranging from 6.6:1 (autumn–winter) to 14:1 (May). Males were confined to terrestrial environments, whereas females were also found in water during oviposition. Salamandrina perspicillata was active throughout the year, except during the hottest months (July–August). Key words: cloaca, salamander, sex determination, sex ratio, sexual dimorphism INTRODUCTION Hayes, 1998). Sexing based on behavioural differences requires direct observations, which often prove difficult.
    [Show full text]
  • Is the Italian Stream Frog (Rana Italica Dubois, 1987) an Opportunistic Exploiter of Cave Twilight Zone?
    A peer-reviewed open-access journal Subterranean IsBiology the Italian 25: 49–60 stream (2018) frog (Rana italica Dubois, 1987) an opportunistic exploiter... 49 doi: 10.3897/subtbiol.25.23803 SHORT COMMUNICATION Subterranean Published by http://subtbiol.pensoft.net The International Society Biology for Subterranean Biology Is the Italian stream frog (Rana italica Dubois, 1987) an opportunistic exploiter of cave twilight zone? Enrico Lunghi1,2,3, Giacomo Bruni4, Gentile Francesco Ficetola5,6, Raoul Manenti5 1 Universität Trier Fachbereich VI Raum-und Umweltwissenschaften Biogeographie, Universitätsring 15, 54286 Trier, Germany 2 Museo di Storia Naturale dell’Università di Firenze, Sezione di Zoologia “La Spe- cola”, Via Romana 17, 50125 Firenze, Italy 3 Natural Oasis, Via di Galceti 141, 59100 Prato, Italy 4 Vrije Universiteit Brussel, Boulevard de la Plaine 2, 1050 Ixelles, Bruxelles, Belgium 5 Department of Environmen- tal Science and Policy, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy 6 Univ. Greno- ble Alpes, CNRS, Laboratoire d’Écologie Alpine (LECA), F-38000 Grenoble, France Corresponding author: Enrico Lunghi ([email protected]) Academic editor: O. Moldovan | Received 22 January 2018 | Accepted 9 March 2018 | Published 20 March 2018 http://zoobank.org/07A81673-E845-4056-B31C-6EADC6CA737C Citation: Lunghi E, Bruni G, Ficetola GF, Manenti R (2018) Is the Italian stream frog (Rana italica Dubois, 1987) an opportunistic exploiter of cave twilight zone? Subterranean Biology 25: 49–60. https://doi.org/10.3897/subtbiol.25.23803 Abstract Studies on frogs exploiting subterranean environments are extremely scarce, as these Amphibians are usually considered accidental in these environments. However, according to recent studies, some anurans actively select subterranean environments on the basis of specific environmental features, and thus are able to inhabit these environments throughout the year.
    [Show full text]
  • 50 CFR Ch. I (10–1–20 Edition) § 16.14
    § 15.41 50 CFR Ch. I (10–1–20 Edition) Species Common name Serinus canaria ............................................................. Common Canary. 1 Note: Permits are still required for this species under part 17 of this chapter. (b) Non-captive-bred species. The list 16.14 Importation of live or dead amphib- in this paragraph includes species of ians or their eggs. non-captive-bred exotic birds and coun- 16.15 Importation of live reptiles or their tries for which importation into the eggs. United States is not prohibited by sec- Subpart C—Permits tion 15.11. The species are grouped tax- onomically by order, and may only be 16.22 Injurious wildlife permits. imported from the approved country, except as provided under a permit Subpart D—Additional Exemptions issued pursuant to subpart C of this 16.32 Importation by Federal agencies. part. 16.33 Importation of natural-history speci- [59 FR 62262, Dec. 2, 1994, as amended at 61 mens. FR 2093, Jan. 24, 1996; 82 FR 16540, Apr. 5, AUTHORITY: 18 U.S.C. 42. 2017] SOURCE: 39 FR 1169, Jan. 4, 1974, unless oth- erwise noted. Subpart E—Qualifying Facilities Breeding Exotic Birds in Captivity Subpart A—Introduction § 15.41 Criteria for including facilities as qualifying for imports. [Re- § 16.1 Purpose of regulations. served] The regulations contained in this part implement the Lacey Act (18 § 15.42 List of foreign qualifying breed- U.S.C. 42). ing facilities. [Reserved] § 16.2 Scope of regulations. Subpart F—List of Prohibited Spe- The provisions of this part are in ad- cies Not Listed in the Appen- dition to, and are not in lieu of, other dices to the Convention regulations of this subchapter B which may require a permit or prescribe addi- § 15.51 Criteria for including species tional restrictions or conditions for the and countries in the prohibited list.
    [Show full text]
  • Taxonomic Checklist of Amphibian Species Listed in the CITES
    CoP17 Doc. 81.1 Annex 5 (English only / Únicamente en inglés / Seulement en anglais) Taxonomic Checklist of Amphibian Species listed in the CITES Appendices and the Annexes of EC Regulation 338/97 Species information extracted from FROST, D. R. (2015) "Amphibian Species of the World, an online Reference" V. 6.0 (as of May 2015) Copyright © 1998-2015, Darrel Frost and TheAmericanMuseum of Natural History. All Rights Reserved. Additional comments included by the Nomenclature Specialist of the CITES Animals Committee (indicated by "NC comment") Reproduction for commercial purposes prohibited. CoP17 Doc. 81.1 Annex 5 - p. 1 Amphibian Species covered by this Checklist listed by listed by CITES EC- as well as Family Species Regulation EC 338/97 Regulation only 338/97 ANURA Aromobatidae Allobates femoralis X Aromobatidae Allobates hodli X Aromobatidae Allobates myersi X Aromobatidae Allobates zaparo X Aromobatidae Anomaloglossus rufulus X Bufonidae Altiphrynoides malcolmi X Bufonidae Altiphrynoides osgoodi X Bufonidae Amietophrynus channingi X Bufonidae Amietophrynus superciliaris X Bufonidae Atelopus zeteki X Bufonidae Incilius periglenes X Bufonidae Nectophrynoides asperginis X Bufonidae Nectophrynoides cryptus X Bufonidae Nectophrynoides frontierei X Bufonidae Nectophrynoides laevis X Bufonidae Nectophrynoides laticeps X Bufonidae Nectophrynoides minutus X Bufonidae Nectophrynoides paulae X Bufonidae Nectophrynoides poyntoni X Bufonidae Nectophrynoides pseudotornieri X Bufonidae Nectophrynoides tornieri X Bufonidae Nectophrynoides vestergaardi
    [Show full text]